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ABSTRACT

We propose Distributional Concavity (DC) regularization for Generative Adver-
sarial Networks (GANs), a functional gradient-based method that promotes the
entropy of the generator distribution and works against mode collapse. Our DC
regularization is an easy-to-implement method that can be used in combination
with the current state of the art methods like Spectral Normalization and Wasser-
stein GAN with gradient penalty to further improve the performance. We will
not only show that our DC regularization can achieve highly competitive results
on ILSVRC2012 and CIFAR datasets in terms of Inception score and Fréchet in-
ception distance, but also provide a mathematical guarantee that our method can
always increase the entropy of the generator distribution. We will also show an
intimate theoretical connection between our method and the theory of optimal
transport.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) is a model consisting of two
adversarial neural networks designed for the training of a generator distribution that mimics a target
distribution defined on a (often) high dimensional space, and it has been successful in numerous
applications including image and movie generations (Isola et al., 2017; Zhu et al., 2017; Saito et al.,
2017). However, it has not yet completely established itself as a wildly scientific tool because of
the sheer computational difficulty of its training process. As such, there has been numerous studies
seeking for a way to stabilize the training process of GANs (Gulrajani et al., 2017; Miyato et al.,
2018; Karras et al., 2018).

Mode collapse is a persistent central problem for the training of GANs, which collectively refers
to the lack of diversity in generator distribution. For instance, without any countermeasure, GANs
applied to multimodal mixture of Gaussians will often train a generator distribution with one mode
(See Fig 22, Goodfellow (2016) for example). Mode collapse has been discussed in numerous
literatures related GANs. To name a few, see Goodfellow (2016); Metz et al. (2016); Arjovsky &
Bottou (2017); Arjovsky et al. (2017); Lin et al. (2017).

In words of statistical machine learning, mode collapse can be described as a case of entropy de-
generation. A naive countermeasure against mode collapse is therefore to augment the entropy of
the generator distribution. Not many studies to date, however, tackled the problem of mode collapse
using this direct approach. Dai et al. (2017) partially realized this idea by actually evaluating the
entropy of the generator distribution with variational inference and including it into the objective
function. This type of strategy requires the user to continuously produce reliable estimates of the
generators based on finite samples throughout the course of the training. As such, not much further
improvement can be expected from this strategy, because precise estimation of the entropy tends
to be computationally heavy, and empirical estimation is an excruciatingly difficult problem on its
own in high dimension, as is the case in image and movie generation. In fact, the performance of
classical methods based on kernel density estimation, for example, does not scale well with respect
to dimension, and the number of samples required to control the MSE can grow exponentially with
the dimension (Cacoullos, 1966; Ozakin & Gray, 2009).

In this study, we use the theory of functional gradient to develop a method that can promote the
entropy of the generator distribution without directly estimating the entropy itself. All in all, the ob-
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jective of GANs is find a good generator. The motive of functional gradient method is pay attention
to the update of the generator in the space of generator functions itself, instead of the updates in the
parameter space. In the function space, the functional properties of the generators are generally eas-
ier expressed than in the parameter space. As such, the search for a generator with good functional
properties may be much easier in the space of functions, as opposed to the space of parameters.
Throughout, this philosophy will serve as the basis of our method.

In more general technical term, the functional gradient of an objective function with respect to a
model function is an infinite dimensional gradient computed over the infinite dimensional space of
all models. In our case, our interest is the functional gradient of the GANs’ objective function with
respect to the generator function. As we will show, all variations of GANs to date are implicitly using
the discriminator function to compute the functional derivative of the objective function with respect
to the generator distribution function. In other words, the discriminator determines the direction to
which the algorithm should move the mass of the current generator distribution; the discriminator
determines what the next (target) distribution looks like. The work of Nitanda & Suzuki (2018) is
a pioneer study that explicitly incorporated this idea into the training of neural generator models.
Their study showed that one can carry out a faithful functional gradient-based update by inserting
what they call gradient layer into the layers of neural generator function. Johnson & Zhang (2018)
further polished this strategy by periodically distilling the networks.

A more precisely worded advantage of the functional gradient method is that, at every stage in the
training process of the generator distribution, it allows the user to monitor what the next distribution
(target distribution) looks like in terms of the current distribution. The ability of the functional
gradient update to tell something about the next (target) distribution is a significant advantage of the
functional gradient method over the conventional parametric methods, because the target distribution
set forth by conventional parametric methods is usually expressed in a complicated parametric form
(e.g. Deep Neural Nets (DNNs)), and its behaviors are often difficult to predict. This advantage
of the functional gradient based-update suggests the possibility that we can control the update rule
in order to deliberately direct the generator distribution to a distribution with preferred properties–
which, in our case, include high entropy.

We discovered that, by locally concavifying the discriminator function, we can manipulate the func-
tional gradient so that the next update for the generator will always target a distribution with higher
entropy. From now on, we should refer to our method by Distributional Concavity (DC) regular-
ization. Our method does not require the direct estimation of the entropy. We will not only show
that our DC regularization can help improve the performance of GANs in terms of Inception score
(Salimans et al., 2016) and Fréchet inception distance (FID) (Heusel et al., 2017), but also give a
mathematical guarantee that our regularization will always increase the entropy of the generator dis-
tribution. We will also show that our method greatly outperforms the method of Dai et al. (2017)
that directly estimates the entropy based on classically techniques.

The regularization strategy of monotonically increasing the entropy of the generator distribution over
the course of its training is not without theoretical basis. Our DC regularization has close relations
to the theory of optimal transport. We will show that, when the entropy of the true distribution is
higher than the current generator distribution, the functional gradient that is properly derived from
the optimal mass transport always increases the entropy of the distribution. Moreover, the functional
update used in our method is always a monotonic mapping, which also turns out to be one of the
properties satisfied by the update with optimal transport. This is a preferred property as well, because
it tends to promote the smooth training of the generator. We summarize our contributions below:

• We propose an update for the generator of GANs that promotes the entropy of the generator
without the need for an explicit estimation of the actual entropy.

• We show that, when the entropy of the true distribution is larger than that of the current
generator distribution, the functional gradient derived from the 2-Wasserstein (W2) optimal
transport always increases the entropy of the distribution.

