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ABSTRACT

Adversarial neural networks solve many important problems in data science, but
are notoriously difficult to train. These difficulties come from the fact that optimal
weights for adversarial nets correspond to saddle points, and not minimizers, of
the loss function. The alternating stochastic gradient methods typically used for
such problems do not reliably converge to saddle points, and when convergence
does happen it is often highly sensitive to learning rates. We propose a simple
modification of stochastic gradient descent that stabilizes adversarial networks. We
show, both in theory and practice, that the proposed method reliably converges
to saddle points, and is stable with a wider range of training parameters than a
non-prediction method. This makes adversarial networks less likely to “collapse,”
and enables faster training with larger learning rates.

1 INTRODUCTION

Adversarial networks play an important role in a variety of applications, including image genera-
tion (Zhang et al., 2017; Wang & Gupta, 2016), style transfer (Brock et al., 2017; Taigman et al.,
2017; Wang & Gupta, 2016; Isola et al., 2017), domain adaptation (Taigman et al., 2017; Tzeng et al.,
2017; Ganin & Lempitsky, 2015), imitation learning (Ho et al., 2016), privacy (Edwards & Storkey,
2016; Abadi & Andersen, 2016), fair representation (Mathieu et al., 2016; Edwards & Storkey, 2016),
etc. One particularly motivating application of adversarial nets is their ability to form generative
models, as opposed to the classical discriminative models (Goodfellow et al., 2014; Radford et al.,
2016; Denton et al., 2015; Mirza & Osindero, 2014).

While adversarial networks have the power to attack a wide range of previously unsolved problems,
they suffer from a major flaw: they are difficult to train. This is because adversarial nets try to
accomplish two objectives simultaneously; weights are adjusted to maximize performance on one
task while minimizing performance on another. Mathematically, this corresponds to finding a saddle
point of a loss function - a point that is minimal with respect to one set of weights, and maximal with
respect to another.

Conventional neural networks are trained by marching down a loss function until a minimizer is
reached (Figure 1a). In contrast, adversarial training methods search for saddle points rather than a
minimizer, which introduces the possibility that the training path “slides off” the objective functions
and the loss goes to −∞ (Figure 1b), resulting in “collapse” of the adversarial network. As a result,
many authors suggest using early stopping, gradients/weight clipping (Arjovsky et al., 2017), or
specialized objective functions (Goodfellow et al., 2014; Zhao et al., 2017; Arjovsky et al., 2017) to
maintain stability.

In this paper, we present a simple “prediction” step that is easily added to many training algorithms
for adversarial nets. We present theoretical analysis showing that the proposed prediction method is
asymptotically stable for a class of saddle point problems. Finally, we use a wide range of experiments
to show that prediction enables faster training of adversarial networks using large learning rates
without the instability problems that plague conventional training schemes.
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Figure 1: A schematic depiction of gradient methods. (a) Classical networks are trained by marching down the
loss function until a minimizer is reached. Because classical loss functions are bounded from below, the solution
path gets stopped when a minimizer is reached, and the gradient method remains stable. (b) Adversarial net loss
functions may be unbounded from below, and training alternates between minimization and maximization steps.
If minimization (or, conversely, maximization) is more powerful, the solution path “slides off” the loss surface
and the algorithm becomes unstable, resulting in a sudden “collapse” of the network.

2 PROPOSED METHOD

Saddle-point optimization problems have the general form

min
u

max
v
L(u, v) (1)

for some loss function L and variables u and v. Most authors use the alternating stochastic gradient
method to solve saddle-point problems involving neural networks. This method alternates between
updating u with a stochastic gradient descent step, and then updating v with a stochastic gradient
ascent step. When simple/classical SGD updates are used, the steps of this method can be written

uk+1 = uk − αkL′u(uk, vk) | gradient descent in u, starting at (uk, vk)

vk+1 = vk + βkL′v(uk+1, vk) | gradient ascent in v, starting at (uk+1, vk) .
(2)

Here, {αk} and {βk} are learning rate schedules for the minimization and maximization steps,
respectively. The vectors L′u(u, v) and L′v(u, v) denote (possibly stochastic) gradients of L with
respect to u and v. In practice, the gradient updates are often performed by an automated solver, such
as the Adam optimizer (Kingma & Ba, 2015), and include momentum updates.

We propose to stabilize the training of adversarial networks by adding a prediction step. Rather than
calculating vk+1 using uk+1, we first make a prediction, ūk+1, about where the u iterates will be in
the future, and use this predicted value to obtain vk+1.

Prediction Method

uk+1 = uk − αkL′u(uk, vk) | gradient descent in u, starting at (uk, vk)

ūk+1 = uk+1 + (uk+1 − uk) | predict future value of u

vk+1 = vk + βkL′v(ūk+1, vk) | gradient ascent in v, starting at (ūk+1, vk) .

(3)

The Prediction step (3) tries to estimate where u is going to be in the future by assuming its trajectory
remains the same as in the current iteration.

3 BACKGROUND

3.1 ADVERSARIAL NETWORKS AS A SADDLE-POINT PROBLEM

We now discuss a few common adversarial network problems and their saddle-point formulations.
Generative Adversarial Networks (GANs) fit a generative model to a dataset using a game in which
a generative model competes against a discriminator (Goodfellow et al., 2014). The generator,
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G(z; θg), takes random noise vectors z as inputs, and maps them onto points in the target data
distribution. The discriminator, D(x; θd), accepts a candidate point x and tries to determine whether
it is really drawn from the empirical distribution (in which case it outputs 1), or fabricated by the
generator (output 0). During a training iteration, noise vectors from a Gaussian distribution G are
pushed through the generator network G to form a batch of generated data samples denoted by
Dfake. A batch of empirical samples, Dreal, is also prepared. One then tries to adjust the weights of
each network to solve a saddle point problem, which is popularly formulated as,

min
θg

max
θd

Ex∼Dreal f(D(x; θd)) + Ez∼G f(1−D(G(z; θg); θd)). (4)

Here f(.) is any monotonically increasing function. Initially, (Goodfellow et al., 2014) proposed
using f(x) = log(x).