• We provide a mathematical guarantee that our method increases the entropy of the generator
distribution at every step.

• We show that our method improves the results of GANs in terms of Inception score and
FID score.
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2 THEORY

2.1 GENERATIVE ADVERSARIAL NETWORKS

Let us first review the formulation of the original GANs. Unless otherwise noted, let us use boldface
capital letters to refer to a random variable, and lower case letter for its realization. The training
process of GANs (Goodfellow et al., 2014) is a two player min-max game in which the generator
distribution µθ is trained to minimize the divergence between the true distribution ν and the gener-
ator distribution µθ measured by the current critic F , while the critic F is trained to most strongly
discriminate µθ from ν. Often, µθ is produced by applying a paramatric generator function Gθ to a
random seed variable with some distribution µz , and it satisfies

Eµθ [h(X)] = Eµz [h(Gθ(Z))] (1)

for all measurable statistics h. In mathematical language, µθ is a pushforward of µz , and is often
written as Gθ#µz . In a nutshell, GANs aim to find an optimal parametric distribution µθ that
achieves the minimum value for

min
µθ

max
F

Eν [Lr(F (X))] + Eµθ [Lg(F (X))] := min
µθ

max
F

V (µθ, F ) (2)

where Lr and Lg are the functions of user’s choice. We can retrieve the formulation of the orig-
inal GANs (Goodfellow et al., 2014) by letting Lr(F (x)) = softplus(−F (x)) and Lg(F (x)) =
softplus(F (x)), where softplus(·) = log(1 + exp(·)) There is a variety of choices for (Lr,Lg)
(Arjovsky et al., 2017; Lim & Ye, 2017; Mao et al., 2017; Nowozin et al., 2016). Rewritten as the
optimization problem about the function G, our objective function is given by

min
µθ

max
F

Eν [Lr(F (X))] + EG#µz [Lg(F (X)))] := min
µθ

max
F

V (G,F ) (3)

2.2 FUNCTIONAL GRADIENT INTERPRETATION OF THE GANS UPDATE

Let us elaborate further on the mechanism of the functional-gradient based update and its connection
to the conventional update of GANs . For ease of notation, let us write L = Lg ◦ F in the equation
(3), where the operator ◦ designates the function-composition. Let us remind ourselves that the
objective of the min part of the min-max game in each step is to find a good update of µθ that
decreases Eµθ [L(X)]. It is no exaggeration to say that the choice of the next target distribution
of µθ—or the distribution to which the µθ will be updated—will completely determine the training
efficiency of GANs. The most canonical and obvious approach is to use the information of the
discriminator L in making this decision. Note that, by appealing to a standard argument based on
Taylor expansion, L(x) ≥ L(x−α∇L(x)) for any value of xwhen α is suffiently small. Therefore,
leaving the mathematical technicalities aside, one may expect that a carefully chosen α can ensure

Eµθ [L(X − α∇L(X))] ≤ Eµθ [L(X)]. (4)

One naive suggestion based on this intuition is the update of µθ to a distribution that can be con-
structed by taking a sample from µθ (say, x) and transporting it into the direction of −α∇L(x).
Using the pushforward notation, this amounts to the update from µθ to (Id − α∇)#µθ. The pre-
sumed relation (4) is equivalent to

Eµz [L(Gθ(X)− α∇L(Gθ(X)))] ≤ Eµz [L(Gθ(X))],

and the corresponding suggested update in terms of the function Gθ is an update from Gθ to (Id−
α∇L)◦Gθ. That is, our suggestion amounts to the update fromGθ#µz to ((Id−α∇L)◦Gθ)#µz .
Denoting

Tα(x) := x− α∇L(x), (5)

This is an update from Gθ#µz to (Tα ◦ Gθ)#µz . This update of G is called functional gradient
update, and Tα is called a transport function. With enough (reasonable) regularity assumption of
the function space and probability space, one can justify the argument we have made above using
a differential calculus in an infinite dimensional space of functions(See appendix A). As a spoiler
for what we will further elaborate later, our method regularizes L so that the target distribution
(Tα ◦Gθ)#µz has higher entropy than µθ = Gθ#µz .

We are, however, still not done in our description of a functional gradient perspective of the GANs
update. In what we formulated above, there is no guarantee that the target distribution (Tα◦Gθ)#µz
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admits the same parametric representation asGθ; if (Tα ◦Gθ)#µz cannot be expressed by the DNN
that we have prepared for the training, all suggestions we have made above is for naught. The final
remaining task in this update procedure is therefore to find the parameter θ∗ such that Gθ∗#µz
can best approximate the target distribution. Letting θold to denote the current choice of θ for the
generator function, this can be done by solving the following optimization problem about θ :

min
θ

Eµz
[
‖(Tα ◦Gθold)(Z)−Gθ(Z)‖22

]
. (6)

The gradient of this sub-objective function (6) with respect to θ evaluated at θ = θold is given by

2Eµz
[
∂θGθ(Z)

(
(Tα ◦Gθold)(Z)−Gθ(Z)

)] ∣∣
θ=θold

(7)

=− 2αEµz [∂θGθ(Z)|θ=θold∇L(Gθold(Z))] (8)

where ∂θ designates the derivative operator with respect to θ. This formulation is practically equiv-
alent to the one introduced in xICFG (Johnson & Zhang, 2018). This turns out to be the familiar
gradient update used in the usual GAN implementation. Indeed, in the usual implementation, the
parameter for the generator is updated with the rule:

θnew = θold − 2α∇θEµz [L(G(Z; θ))]
∣∣
θ=θold

(9)

= θold − 2α Eµz [∂θGθ(Z)|θ=θold∇L(G(Z; θold))] (10)

In general, almost all variations of GANs to date (Arjovsky et al., 2017; Lim & Ye, 2017; Mao et al.,
2017; Nowozin et al., 2016) uses this type of update rule for the training of the generator. In other
words, all methods to date has been implicitly doing the functional-gradient type update all along,
and the choice of L has been determining the choice of the target distribution. As hinted a moment
ago, this suggests that, by directly regularizing the L in the usual update scheme of GANs, one can
realize a functional gradient update of the generator with a controlled target distribution. This is the
very gist of our algorithm.

2.3 CHOICE OF THE TARGET DISTRIBUTION

As inferred above, from the perspective of functional gradient, the min-max game of GANs can be
decomposed into steps: (i) the target construction step that constructs the next target distribution
using the functional gradient, and (ii) the distillation step that looks for a neural function that better
approximates the target distribution. Now, the next natural pressing question is: ”what type of L
should we use to make sure that the next target distribution is nice?”
As inferred in the introduction, the goal of this particular study is to create a sequence of updates
that is less likely to suffer from mode collapse. Let us recall that, as long as we follow the standard
update procedure of GANs, the choice of L will entirely determine the property of the next target
distribution. A proposal we would like to make in this study is to simply choose the discriminator
L from the set functions that are concave on the support of the current distribution;

Proposition 2.1.
Let µ be a probability distribution on Rd .
If L is concave on the support of µ, then H(Tα#µ) ≥ H(µ).

Note that this statement is independent of the step size α, because any positive scalar multiple of
concave function is concave. This result ensures that any update with a concave L will always in-
crease the entropy; that is, the target distribution will be more dispersed than the current distribution,
and the mode collapse is less likely to happen.

Additionally, our choice of L guarantees that the transport function used to created the target dis-
tribution satisfies another preferable property called monotonicity. Monotonicity is a property that
requires that there is no crossings in the transport:

〈T (x)− T (x′),x− x′〉Rd ≥ 0.

This is a preferred property because, as we will empirically show (see section 4.1) , the crossings in
the transport tend to hinder the smooth training process. This is in fact somewhat intuitive, because
crossings lead to wasteful transportation of the mass. In fact, this is a property that is achieved by the
distributional update based on Optimal transport as well (Villani, 2008). Indeed, by the definition,
the concavity of L implies the strong convexity of x

2

2 − αL(x), which in turn implies

〈Tα(x)− Tα(x′),x− x′〉Rd ≥ ‖x− x′‖22 ≥ 0, (11)
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which is a stronger condition than the monotonicity. Thus, by simply making L concave, we can not
only construct a target distribution whose entropy is greater than that of the current generator distri-
bution, but also assure that the corresponding transport is monotonic. In a way, this is a statement
about how complicated the function is, because the presence of the crossings imply the existence
of a discontinuity or a region of one to many mappings. This is therefore a property that is likely
to affect the distillation step. In fact, we will empirically show that the property of monotonicity
affects the distillation step in positive way.

Indeed, we do not intend say that our suggestion for the property of L is optimal—the user has
the freedom to choose the set of properties to be required for L so that the corresponding target
distribution will have the desired properties that serves the purpose of the user.

2.4 RELATION TO OPTIMAL TRANSPORT

Our strategy for the distributional update that we have discussed so far has close relations to the
optimal transport. In fact, an equation of the form (5) is ubiquitous in the theory of optimal transport.
In this section, we will show the following:

1. By choosing L to be concave, the transport Tα in the equation (5) becomes the optimal
transport from the current distribution µ to the target distribution Tα#µ.

2. If the entropy of the true distribution ν is greater than that of the current distribution µ, any
sequence of the updates of the distribution along the optimal transport from µ to ν increases
the entropy monotonically. We can also ensure the monotonic increase in the entropy by
using Tα with concave L.

3. By choosing L to be concave, we can assure that the target distribution constructed from
Tα will always be within α distance of the current distribution in Wasserstein (W2) sense.

In order to elaborate on these points, we would like to briefly introduce the notion of optimal trans-
port. For a more rigorous introduction of the concept, please consult Villani (2008).
For p ≥ 1, the p-Wasserstein distance Wp(µ, ν) between two arbitrary distributions µ and ν with
sufficient regularity is given by (

inf
T
Eµ[‖X − T (X)‖p2]

)1/p
, (12)

where the inf above is taken over all measurable maps T satisfying T#µ = ν. When p = 2, it is
known that the infimum of this cost function is achieved by T ∗ that can be expressed as x−∇L∗ for
some L∗ that renders ‖x‖2/2−L∗ convex (Brenier, 1991). The search for L∗ and hence T ∗ therefore
amounts to the search for the closest coupling between µ and ν in the L2 sense.

Another surprising fact is that the movement of the particle along the direction of ∇L∗ monotoni-
cally decreases W2 (Villani, 2008). That is, if T ∗t (x) = x − t∇L∗(x), then W2(T ∗t #µ, ν) mono-
tonically decreases with t (Villani, 2003). Please compare this transport equation with the equation
(5). This T ∗t is indeed the optimal transportation analogue of the functional gradient. The theorem
in Brenier (1991) has a still surprising converse; any function T that can be written as a gradient of a
strictly convex function turns out to be the unique optimal transport from µ to T#µ. Using this fact,
we can appeal to the proposition 2.2 below to claim that the functional update based on the optimal
transport satisfies the following important property that shall be intuitively fulfilled if we are in fact
moving the distribution toward the true distribution: if the current distribution has lower entropy
than the true distribution, the sequence of the distributions produced by the optimal transport based
updates should be monotonically increasing in the entropy:

Proposition 2.2.
Suppose ν = T#µ for some T that can be written as a gradient of a strictly convex function.
If H(ν) ≥ H(µ), then H(Tt#µ) is monotonically increasing on t ∈ [0, 1].

This proposition actually assures that the updates of DC regularization also satisfy the same property.
Because we are designing the target distribution so that it will have higher entropy than the current
distribution at every step, by letting ν in the proposition 2.2 to be the target distribution, we have
a guarantee that the sequence of distributions constructed by our updates is also monotonically
increasing in the entropy. To see this, simply note that we can automatically make ‖x‖2/2− L to be
convex by making L concave,
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The connection between our DC regularization and optimal transport is not limited to the prop-
erty we introduced above. By the theory of Brenir, the choice Tα = Id − α∇L with concave
and 1-Lipschitz L satisfies W2(µ, Tα#µ) =

√
E[‖α∇L(X)‖22] = α. Put in still other words, by

constructing a target distribution with concave L, we can also assure that the target distribution is
contained within the W2 neighborhood of the current distribution function. This is a property that
cannot be guaranteed with the conventional parameter-based updates. Monotonicity condition is
also a property that is satisfied by the optimal transport. According the theory of Monge-Ampere
(Villani (2008)), a transport map can be optimal only if it is monotonic. Thus, while not being ex-
actly based on the optimal transport from the generator distribution to the true distribution, our T
shares many favorable properties in common with the optimal transport, and is very closely related
to the theory of W2 distance.