Domain Adversarial Networks (DANs) (Makhzani et al., 2016; Ganin & Lempitsky, 2015; Edwards
& Storkey, 2016) take data collected from a “source” domain, and extract a feature representation
that can be used to train models that generalize to another “target” domain. For example, in the
domain adversarial neural network (DANN (Ganin & Lempitsky, 2015)), a set of feature layers
maps data points into an embedded feature space, and a classifier is trained on these embedded
features. Meanwhile, the adversarial discriminator tries to determine, using only the embedded
features, whether the data points belong to the source or target domain. A good embedding yields a
better task-specific objective on the target domain while fooling the discriminator, and is found by
solving

min
θf ,θyk

max
θd

∑
k

αkLyk
(
xs; θf , θyk

)
− λLd (xs,xt; θf , θd) . (5)

Here Ld is any adversarial discriminator loss function and Lyk denotes the task specific loss. θf , θd,
and θyk are network parameter of feature mapping, discriminator, and classification layers.

3.2 STABILIZING SADDLE POINT SOLVERS

It is well known that alternating stochastic gradient methods are unstable when using simple loga-
rithmic losses. This led researchers to explore multiple directions for stabilizing GANs; either by
adding regularization terms (Arjovsky et al., 2017; Li et al., 2015; Che et al., 2017; Zhao et al., 2017),
a myriad of training “hacks” (Salimans et al., 2016; Gulrajani et al., 2017), re-engineering network
architectures (Zhao et al., 2017), and designing different solvers (Metz et al., 2017). Specifically,
the Wasserstein GAN (WGAN) (Arjovsky et al., 2017) approach modifies the original objective by
replacing f(x) = log(x) with f(x) = x. This led to a training scheme in which the discriminator
weights are “clipped.” However, as discussed in Arjovsky et al. (2017), the WGAN training is
unstable at high learning rates, or when used with popular momentum based solvers such as Adam.
Currently, it is known to work well only with RMSProp (Arjovsky et al., 2017).

The unrolled GAN (Metz et al., 2017) is a new solver that can stabilize training at the cost of more
expensive gradient computations. Each generator update requires the computation of multiple extra
discriminator updates, which are then discarded when the generator update is complete. While
avoiding GAN collapse, this method requires increased computation and memory.

In the convex optimization literature, saddle point problems are more well studied. One popular solver
is the primal-dual hybrid gradient (PDHG) method (Zhu & Chan, 2008; Esser et al., 2009), which
has been popularized by Chambolle and Pock (Chambolle & Pock, 2011), and has been successfully
applied to a range of machine learning and statistical estimation problems (Goldstein et al., 2015).
PDHG relates closely to the method proposed here - it achieves stability using the same prediction
step, although it uses a different type of gradient update and is only applicable to bi-linear problems.

Stochastic methods for convex saddle-point problems can be roughly divided into two categories:
stochastic coordinate descent (Dang & Lan, 2014; Lan & Zhou, 2015; Zhang & Lin, 2015; Zhu &
Storkey, 2015; 2016; Wang & Xiao, 2017; Shibagaki & Takeuchi, 2017) and stochastic gradient
descent (Chen et al., 2014; Qiao et al., 2016). Similar optimization algorithms have been studied
for reinforcement learning (Wang & Chen, 2016; Du et al., 2017). Recently, a “doubly” stochastic
method that randomizes both primal and dual updates was proposed for strongly convex bilinear
saddle point problems (Yu et al., 2015). For general saddle point problems, “doubly” stochastic
gradient descent methods are discussed in Nemirovski et al. (2009),Palaniappan & Bach (2016), in
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Figure 2: A schematic depiction of the prediction method. When the minimization step is powerful and
moves the iterates a long distance, the prediction step (dotted black arrow) causes the maximization update to
be calculated further down the loss surface, resulting in a more dramatic maximization update. In this way,
prediction methods prevent the maximization step from getting overpowered by the minimization update.

which primal and dual variables are updated simultaneously based on the previous iterates and the
current gradients.

4 INTERPRETATIONS OF THE PREDICTION STEP

We present three ways to explain the effect of prediction: an intuitive, non-mathematical perspective, a
more analytical viewpoint involving dynamical systems, and finally a rigorous proof-based approach.

4.1 AN INTUITIVE VIEWPOINT

The standard alternating SGD switches between minimization and maximization steps. In this
algorithm, there is a risk that the minimization step can overpower the maximization step, in which
case the iterates will “slide off” the edge of saddle, leading to instability (Figure 1b). Conversely,
an overpowering maximization step will dominate the minimization step, and drive the iterates to
extreme values as well.

The effect of prediction is visualized in Figure 2. Suppose that a maximization step takes place
starting at the red dot. Without prediction, the maximization step has no knowledge of the algorithm
history, and will be the same regardless of whether the previous minimization update was weak
(Figure 2a) or strong (Figure 2b). Prediction allows the maximization step to exploit information
about the minimization step. If the previous minimizations step was weak (Figure 2a), the prediction
step (dotted black arrow) stays close to the red dot, resulting in a weak predictive maximization step
(white arrow). But if we arrived at the red dot using a strong minimization step (Figure 2b), the
prediction moves a long way down the loss surface, resulting in a stronger maximization step (white
arrows) to compensate.