Reflecting on these facts, one might become tempted to say that we shall simply formulate GANs
with the objective function that is solely based onW2 distance between the generator distribution and
the true distribution. However, as we will further articulate in the discussion section, the challenge
remains to conduct faithful W2-based updates in the implementation of GANs.

3 METHOD

If µθ := Gθ#µz is our current parametric generator distribution and ν is the true distribution, our
DC regularization method first (i) proposes a target distribution T#µθ using a concave L, and then
(ii) seek a measure µθnew that well approximates the target distribution T#µθ. We use the following
sampling-based penalty term in order to promote the concavity of L (= Lg ◦ F ):

Ldc(F, ε,x1,x2, d) = max{L(εx1 + (1− ε)x2)− εL(x1)− (1− ε)L(x2), d}, (13)

where x1,x2 are samples from the support of µθ, ε is a sample from the uniform distribution over
[0, 1], and d is a positive scalar. Note that this term must be positive if L is concave over the support
of µθ. Our algorithm is summarized in Algorithm 1. The update rule in this algorithm uses the target
distribution constructed by T (x) = x −∇L with concave L. Intuitively speaking, the transport T
has an effect of moving µθ toward T#µθ while dispersing the mass of µθ. See Fig 1 for a visual
rendering of this interpretation.

In most practical application, the training of GANs begins by dispersing the initial distribution with
small entropy and gradually molds the mass into what resembles the true distribution. Our transport
ensures that this dispersion is consistently happening over the course of the training. As we will
show in the result section, this regularization works in favor of the inception score without any
noticeable downfall from over-dispersion, suggesting that the generator distribution created with the
current state of the art techniques are still not dispersed enough.
Algorithm 1 GANs algorithm with DC regularization

for each iteration do
θold ← θ
the target construction step : find F ∗ that optimizes

max
F

V (G,F ) + λEUniform(ε)Eµθold (X1,X2)[Ldc(F, ε,X1,X2, d)] (14)

and construct Tα from L := Lg ◦ F as in the equation (5).
the distillation step : update generator by generator’s objective

min
θ

Eµz
[
‖(Tα ◦Gθold)(Z)−Gθ(Z)‖22

]
(15)

end for

4 EXPERIMENTAL RESULTS

We applied DC regularization to the training of GANs on CIFAR-10 (Torralba et al., 2008), CIFAR-
100 (Torralba et al., 2008) and ILSVRC2012 dataset (ImageNet) (Russakovsky et al., 2015) in var-
ious settings and evaluated its performance in terms of Inception score (Salimans et al., 2016) and
Fréchet inception distance (FID) (Heusel et al., 2017). Inception score and FID are performance
measures that are commonly used to evaluate the severity of mode collapse. For the details of the
evaluation, see Appendix C.1. We also conducted an additional set of experiments with artifical
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loss surface

gradient of loss

(a) −L is not convex

loss surface

(b) −L is convex
Fig 1: The graph of−L and its gradient vector field. Each point xwill be transported by T along the
direction of the vector field −∇L. Over the set on which L is not concave, T may move the points
in the region come closer to each other. The use of concavified L for the construction of transport
function will make the points move away from each other.

dataset to investigate the properties of DC-regularization. We provide the results for additional ex-
periments in the Appendix D as well.

4.1 INTRINSIC PROPERTIES OF DC REGULARIZATION

Effect of DC regularization on entropy
Using a simple Gaussian Mixture Model with five modes as the true distribution, we evaluated the
sheer ability of the DC regularization to promote the entropy of the generator distribution. We
used hinge loss for the objective function, and used DNNs to model both the discriminator and the
generator. We trained the model with and without the DC regularization and reported the entropy
of the Generator at different stages of the training by explicitly computing the determinant of the
Jacobian at each layer. As one of the baseline, we trained EGAN-Ent-VI (Dai et al., 2017), which
includes into its objective function a penalty against the negative entropy of the generator. The result
is illustrated in Fig 2 (a). We see that the regularization is positively affecting the entropy at all stages
of the training. Although to a less extent, we can confirm that our implementation of EGAN-Ent-VI
is also preventing the degeneration of the entropy. Indeed, the persistent pressure to increase the
entropy can result in over-dispsersed final product. However, this seems not to be a serious issue
when it comes to the learning on big data like ImageNet. In terms of Inception score and FID score,
all artificial generator distributions today are still far less diverse than the original dataset (Table 1),
and there is still a large room left for the improvement of diversity.

Effect of monotonicity in distillation step
Recall that each round of GANs update consists of the target construction step and the distillation
step. We conducted an experiment to verify the effect of the monotonicty on the distillation step. We
will show a case in which, even if the target distribution constructed from a non-monotonic map is
further away from the current distribution than the target distribution constructed from a monotonic
map, the projection of the latter distribution onto the parametric function-space is much easier.
Let K be a positive value. Starting from an initial distribution X = Gθ0(Z) , consider the following
pair of maps to be applied to X:

T (m)(x) = (x−K)1(−1)mx≤0 + (x+K)1(−1)mx≥0 (16)

It is evident that T (2) is a monotonic mapping and T (1) is not. Denote the law of X by µ.
We used T (1)#µ and T (2)#µ as target distributions, and trained the parameterθ using Om =
EZ [‖T (m)(Gθ0(Z)) − Gθ(Z)‖2] as the objective function (Distillation). Note that this objective
function takes the same value of K2 for both m = 1, 2. Also, by the definition of the Wasserstein
distance, K = W2(T (2)#µ, µ) while W2(T (1)#µ, µ)2 = infT#µ=T1#µEµ[‖T (X) − X‖2] ≤
Eµ[‖T (1)(X) − X‖2] = K2. A naive intuition dictates that the distillation of T (1)#µ is easier,
because T (1)#µ is distributionally closer to µ while the objective function evaluated at T (1)#µ
is same as the evaluation at T (2)#µ. However, as we can see in Fig 2 (b), the training about O2

proceeds much faster than the training about O1. This seemingly unintuitive observation can be
supported by the theory of optimal transport. Note that T1 is a derivative of −K|X| and T (2) is a
derivative ofK|X|, and the latter is a convex function. This implies that T (2) is the optimal transport
from µ to T (2)#µ. This result (Fig 2 (b)) suggests that, when using the update rule similar to the
equation 10, the training proceeds much faster when we choose a target distribution with monotonic
mapping.
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Fig 2: The left graph plots the transition of the entropy of the generator distribution of GANs trained
for the mixture of Gaussians. The marker ”k th iteration starts” designates the result for which our
regularization was applied after kth step. We see that our method has the effect of preventing the
entropy degeneration. The right graph plots the transitions of the energy for the distillation step
when the target distributions were constructed by applying monotonic map (red) and non-monotonic
map(blue) to a gaussian distribution. Notice that the distillation step converges faster when the target
distribution is constructed from monotonic map.

4.2 RESULTS ON CIFAR-10 AND CIFAR-100

Experiments with different architectures and objective functions
We tested our algorithm for the training of GANs with six types of objective functions and two
network architectures, and reported the performance on all 12 combinations. For the details of the
objective functions and the architectures, please see Appendix C.2, C.3, C.4 For the training of the
network, we applied Spectral Normalization (SN) (Miyato et al., 2018) to the full-connected layer
and the convolution layer. Fig 3 and Fig 8 (in Appendix) respectively summarize Inception scores
and FID for all 12 settings. We see that DC regularization is improving the performance irrespective
of the choice of the architecture and the objective function.

Experiments with different prior dimensions
In general, without careful selection of the dimension of the prior distribution, the training of
GANs tends to suffer a serious case of mode collapse. For image generation task, this will result
in low inception score. We therefore applied DC regularization to the trainings of GANs on
CIFAR-10 with very low prior dimensions as well as very large prior dimensions and evaluated the
performance. For this experiment, we used GAN-variant2 (Appendix C.2) for the objective function
and used SNDCGAN for the architecture. As for the experimental details, please see Appendix
C.4. The results are summarized in Fig 4 and Fig 10 (in Appendix). When the prior dimension
is below the inherent dimension of the dataset, the dimension of the generator distribution cannot
match the dimension of the true distribution. Thus, the inception score of the generator trained
with low dimensional prior is bound to be low, irrespective of the application of DC regularization.
However, for dim(z) ≥ 5, the inception score is as high as 7.5, and for all choices of dim(z), the
generator trained with DC regularization consistently outperformed the generator trained without
the DC regularization. Similar argument applies to the performance of DC regularization for high
dimensional prior. Overall, the DC regularization provides some robustness against the choice of
the prior dimension.
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(a) CIFAR-10
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GAN-variant1
GAN-variant2
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(b) CIFAR-100
Fig 3: The inception scores of different GAN methods on CIFAR-10 and CIFAR-100 (higher the
better). The right group of bars in each graph represents the set of scores achieved by the implemen-
tations with our regularization. The left group in each graph represents the set of scores achieved by
the implementation without the regularization. Our regularization improves the inception score for
all methods.
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Fig 4: The performance of the DCGAN in terms of the inception score for CIFAR10 plotted against
the dimension of µz(standard Gaussian). The baseline is the DCGAN with spectral normaliza-
tion(SN). We can see that too low a dimension and too high a dimension both negatively affect the
performance. Notice that the DCGAN with DC regularization outperforms the baseline DCGAN
for all extreme dimensions.

Comparison with EGAN and other methods
We compared the performance of our algorithm against EGAN-Ent-VI (Dai et al., 2017), another
framework that can be used to control the entropy of the generator. We conducted this comparative
study using SNDCGAN (Table 2) and SNResNet (Table 3), which uses Spectral Normalization
that is known to have an effect of preventing the degeneration of the feature space. SNDCGAN
is a method that is known to perform well on Cifar10 on its own. For the experimental setting of
this study, please see the Appendix C.4. As we show in Table 1, DC regularization outperformed
EGAN-Ent-VI on both models. We reported the result of EGAN-Ent-VI with spectral normalization,
because it worked better than the version without SN. As we can see in the table 1, the EGAN with
SN performed worse than the vanilla SNDCGAN. For high dimensional dataset like Cifar10, the
variational inference for the negative entropy can be extremely difficult. It is possible that a poor
variational inference in high dimensional space backfired for EGAN-VI’s performance on Cifar10.
We would also like to emphasize here that EGAN-Ent-VI requires a separate decoder in addition
to the generator and the discriminator, and that our algorithm is easier to implement. For the full
version of the Table and the visuals of the generated samples, please see Table 8 and Table 11 in
the Appendix. We compared our algorithm against other competitive methods as well. The best
performance of our method is almost on par with the state-of-the-art method (Karras et al., 2018).
We are losing to progressive GAN (Karras et al., 2018) by a slight margin; we, however, would like
to make a disclaimer that we are using much smaller architecture than Karras et al. (2018) for the
performance evaluation of our method. We also confirmed that we can improve the result of Miyato
et al. (2018) by using DC regularization together with SN. The results support that our method is
helping the training process suppress mode collapse and is improving the overall performance. For
the results of the experiments conducted with Wasserstein GAN with gradient penalty (WGAN-GP)
(Gulrajani et al., 2017), please see the Fig 9 in Appendix.

4.3 RESULTS ON IMAGENET

Additionaly, to evaluate our method’s effectiveness on a higher dimensional dataset, we applied our
method on ImageNet with 1000 classes, with each class containing approximately 1300 images. We
compressed the images to 64× 64 pixels prior to the experiments.
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Fig 5: Performance of DC regularization on ImageNet. The baseline used in the comparison here is
the GAN implemented with SN for Hinge-loss. The training with DC regularization achieves higher
score consistently for all epochs.
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For the objective function, we chose GAN-hinge (Appendix C.2), which was being used in Miyato
et al. (2018). For the experimental settings, please see Appendix C.5 for the details. We can confirm
on Fig 5 that our DC regularization is improving the Inception score throughout the course of the
training.