4.2 A MORE MATHEMATICAL PERSPECTIVE

To get stronger intuition about prediction methods, let’s look at the behavior of Algorithm (3) on a
simple bi-linear saddle of the form

L(u, v) = vTKu (6)

where K is a matrix. When exact (non-stochastic) gradient updates are used, the iterates follow
the path of a simple dynamical system with closed-form solutions. We give here a sketch of this
argument: a detailed derivation is provided in the Supplementary Material.

When the (non-predictive) gradient method (2) is applied to the linear problem (6), the resulting
iterations can be written

uk+1 − uk
α

= −KT vk,
vk+1 − vk

α
= (β/α)Kuk+1.

When the stepsize α gets small, this behaves like a discretization of the system of differential equations

u̇ = −KT v, v̇ = β/αKu
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where u̇ and v̇ denote the derivatives of u and v with respect to time. These equations describe a
simple harmonic oscillator, and the closed form solution for u is

u(t) = C cos(Σ1/2t+ φ)

where Σ is a diagonal matrix, and the matrix C and vector φ depend on the initialization. We can
see that, for small values of α and β, the non-predictive algorithm (2) approximates an undamped
harmonic motion, and the solutions orbit around the saddle without converging.

The prediction step (3) improves convergence because it produces damped harmonic motion that
sinks into the saddle point. When applied to the linearized problem (6), we get the dynamical system

u̇ = −KT v, v̇ = β/αK(u+ αu̇) (7)

which has solution

u(t) = UA exp(− tα
2

√
Σ) sin(t

√
(1− α2/4)Σ + φ).

From this analysis, we see that the damping caused by the prediction step causes the orbits to converge
into the saddle point, and the error decays exponentially fast.

4.3 A RIGOROUS PERSPECTIVE

While the arguments above are intuitive, they are also informal and do not address issues like
stochastic gradients, non-constant stepsize sequences, and more complex loss functions. We now
provide a rigorous convergence analysis that handles these issues.

We assume that the function L(u, v) is convex in u and concave in v. We can then measure
convergence using the “primal-dual” gap, P (u, v) = L(u, v?)− L(u?, v) where (u?, v?) is a saddle.
Note that P (u, v) > 0 for non-optimal (u, v), and P (u, v) = 0 if (u, v) is a saddle. Using these
definitions, we formulate the following convergence result. The proof is in the supplementary
material.

Theorem 1. Suppose the function L(u, v) is convex in u, concave in v, and that the partial gradient
L′v is uniformly Lipschitz smooth in u (‖L′v(u1, v)− L′v(u2, v)‖ ≤ Lv‖u1 − u2‖). Suppose further
that the stochastic gradient approximations satisfy E‖L′u(u, v)‖2 ≤ G2

u, E‖L′v(u, v)‖2 ≤ G2
v for

scalars Gu and Gv, and that E‖uk − u?‖2 ≤ D2
u, and E‖vk − v?‖2 ≤ D2

v for scalars Du and Dv.

If we choose decreasing learning rate parameters of the form αk = Cα√
k

and βk =
Cβ√
k
, then the SGD

method with prediction converges in expectation, and we have the error bound

E[P (ûl, v̂l)] ≤ 1

2
√
l

(
D2
u

Cα
+
D2
v

Cβ

)
+

√
l + 1

l

(
CαG

2
u

2
+ CαLvG

2
u + CαLvD

2
v +

CβG
2
v

2

)
where ûl = 1

l

∑l
k=1 u

k, v̂l = 1
l

∑l
k=1 v

k.

5 EXPERIMENTS

We present a wide range of experiments to demonstrate the benefits of the proposed prediction
step for adversarial nets. We consider a saddle point problem on a toy dataset constructed using
MNIST images, and then move on to consider state-of-the-art models for three tasks: GANs,
domain adaptation, and learning of fair classifiers. Additional results, and additional experiments
involving mixtures of Gaussians, are presented in the Appendix. The code is available at https:
//github.com/jaiabhayk/stableGAN.

5.1 MNIST TOY PROBLEM

We consider the task of classifying MNIST digits as being even or odd. To make the problem
interesting, we corrupt 70% of odd digits with salt-and-pepper noise, while we corrupt only 30% of
even digits. When we train a LeNet network (LeCun et al., 1998) on this problem, we find that the
network encodes and uses information about the noise; when a noise vs no-noise classifier is trained
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on the deep features generated by LeNet, it gets 100% accuracy. The goal of this task is to force
LeNet to ignore the noise when making decisions. We create an adversarial model of the form (5) in
which Ly is a softmax loss for the even vs odd classifier. We make Ld a softmax loss for the task of
discriminating whether the input sample is noisy or not. The classifier and discriminator were both
pre-trained using the default LeNet implementation in Caffe (Jia et al., 2014). Then the combined
adversarial net was jointly trained both with and without prediction. For implementation details, see
the Supplementary Material.

Figure 3 summarizes our findings. In this experiment, we considered applying prediction to both
the classifier and discriminator. We note that our task is to retain good classification accuracy while
preventing the discriminator from doing better than the trivial strategy of classifying odd digits as
noisy and even digits as non-noisy. This means that the discriminator accuracy should ideally be
∼ 0.7. As shown in Figure 3a, the prediction step hardly makes any difference when evaluated at
the small learning rate of 10−4. However, when evaluated at higher rates, Figures 3b and 3c show
that the prediction solvers are very stable while one without prediction collapses (blue solid line is
flat) very early. Figure 3c shows that the default learning rate (10−3) of the Adam solver is unstable
unless prediction is used.
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Figure 3: Comparison of the classification accuracy (digit parity) and discriminator (noisy vs. no-noise)
accuracy using SGD and Adam solver with and without prediction steps. θf and θd refers to variables in eq. (5).
(a) Using SGD with learning rate lr = 10−4. Note that the solid lines of red, blue and green are overlapped. (b)
SGD solver with higher learning rate of lr = 10−3, and (c) using Adam solver with its default parameter.