Table 1: Inception scores and FIDs for unsupervised image generation on CIFAR-10 and CIFAR-
100. The CIFAR-10 results for the models designated with † are cited from (Miyato et al., 2018),
and the CIFAR-10 results with ‡ are cited from (Karras et al., 2018).

Method Inception score FID
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Real data 11.24 14.79 7.6 8.94

EGAN-Ent-VI(SNDCGAN) 6.95±.08 6.62±.10 29.0 33.3
EGAN-Ent-VI(SNResNet) 7.31±.12 6.67±.10 27.0 30.5

proposal
SNDCGAN + DC reg 8.08±.12 8.12±.11 24.6 25.8
SNResNet + DC reg 8.27±.08 8.27±.13 24.3 24.6
SNResnetLarge + DC reg 8.41±.10 8.20±.08 20.6 24.8
SNResnetLarge-hinge + DC reg 8.29±.09 8.41±.11 19.5 23.6

baseline
SNDCGAN-hinge† 7.58±.12 7.57±.07 25.5 28.1
SNResnetLarge-hinge† 8.22±.05 7.54±.13 21.7 26.6
Progressive GANs‡ 8.56±.06

5 DISCUSSION

Dilemma of GANs update
As we have shown above, the experimental results support our claim that the DC regularization
promotes the entropy of the generator distribution and stabilizes the training process of GANs. As
mentioned briefly in the theory section 2, however, we do not have the guarantee that our update rule
consistently reduces the W2 distance between the generator distribution and the true distribution.
This fault, however, is common to almost all GANs algorithms today. As we have shown, the
conventional update rule is implicitly targetting a distribution of the form T#µ where T = Id −
α∇L for some α and a discriminator L. As it turns out, optimal transport takes this form only when
we are optimizing W2 distance, while the common constraint of |∇L| = 1 is a condition required
for dual potential when p = 1 (W1) (Villani, 2008). In other words, the conventional GANs are
making the discriminator with W1 criteria and updating the generator with W2 criteria. If we are
to faithfully create the discriminator with W2 criteria, we must look for a Legendre-pair of dual
potential functions. On the contrary, if we are to update the generator with W1 criteria, one must
look for a closed form solution for the W1 transport. This, however, is in general a highly complex
mathematical problem for which there is a separate field of study (Santambrogio, 2015). To the
authors’ best knowledge, no studies have provided a solid solution to this dilemma.

Convexity vs Strong convexity
We would like to also mention that our regularization is asking for more than what is required by
W2 theory. As mentioned above, in order for T to be the optimal transport from µ to T#µ , T only
needs to be the gradient of a convex function. On the other hand, by asking L to be concave, we
are in fact asking for T to be the gradient of a strongly convex function. This ”overdo” is actually
intentional. Recall that the parameter α in the transport Tα = Id− α∇L corresponds to a step size
in the update of the generator. If we train L that only guarantees the convexity of ‖x‖2/2 − L(x),
the functional update derived from such L can be non-monotonic when the step size is large, because
such L only guarantees the convexity of ‖x‖2/2− αL(x) when α ≤ 1. Should we require L to be
concave, however, ‖x‖2/2−αL(x) is concave for any positive α. In this context, we may therefore
say that the DC regularization leaves much room to be playful about the learning schedule. Finally,
as can be inferred from our proofs for the proposition 2.1 and 2.2, the strong convexity of T has an
effect of diffusing the mass of pdf in every direction. We can therefore expect the DC regularization
to disperse the collapsed masses in the case of mode collapse. In the light of the fact that the training
of GANs usually begins with dense distribution with small support, this dispersion effect should be
helpful at the early stage of the training as well.
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Appendix (Supplemental Material for Distributional Concavity
Regularization for GANs)

A MORE MATHEMATICAL RENDITION OF SECTION 2

In this section, we re-explain the section 2 with more mathematical details. For ease of argument,
we will assume the followings from here onward. First, as is the case in many application of GANs,
we will assume that ν is a probability measure on the Euclidean space Rd, and µz is a probability
measure on some Euclidean space U . Let us also assume that Gθ : U → Rd is a parametric
function of θ that is almost everywhere differentiable with respect to both input and θ. We will first
consider the optimization problem of the equation (3) with gradient descent about θ. For ease of
notation, let us write L = Lg ◦ F , where the operator ◦ designates the function-composition. We
will assume that L is a continuously differrentiable and uniformly bounded function on Rd, and that
the Euclidean norms of its gradient and operator norm of Hessian are also uniformly bounded. This
type of regularity assumptions on the objective functions are used in other literatures as well (Nitanda
& Suzuki (2018), Johnson & Zhang (2018)), and it is not too all unrealistic because the support of
both target distributions and generator distribution are often compact throughout the course of the
training in the real applications. We will also assume that the derivatives of all functions to appear
are well defined and bounded on Rd. The update rule of θ is given by:

θnew = θold − α∇θEµz [L(G(Z; θ))]
∣∣
θ=θold

(17)

= θold − 2α Eµz [∂θGθ(Z)|θ=θold∇L(G(Z; θold))] (18)
where ∂θ designates the derivative operator with respect to θ. In general, almost all variations of
GANs to date (Arjovsky et al., 2017; Lim & Ye, 2017; Mao et al., 2017; Nowozin et al., 2016) uses
this type of update rule for the training of the generator. Let us denote the law of Gθ(Z) (or X) by
µθ. Let L2(µθ) denote the Hilbert space of L2 integrable maps from Rd to itself, granted with the
inner product 〈a, b〉µθ = Eµθ [a(X)T b(X)]. We will show that we can re-derive the equation (18)
using the theory of functional gradient. To begin with, instead of updating the parameter θ, we would
like to consider directly updating the distribution µθ by applying a T ∈ L2(µθ) to a random variable
generated from µθ. This will result in a new distribution T#µθ, which is a unique distribution that
satisfies Eµθ [h(T (X)] = ET#µθ [h(X)] for all measurable h.