5.2 GENERATIVE ADVERSARIAL NETWORKS

Next, we test the efficacy and stability of our proposed predictive step on generative adversarial
networks (GAN), which are formulated as saddle point problems (4) and are popularly solved using a
heuristic approach (Goodfellow et al., 2014). We consider an image modeling task using CIFAR-
10 (Krizhevsky, 2009) on the recently popular convolutional GAN architecture, DCGAN (Radford
et al., 2016). We compare our predictive method with that of DCGAN and the unrolled GAN (Metz
et al., 2017) using the training protocol described in Radford et al. (2016). Note that we compared
against the unrolled GAN with stop gradient switch1 and K = 5 unrolling steps. All the approaches
were trained for five random seeds and 100 epochs each.

We start with comparing all three methods using the default solver for DCGAN (the Adam optimizer)
with learning rate=0.0002 and β1=0.5. Figure 4 compares the generated sample images (at the
100th epoch) and the training loss curve for all approaches. The discriminator and generator loss
curves in Figure 4e show that without prediction, the DCGAN collapses at the 45th and 57th epochs.
Similarly, Figure 4f shows that the training for unrolled GAN collapses in at least three instances.
The training procedure using predictive steps never collapsed during any epochs. Qualitatively, the
images generated using prediction are more diverse than the DCGAN and unrolled GAN images.

Figure 5 compares all approaches when trained with 5× higher learning rate (0.001) (the default for
the Adam solver). As observed in Radford et al. (2016), the standard and unrolled solvers are very
unstable and collapse at this higher rate. However, as shown in Figure 5d, & 5a, training remains
stable when a predictive step is used, and generates images of reasonable quality. The training
procedure for both DCGAN and unrolled GAN collapsed on all five random seeds. The results on
various additional intermediate learning rates as well as on high resolution Imagenet dataset are in
the Supplementary Material.

1We found the unrolled GAN without stop gradient switch as well as for smaller values of K collapsed when
used on the DCGAN architecture.
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In the Supplementary Material, we present one additional comparison showing results on a higher
momentum of β1=0.9 (learning rate=0.0002). We observe that all the training approaches are stable.
However, the quality of images generated using DCGAN is inferior to that of the predictive and
unrolled methods.

Overall, of the 25 training settings we ran on (each of five learning rates for five random seeds),
the DCGAN training procedure collapsed in 20 such instances while unrolled GAN collapsed in 14
experiments (not counting the multiple collapse in each training setting). On the contrary, we find
that our simple predictive step method collapsed only once.

Note that prediction adds trivial cost to the training algorithm. Using a single TitanX Pascal, a training
epoch of DCGAN takes 35 secs. With prediction, an epoch takes 38 secs. The unrolled GAN method,
which requires extra gradient steps, takes 139 secs/epoch.

Finally, we draw quantitative comparisons based on the inception score (Salimans et al., 2016), which
is a widely used metric for visual quality of the generated images. For this purpose, we consider the
current state-of-the-art Stacked GAN (Huang et al., 2017) architecture. Table 1 lists the inception
scores computed on the generated samples from Stacked GAN trained (200 epochs) with and without
prediction at different learning rates. The joint training of Stacked GAN collapses when trained at the
default learning rate of adam solver (i.e., 0.001). However, reasonably good samples are generated if
the same is trained with prediction on both the generator networks. The right end of Table 1 also
list the inception score measured at fewer number of epochs for higher learning rates. It suggest that
the model trained with prediction methods are not only stable but also allows faster convergence
using higher learning rates. For reference the inception score on real images of CIFAR-10 dataset is
11.51± 0.17.

Table 1: Comparison of Inception Score on Stacked GAN network with and w/o G prediction.
Learning rate 0.0001 0.0005 0.001 0.0005 (40) 0.001 (20)

Stacked GAN (joint) 8.44± 0.11 7.90± 0.08 1.52± 0.01 5.80± 0.15 1.42± 0.01
Stacked GAN (joint) + prediction 8.55± 0.12 8.13± 0.09 7.96± 0.11 8.10± 0.10 7.79± 0.07

(a) With G prediction (b) DCGAN (c) Unrolled GAN
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(f) Unrolled GAN

Figure 4: Comparison of GAN training algorithms for DCGAN architecture on Cifar-10 image datasets. Using
default parameters of DCGAN; lr = 0.0002, β1 = 0.5.
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(a) With G prediction (b) DCGAN (c) Unrolled GAN
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Figure 5: Comparison of GAN training algorithms for DCGAN architecture on Cifar-10 image datasets with
higher learning rate, lr = 0.001, β1 = 0.5.

5.3 DOMAIN ADAPTATION

We consider the domain adaptation task (Saenko et al., 2010; Ganin & Lempitsky, 2015; Tzeng et al.,
2017) wherein the representation learned using the source domain samples is altered so that it can also
generalize to samples from the target distribution. We use the problem setup and hyper-parameters as
described in (Ganin & Lempitsky, 2015) using the OFFICE dataset (Saenko et al., 2010) (experimental
details are shared in the Supplementary Material). In Table 2, comparisons are drawn with respect to
target domain accuracy on six pairs of source-target domain tasks. We observe that the prediction
step has mild benefits on the “easy” adaptation tasks with very similar source and target domain
samples. However, on the transfer learning tasks of AMAZON-to-WEBCAM, WEBCAM-to-AMAZON,
and DSLR-to-AMAZON which has noticeably distinct data samples, an extra prediction step gives an
absolute improvement of 1.3− 6.9% in predicting target domain labels.

Table 2: Comparison of target domain accuracy on OFFICE dataset.