Now, in order to create an update rule for T , let us consider the Gâteaux derivative of M(T ) :=
ET#µθ [L(X)] with respect to T into an arbitrary direction δ ∈ L2(µθ). In terse term, we would
like to consider the effect of purturbing T into the direction of δ. By the compactnesss assumption
on Ω together with the regularity assumptions for the functions defined hereof, we can appeal to the
dominated convergence theorem and see that

lim
ε→0

M(T + εδ)−M(T )

ε
= Eµθ [∇L(T (X))T δ(X)]. (19)

is uniform for all δ ∈ L2(µ). This way, the term ∇L(T (·)) in the expression above is a Fréchet
derivative, or the type of derivative to which the usual set of derivative rules can be applied. We will
refer to this derivative as functional derivative for short. Note that the directional functional deriva-
tive Eµθ [(∇L(T (X)) · δ)(·)] will always take a positive value when δ ∝ ∇L(T (·)). Thus, for α
small enough, an update from the current choice of T to T − α∇L ∈ L2(µθ) will decrease the ob-
jective function. Here, we are interested in the derivative computed at T = Id, so the transformation
we would like to apply to µθ is

Tα(x) = x− α∇L(x). (20)
This is indeed a transportation of a mass into the direction of α∇L. Now, for the update of θ, we
would like to design θnew such that µθnew is closer to the target distribution T#µθold than µθold .
That is, we would like to choose θ that minimizes

min
θ

Eµz
[
‖(Tα ◦Gθold)(Z)−Gθ(Z)‖22

]
. (21)

The gradient of this sub-objective function with respect to θ is given by
2Eµz

[
∂θGθ(Z)

(
(Tα ◦Gθold)(Z)−Gθ(Z)

)] ∣∣
θ=θold

(22)

=− 2αEµz [∂θGθ(Z)|θ=θold∇L(Gθold(Z))] . (23)
Evaluating this at θ = θold, we recover the gradient used in the equation (18). This formulation is
practically equivalent to the one introduced in xICFG (Johnson & Zhang, 2018).
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B THE PROOFS FOR THE PROPOSITIONS 2.1 AND 2.2

We will first prove the proposition 2.2. Let us begin with a useful lemma. We will assume that all
regularity assumptions made in Section 2 holds for all variables and functions that appear in this
section. Also, we will use the Df to denote the derivative of f . Also assume that, unless otherwise
noted, Df(x) indicates Dxf(x), the derivative of f with respect to x.
Lemma B.1. Let µ and ν be probability distributions on Rn, and suppose that we can write (Id−
∇L)#µ = ν with one-to-one∇L. Let us also write T = (Id−∇L), and let Tt = Id− t∇L be its
time-linear interpolation. Then, for all t ∈ [0, 1],

d

dt
H(Tt#µ) = −Eµ

[
tr(I − tD2L(X))−1(D2L(X))

]
. (24)

Proof. Let pµ be the pdf of µ. If y = T (x), by the one-to-one assumption det(DT (x)) > 0 and
we may let dy = det(DT (x))dx. By appealing to the fact that Eµ[h(T (X))] = Eν [h(Y )] for
arbitrary h,∫

h(T (x))pµ(x)dx =

∫
h(y)pT#µ(y)dy =

∫
h(T (x))pT#µ(T (x))det(DT (x))dx (25)

and we can deduce the identity pT#µ(T (x))det(DT (x)) = pµ(x). Building on this fact, with
straightforward computation we can say

H(Tt#µ) = −ETt#µ[log pTt#µ(X)] (26)

= −
∫
pµ(x) log pT#µ(Tt(x))dx (27)

= −
∫
pµ(x) (log pµ(x)− log det(DTt(x))) dx (28)

= H(µ) + Eµ [log det(DTt(X))] . (29)

Assuming that the distributions are regular enough that we can swap the integral, we can appeal to
Jacobi’s formula and deduce

d

dt
H(Tt#µ) =

d

dt
Eµ [log det(DTt(X))] (30)

=
d

dt
Eµ
[
log det(I − tD2L(X))

]
(31)

= Eµ

[
det(DTt(X))tr(I − tD2L(X))−1(−D2L(X))

det(DTt(X))

]
(32)

= −Eµ
[
tr(I − tD2L(X))−1(D2L(X))

]
. (33)

Now, let us prove the proposition 2.2. Without loss of generality, choose L so that DT = ‖x‖2
2 −L.

Assuming that D2L is diagonalizable and that its spectrum is uniformly bounded away from 1, let
spec(D2L) = {λk} and write diag{λk}k = Λ. Because ‖x‖

2

2 − L is assumed to be strictly convex,

D2
(
‖x‖2
2 − L

)
= I −D2L is positive definite, and 1− λk(x) > 0 for all k. Appealing to the line

equation (29) we see that the assumption H(ν) > H(µ) is equivalent to

Eµ [log det(T (X))] = Eµ
[
log det(I −D2L(X))

]
= Eµ

[∑
k

log(1− λk(X))

]
.

> 0

(34)

Let us write maxk{1 − tλk(x)} = Ct(x) > 0. Using the assumption that the support of µ is
compact, we can also say 0 < maxsupp(µ){Ct(x)} := ct < ∞. In general, if A is positive definite
and diagonalizable, with straightforward argument we can say

log(detA) ≤ tr(A− I) (35)
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Using this fact, we see that

0 < Eµ
[
log det(I −D2L(X))

]
(36)

≤ Eµ
[
tr(−D2L(X))

]
(37)

= Eµ

[∑
k

−λk(X)

]
(38)

Suppose that D2L is diagonalizable with the change of basis matrix P . Then

−Eµ log
[
tr
(
(I − tD2L(X))−1D2L(X)

)]
= −Eµ

[
tr
(
(P−1(I − tΛ)P )−1P−1Λ(X)P

)]
(39)

= −Eµ
[
tr
(
P−1(I − tΛ)−1PP−1Λ(X)P

)]
(40)

= −Eµ
[
tr
(
(I − tΛ(X))−1Λ(X)

)]
(41)

= −Eµ

[∑
k

λk(X)

1− tλk(X)

]
(42)

≥ −Eµ

[∑
k

λk(X)

ct

]
(43)

> 0 (44)

This concludes the proof of the proposition 2.2. The proposition 2.1 is much simpler to prove. In
order to assure the H(ν) ≥ H(µ), we only need to guarantee that Eµ [log det(DT (X))] ≥ 0. By
requiring L to be concave, we would make ‖x‖2/2 − L(x) to be convex so that the eigenvalues of
DT will all become positive. The result then follows trivially from the argument similar to the one
that leads to equation (34).