Method Source AMAZON WEBCAM DSLR WEBCAM AMAZON DSLR
Target WEBCAM AMAZON WEBCAM DSLR DSLR AMAZON

DANN (Ganin & Lempitsky, 2015) 73.4 51.6 95.5 99.4 76.5 51.7
DANN + prediction 74.7 58.5 96.1 99.0 73.5 57.6

5.4 FAIR CLASSIFIER

Finally, we consider a task of learning fair feature representations (Mathieu et al., 2016; Edwards
& Storkey, 2016; Louizos et al., 2016) such that the final learned classifier does not discriminate
with respect to a sensitive variable. As proposed in Edwards & Storkey (2016) one way to measure
fairness is using discrimination,

ydisc =

∣∣∣∣∣ 1

N0

∑
i:si=0

η(xi)−
1

N1

∑
i:si=1

η(xi)

∣∣∣∣∣ . (8)

Here si is a binary sensitive variable for the ith data sample and Nk denotes the total number of
samples belonging to the kth sensitive class. Similar to the domain adaptation task, the learning of
each classifier can be formulated as a minimax problem in (5) (Edwards & Storkey, 2016; Mathieu
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et al., 2016). Unlike the previous example though, this task has a model selection component. From a
pool of hundreds of randomly generated adversarial deep nets, for each value of t, one selects the
model that maximizes the difference

yt,Delta = yacc − t ∗ ydisc. (9)

The “Adult” dataset from the UCI machine learning repository is used. The task (yacc) is to classify
whether a person earns ≥ $50k/year. The person’s gender is chosen to be the sensitive variable.
Details are in the supplementary. To demonstrate the advantage of using prediction for model
selection, we follow the protocol developed in Edwards & Storkey (2016). In this work, the search
space is restricted to a class of models that consist of a fully connected autoencoder, one task specific
discriminator, and one adversarial discriminator. The encoder output from the autoencoder acts as
input to both the discriminators. In our experiment, 100 models are randomly selected. During the
training of each adversarial model, Ld is a cross-entropy loss while Ly is a linear combination of
reconstruction and cross-entropy loss. Once all the models are trained, the best model for each value
of t is selected by evaluating (9) on the validation set.

Figure 6a plots the results on the test set for the AFLR approach with and without prediction steps
in their default Adam solver. For each value of t, Figure 6b, 6c also compares the number of layers
in the selected encoder and discriminator networks. When using prediction for training, relatively
stronger encoder models are produced and selected during validation, and hence the prediction results
generalize better on the test set.
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Figure 6: Model selection for learning a fair classifier. (a) Comparison of yt,delta (higher is better),
and also ydisc (lower is better) and yacc on the test set using AFLR with and without predictive
steps. (b) Number of encoder layers in the selected model. (c) Number of discriminator layers (both
adversarial and task-specific) in the selected model.

6 CONCLUSION

We present a simple modification to the alternating SGD method, called a prediction step, that
improves the stability of adversarial networks. We present theoretical results showing that the
prediction step is asymptotically stable for solving saddle point problems. We show, using a variety
of test problems, that prediction steps prevent network collapse and enable training with a wider
range of learning rates than plain SGD methods.
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APPENDIX

A DETAILED DERIVATION OF THE HARMONIC OSCILLATOR EQUATION

Here, we provide a detailed derivation of the harmonic oscillator behavior of Algorithm (3) on the
simple bi-linear saddle of the form

L(x, y) = yTKx

where K is a matrix. Note that, within a small neighborhood of a saddle, all smooth weakly convex
objective functions behave like (6).To see why, consider a smooth objective function L with a saddle
point at x∗ = 0, y∗ = 0. Within a small neighborhood of the saddle, we can approximate the function
L to high accuracy using its Taylor approximation

L(x, y) ≈ L(x∗, y∗) + yTL′xyx+O(‖x‖3 + ‖y‖3)

where L′xy denotes the matrix of mixed-partial derivatives with respect to x and y. Note that the
first-order terms have vanished from this Taylor approximation because the gradients are zero at
a saddle point. The O(‖x‖2) and O(‖y‖2) terms vanish as well because the problem is assumed
to be weakly convex around the saddle. Up to third-order error (which vanishes quickly near the
saddle), this Taylor expansion has the form (6). For this reason, stability on saddles of the form (6) is
a necessary condition for convergence of (3), and the analysis here describes the asymptotic behavior
of the prediction method on any smooth problem for which the method converges.

We will show that, as the learning rate gets small, the iterates of the non-prediction method (2) rotate
in orbits around the saddle without converging. In contrast, the iterates of the prediction method fall
into the saddle and converge.

When the conventional gradient method (2) is applied to the linear problem (6), the resulting iterations
can be written

xk+1 − xk
α

= −KT yk,
yk+1 − yk

α
= (β/α)Kxk+1.

When the stepsize α gets small, this behaves like a discretization of the differential equation

ẋ = −KT y (10)
ẏ = β/αKx (11)

where ẋ and ẏ denote the derivatives of x and y with respect to time.

The differential equations (10,11) describe a harmonic oscillator. To see why, differentiate (10) and
plug (11) into the result to get a differential equation in x alone

ẍ = −KT ẏ = −β/αKTKx. (12)
We can decompose this into a system of independent single-variable problems by considering the
eigenvalue decomposition β/αKTK = UΣUT . We now multiply both sides of (12) by UT , and
make the change of variables z ← UTx to get

z̈ = −Σz.

where Σ is diagonal. This is the standard equation for undamped harmonic motion, and its solution
is z = A cos(Σ1/2t + φ), where cos acts entry-wise, and the diagonal matrix A and vector φ are
constants that depend only on the initialization. Changing back into the variable x, we get the solution

x = UA cos(Σ1/2t+ φ).

We can see that, for small values of α and β, the non-predictive algorithm (2) approximates an
undamped harmonic motion, and the solutions orbit around the saddle without converging.

The prediction step (3) improves convergence because it produces damped harmonic motion that
sinks into the saddle point. When applied to the linearized problem (6), the iterates of the predictive
method (3) satisfy

xk+1 − xk
α

= −KT yk

yk+1 − yk
α

= β/αK(xk+1 + xk+1 − xk) = β/αKxk+1 + βK
xk+1 − xk

α
.
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For small α, this approximates the dynamical system

ẋ = −KT y (13)
ẏ = β/αK(x+ αẋ). (14)

Like before, we differentiate (13) and use (14) to obtain

ẍ = −KT ẏ = −β/αKT (Kx+ αAẋ) = −β/αKTKx− β/KTKẋ. (15)

Finally, multiply both sides by UT and perform the change of variables z ← UTx to get

z̈ = −Σz − αΣż.

This equation describes a damped harmonic motion. The solutions have the form z(t) =

A exp(− tα2
√

Σ) sin(t
√

(1− α2/4)Σ + φ). Changing back to the variable x, we see that the iterates
of the original method satisfy

x(t) = UA exp(− tα
2

√
Σ) sin(t

√
(1− α2/4)Σ + φ).

where A and φ depend on the initialization.

From this analysis, we see that for small constant α the orbits of the lookahead method converge into
the saddle point, and the error decays exponentially fast.

A PROOF OF THEOREM 1

Assume the optimal solution (u?, v?) exists, then L′u(u?, v) = L′v(u, v?) = 0. In the following
proofs, we use gu(u, v), gv(u, v) to represent the stochastic approximation of gradients, where
E[gu(u, v)] = L′u(u, v), E[gv(u, v)] = L′v(u, v). We show the convergence of the proposed stochas-
tic primal-dual gradients for the primal-dual gap P (uk, vk) = L(uk, v?) − L(u?, vk). We prove
the O(1/

√
k) convergence rate in Theorem 1 by using Lemma 1 and Lemma 2, which present the

contraction of primal and dual updates, respectively.

Lemma 1. Suppose L(u, v) is convex in u and E[‖gu(u, v)‖2] ≤ G2
u, we have

E[L(uk, vk)]− E[L(u?, vk)] ≤ 1

2αk
(
E[‖uk − u?‖2]− E[‖uk+1 − u?‖2]

)
+
αk
2
G2
u (16)

Proof. Use primal update in (3), we have

‖uk+1 − u?‖2 = ‖uk − αk gu(uk, vk)− u?‖2 (17)

= ‖uk − u?‖2 − 2αk 〈gu(uk, vk), uk − u?〉+ α2
k ‖gu(uk, vk)‖2. (18)

Take expectation on both side of the equation, substitute with E[gu(u, v)] = L′u(u, v) and apply
E[‖g2u(u, v)‖] ≤ G2

u to get

E[‖uk+1 − u?‖2] ≤ E[‖uk − u?‖2]− 2αk E[〈L′u(uk, vk), uk − u?〉] + α2
kG

2
u. (19)

Since L(u, v) is convex in u, we have

〈L′u(uk, vk), uk − u?〉 ≥ L(uk, vk)− L(u?, vk). (20)

(16) is proved by combining (19) and (20).

Lemma 2. Suppose L(u, v) is concave in v and has Lipschitz gradients, ‖L′v(u1, v)−L′v(u2, v)‖ ≤
Lv‖u1 − u2‖; and bounded variance, E[‖gu(u, v)‖2] ≤ G2

u, E[‖gv(u, v)‖2] ≤ G2
v; and E[‖vk −

v?‖2] ≤ D2
v , we have

E[L(uk, v?)]− E[L(uk, vk)] ≤
1

2βk

(
E[‖vk − v?‖2]− E[‖vk+1 − v?‖2]

)
+
βk
2
G2
v + αkLv (G2

u +D2
v).

(21)
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Proof. From the dual update in (3), we have
‖vk+1 − v?‖2 = ‖vk + βk gv(ū

k+1, vk)− v?‖2 (22)

= ‖vk − v?‖2 + 2βk 〈gv(ūk+1, vk), vk − v?〉+ β2
k ‖gv(ūk+1, vk)‖2. (23)

Take expectation on both sides of the equation, substitute E[gv(u, v)] = L′v(u, v), and apply
E[‖g2v(u, v)‖] ≤ G2

v to get
E[‖vk+1 − v?‖2] ≤ E[‖vk − v?‖2] + 2βk E[〈L′v(ūk+1, vk), vk − v?〉] + β2

k G
2
v. (24)

Reorganize (24) to get
E[‖vk+1 − v?‖2]− E[‖vk − v?‖2]− β2

k G
2
v ≤ 2βk E[〈L′v(ūk+1, vk), vk − v?〉]. (25)

The right hand side of (25) can be represented as
E[〈L′v(ūk+1, vk), uk − v?〉] (26)

=E[〈L′v(ūk+1, vk)− L′v(uk, vk) + L′v(uk, vk), vk − v?〉] (27)

=E[〈L′v(ūk+1, vk)− L′v(uk, vk), vk − v?〉] + E[〈L′v(uk, vk), vk − v?〉], (28)
where

E[〈L′v(ūk+1, vk)− L′v(uk, vk), vk − v?〉] (29)

≤E[‖L′v(ūk+1, vk)− L′v(uk, vk)‖ ‖vk − v?‖] (30)

≤E[Lv ‖ūk+1 − uk‖ ‖vk − v?‖] (31)

=E[2Ly ‖uk+1 − uk‖ ‖vk − v?‖] (32)

=E[2Ly ‖αkgu(uk, vk)‖ ‖vk − v?‖] (33)

≤Lyαk E[ ‖gu(uk, vk)‖2 + ‖vk − v?‖2] (34)

≤Lyαk (G2
u +D2

v). (35)
Lipschitz smoothness is used for (31); the prediction step in (3) is used for (32); the primal update in
(3) is used for (33); bounded assumptions are used for (35).

Since L(u, v) is concave in v, we have
〈L′v(uk, vk), vk − v?〉 ≤ L(uk, vk)− L(uk, v?). (36)

Combine equations (25, 28, 35 to get36)
1

2βk

(
E[‖vk+1 − v?‖2]− E[‖vk − v?‖2]

)
− βk

2
G2
v

≤ Lvαk (G2
u +D2

v) + E[L(uk, vk)]− E[L(uk, v?)].

(37)

Rearrange the order of (37) to achieve (21).

We now present the proof of Theorem 1.

Proof. Combining (16) and (21) in the Lemmas, the primal-dual gap P (uk, vk) = L(uk, v?) −
L(u?, vk) satisfies,

E[P (uk, vk)] ≤ 1

2αk

(
E[‖uk − u?‖2]− E[‖uk+1 − u?‖2]

)
+
αk
2
G2
u

+
1

2βk

(
E[‖vk − v?‖2]− E[‖vk+1 − v?‖2]

)
+
βk
2
G2
v + αkLv (G2

u +D2
v).

(38)

Accumulate (38) from k = 1, . . . , l to obtain
l∑

k=1

E[P (uk, vk)] ≤

1

2α1
E[‖u1 − u?‖2] +

l∑
k=2

(
1

2αk
− 1

2αk−1
)E[‖uk − u?‖2] +

l∑
k=1

αk(
G2
u

2
+ LvG

2
u + LvD

2
v)

+
1

2β1
E[‖v1 − v?‖2] +

l∑
k=2

(
1

2βk
− 1

2βk−1
)E[‖vk − v?‖2] +

l∑
k=1

βk
G2
v

2
.

(39)
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Assume E[||uk − u?‖2] ≤ D2
u, E[||vk − v?‖2] ≤ D2

v are bounded, we have

l∑
k=1

E[P (uk, vk)] ≤ 1

2α1
D2
u +

l∑
k=2

(
1

2αk
− 1

2αk−1
)D2

u +

l∑
k=1

αk(
G2
u

2
+ LvG

2
u + LvD

2
v)

+
1

2β1
D2
v +

l∑
k=2

(
1

2βk
− 1

2βk−1
)D2

v +

l∑
k=1

βk
G2
v

2
.

(40)

Since αk, βk are decreasing and
∑l
k=1 αk ≤ Cα

√
l + 1,

∑l
k=1 βk ≤ Cβ

√
l + 1, we have

l∑
k=1

E[P (uk, vk)] ≤
√
l

2

(
D2
u

Cα
+
D2
v

Cβ

)
+
√
l + 1

(
CαG

2
u

2
+ CβLvG

2
u + CαLvD

2
v +

CβG
2
v

2

)
(41)

For ûl = 1
l

∑l
k=1 u

k, v̂l = 1
l

∑l
k=1 v

k, because L(u, v) is convex-concave, we have

E[P (ûl, v̂l)] = E[L(ûl, v?)− L(u?, v̂l)] (42)

≤ E[
1

l

l∑
k=1

(L(uk, v?)− L(u?, vk))] (43)

=
1

l

l∑
k=1

E[L(uk, v?)− L(u?, vk)] (44)

=
1

l

l∑
k=1

E[P (uk, vk)]. (45)

Combine (41) and (45) to prove

E[P (x̂l, ŷl)] ≤ 1

2
√
l

(
D2
u

Cα
+
D2
v

Cβ

)
+

√
l + 1

l

(
CαG

2
u

2
+ CαLvG

2
u + CαLvD

2
v +

CβG
2
v

2

)
. (46)

B MNIST TOY EXAMPLE

Experimental details: We consider a classic MNIST digits dataset (LeCun et al., 1998) consisting
of 60,000 training images and 10,000 testing images each of size 28 × 28. For simplicity, let us
consider a task (T1) of classifying into odd and even numbered images. Let’s say, that ∼ 50% of data
instances were corrupted using salt and pepper noise of probability 0.2 and this distortion process
was biased. Specifically, only 30% of even numbered images were distorted as against the 70% of
odd-numbered images. We have observed that any feature representation network θf trained using
the binary classification loss function for task T1 has noise bias also encoded within it. This was
verified by training an independent noise classifier on the learned features. This lead us to design
of simple adversarial network to “unlearn” the noise bias from the feature learning pipeline. We
formulate this using the minimax objective in (5).

In our model, Ld is a softmax loss for the task (T2) of classifying whether the input sample is noisy or
not. Ly is a softmax loss for task T1 and λ = 1. A LeNet network (LeCun et al., 1998) is considered
for training on task T1 while a two-layer MLP is used for training on task T2. LeNet consist of two
convolutional (conv) layers followed by two fully connected (FC) layers at the top. The parameters
of conv layers form θf while that of FC and MLP layers forms θy and θd respectively. We train
the network in three stages. Following the training on task T1, θf were fixed and MLP is trained
independently on task T2. The default learning schedule of the LeNet implementation in Caffe (Jia
et al., 2014) were followed for both the tasks. The total training iterations on each task were set to
10, 000. After pretraining, the whole network is jointly finetuned using the adversarial approach. (5)
is alternatively minimized w.r.t. θf , θy and maximized w.r.t. θd. The predictive steps were only used
during the finetuning phase.
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Our finding is summarized in Figure 3. In addition, Figure 7 provides head-to-head comparison of
two popular solvers Adam and SGD using the predictive step. Not surprisingly, the Adam solver
shows relatively better performance and convergence even with an additional predictive step. This
also suggests that the default hyper-parameter for the Adam solver can be retained and utilized for
training this networks without resorting to any further hyper-parameter tuning (as it is currently in
practice).
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Figure 7: Comparison of the classification accuracy of parity classification and noise discrimination
using the SGD and Adam solvers with and without prediction step.

C DOMAIN ADAPTATION

Experimental details: To evaluate a domain adaptation task, we consider the OFFICE dataset
(Saenko et al., 2010). OFFICE is a small scale dataset consisting of images collected from three
distinct domains: AMAZON, DSLR and WEBCAM. For such a small scale dataset, it is non-trivial to
learn features from images of a single domain. For instance, consider the largest subset AMAZON,
which contains only 2,817 labeled images spread across 31 different categories. However, one can
leverage the power of domain adaptation to improve cross domain accuracy. We follow the protocol
listed in Ganin & Lempitsky (2015) and the same network architecture is used. Caffe (Jia et al., 2014)
is used for implementation. The training procedure from Ganin & Lempitsky (2015) is kept intact
except for the additional prediction step. In Table 2 comparisons are drawn with respect to target
domain accuracy on three pairs of source-target domain tasks. The test accuracy is reported at the
end of 50,000 training iterations.

D FAIR CLASSIFIER

Experimental details: The “Adult” dataset from the UCI machine learning repository is used, which
consists of census data from ∼ 45, 000 people. The task is to classify whether a person earns
≥ $50k/year. The person’s gender is chosen to be the sensitive variable. We binarize all the category
attributes, giving us a total of 102 input features per sample. We randomly split data into 35,000
samples for training, 5000 for validation and 5000 for testing. The result reported here is an average
over five such random splits.

E GENERATIVE ADVERSARIAL NETWORKS

Toy Dataset: To illustrate the advantage of the prediction method, we experiment on a simple GAN
architecture with fully connected layers using the toy dataset. The constructed toy example and
its architecture is inspired by the one presented in Metz et al. (2017). The two dimensional data is
sampled from the mixture of eight Gaussians with their means equally spaced around the unit circle
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centered at (0, 0). The standard deviation of each Gaussian is set at 0.01. The two dimensional latent
vector z is sampled from the multivariate Gaussian distribution. The generator and discriminator
networks consist of two fully connected hidden layers, each with 128 hidden units and tanh activations.
The final layer of the generator has linear activation while that of discriminator has sigmoid activation.
The solver optimizes both the discriminator and the generator network using the objective in (4). We
use adam solver with its default parameters (i.e., learning rate = 0.001, β1 = 0.9, β2 = 0.999) and
with input batch size of 512. The generated two dimensional samples are plotted in the figure (8).
The straightforward utilization of the adam solver fails to construct all the modes of the underlying
dataset while both unrolled GAN and our method are able to produce all the modes.

0

Figure 8: Comparison of GAN training algorithms on toy dataset. Results on, from top to bottom,
GAN, GAN with G prediction, and unrolled GAN.

We further investigate the performance of GAN training algorithms on data sampled from a mixture
of a large number of Gaussians. We use 100 Gaussian modes which are equally spaced around a
circle of radius 24 centered at (0, 0). We retain the same experimental settings as described above
and train GAN with two different input batch sizes, a small (64) and a large batch (6144) setting.
The Figure (9) plots the generated sample output of GAN trained (for fixed number of epochs) under
the above setting using different training algorithms. Note that for small batch size input, the default
as well as the unrolled training for GAN fails to construct actual modes of the underlying dataset.
We hypothesize that this is perhaps due to the batch size, 64, being smaller than the number of input
modes (100). When trained with small batch the GAN observe samples only from few input modes
at every iteration. This causes instability leading to the failure of training algorithms. This scenario is
pertinent to real datasets wherein the number of modes are relatively high compared to input batch
size.

Figure 9: Comparison of GAN training algorithms on toy dataset of mixture of 100 Gaussians.
Results on, from top to bottom, batch size of 64 and 6144.
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DCGAN Architecture details: For our experiments, we use publicly available code for DC-
GAN (Radford et al., 2016) and their implementation for Cifar-10 dataset. The random noise
vector is of 100 dimensional and output of the generator network is a 64x64 image of 3 channels.

Additional DCGAN Results:

(a) With G prediction (b) DCGAN (c) Unrolled GAN
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Figure 10: Comparison of GAN training algorithms for DCGAN architecture on Cifar-10 image
datasets. Using higher momentum, lr = 0.0002, β1 = 0.9.
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Figure 11: Comparison of GAN training algorithms for DCGAN architecture on Cifar-10 image
datasets. lr = 0.0004, β1 = 0.5.
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(a) With G prediction (b) DCGAN (c) Unrolled GAN
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Figure 12: Comparison of GAN training algorithms for DCGAN architecture on Cifar-10 image
datasets. lr = 0.0006, β1 = 0.5.
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Figure 13: Comparison of GAN training algorithms for DCGAN architecture on Cifar-10 image
datasets. lr = 0.0008, β1 = 0.5.
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Experiments on Imagenet: In this section we demonstrate the advantage of prediction methods
for generating higher resolution images of size 128 x 128. For this purpose, the state-of-the-art
AC-GAN (Odena et al., 2017) architecture is considered and conditionally learned using images of
all 1000 classes from Imagenet dataset. We have used the publicly available code for AC-GAN and
all the parameter were set to it default as in Odena et al. (2017). The figure 14 plots the inception
score measured at every training epoch of AC-GAN model with and without prediction. The score is
averaged over five independent runs. From the figure, it is clear that even at higher resolution with
large number of classes the prediction method is stable and aids in speeding up the training.
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Figure 14: Comparison of Inception scores on high resolution Imagenet datasets measured at each
training epoch of ACGAN model with and without prediction.
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