C EXPERIMENTAL SETTINGS

C.1 PERFORMANCE MEASURES

For the measure of GANs’ performance on the image dataset, we used Inception score (Salimans
et al., 2016). Inception score was introduced originally as an exponentiated divergence measure
based on the trained Inception convolutional neural network (Szegedy et al., 2015), which is often
called Inception Model. Using p(y|x) to denote the Inception model, the inception score is given
by I({xn}Nn=1) := exp(Ê[DKL[p(y|x)||p(y)]]), where Ê indicates the empirically approximated
expectation. Often times, p(y) is approximated with 1

N

∑N
n=1 p(y|xn).

The dominating consensus among the machine learning community is that this score is strongly
correlated with subjective human judgment of image quality. Following the procedure in Salimans
et al. (2016), we generated 5000 examples from each trained generator and calculated the Inception
score on the samples. We evaluated the score 10 times with different seeds for the generation of xn
and reported the average and the standard deviation of the scores.

Fréchet inception distance (FID) (Heusel et al., 2017) is another measure for the quality of the
generated examples that uses 2nd order information of the final layer of the inception model. The
FID is based on Frećhet distance (Dowson & Landau, 1982) (Not to be confused with FID), which
is the 2-Wasserstein distance between two distribution multivariate Gaussian distributions, p1 and
p2. The Wasserstein distance for two Gaussian distributions have a closed form, and is given by

F (p1, p2) = ‖µp1 − µp2‖22 + trace
(
Cp1 + Cp2 − 2(Cp1Cp2)1/2

)
, (45)

where {µp1 , Cp1}, {µp2 , Cp2} are the mean and covariance of samples from q and p, respectively.
Now, if f	 is the output of the final layer of the inception model before the softmax, the Fréchet
inception distance (FID) between two distributions p1 and p2 on the images is the Frećhet distance
distance between f	 ◦ p1 and f	 ◦ p2. We empirically computed the Fréchet inception distance
between the true distribution and the generated distribution using 10000 samples from the true dis-
tribution and 5000 samples from the generator distribution.
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C.2 GAN’S OBJECTIVE FUNCTION

We used applied DC regularizaiton to the training with the following set of objective functions
(softplus(x) = log(1 + exp(x))).

GAN-vanilla (Goodfellow et al., 2014)
min
G

max
F

Eν [softplus(F (X))] + Eµz [softplus(−F (G(Z)))] (46)

GAN-variant1 (Goodfellow et al., 2014)
max
F

Eν [softplus(F (X)] + Eµz [softplus(−F (G(Z)))] (47)

min
G

Eµz [−softplus(F (G(Z)))] (48)

GAN-variant2
max
F

Eν [softplus(F (X)] + Eµz [softplus(−F (G(Z)))] (49)

min
G

Eµz [−F (G(Z))] (50)

GAN-hinge (Lim & Ye, 2017)
max
F

Eν [min(0,−1 + F (X))] + Eµz [min(0,−1− F (G(Z)))] (51)

min
G

Eµz [−F (G(Z))] (52)

WGAN-GP (Gulrajani et al., 2017)

max
F

Eν [F (X)]− Eµz [F (G(Z))] + λEµ̂[(‖∇X̂F (X̂)‖2 − 1)2] (53)

µ̂ is the law of ux+ (1− u)z, with (x, z, u) ∼ µ× ν × U [0, 1].

min
G

Eµz [−F (G(Z))] (54)

LSGAN (Mao et al., 2017)
min
F

Eν [((F (X)− 1)2] + Eµz [(F (G(Z)) + 1)2] (55)

min
G

Eµz [(F (G(Z))− 1)2] (56)

Feature Matching (Salimans et al., 2016)
max
F

Eν [min(0,−1 + F (X))] + Eµz [min(0,−1− F (G(Z)))] (57)

min
G
||Eν [φ(X)]− Eµz [φ(G(Z))]||2 (58)

F is a linear function of φ (∃w with wTφ = F )

C.3 NETWORK ARCHITECTURES

Table 2: The architecture of DCGAN(Radford et al., 2016) for image Generation experiments on
CIFAR-10 and CIFAR-100. The slopes of all leaky-ReLU functions in the networks were set to 0.2.

z ∈ R128 ∼ N (0, I)

dense→Mg ×Mg × 512

4×4, stride=2 deconv. BN 256 ReLU

4×4, stride=2 deconv. BN 128 ReLU

4×4, stride=2 deconv. BN 64 ReLU

3×3, stride=1 conv. 3 Tanh

(a) Generator, Mg = 4 for CIFAR-10 and CIFAR-100

RGB image x ∈ RM×M×3

3×3, stride=1 conv 64 lReLU
4×4, stride=2 conv 64 lReLU

3×3, stride=1 conv 128 lReLU
4×4, stride=2 conv 128 lReLU

3×3, stride=1 conv 256 lReLU
4×4, stride=2 conv 256 lReLU

3×3, stride=1 conv. 512 lReLU

dense→ 1

(b) Discriminator, M = 32 for CIFAR10 and CIFAR-
100
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ReLU

BN

Conv

ReLU

Conv

BN

Fig 6: Resblock architectures for CIFAR-10 and CIFAR-100. We used similar architectures as the
ones used in Gulrajani et al. (2017)

Table 3: ResNet architectures for CIFAR-10 and CIFAR-100. We used similar architectures as the
ones used in Gulrajani et al. (2017).Resblock model is Fig 6

z ∈ R128 ∼ N (0, I)

dense, 4× 4× 128

ResBlock up 128

ResBlock up 128

ResBlock up 128

BN, ReLU, 3×3 conv, 3 Tanh

(a) Generator

RGB image x ∈ R32×32×3

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ReLU

Global sum pooling

dense→ 1

(b) Discriminator

Table 4: ResNet generator architectures (large version) for CIFAR-10 and CIFAR-100.Resblock
model is Fig 6

z ∈ R128 ∼ N (0, I)

dense, 4× 4× 128

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU, 3×3 conv, 3 Tanh

(a) Generator
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Table 5: ResNet architectures for image generation on ImageNet dataset.Resblock model is Fig 6

z ∈ R128 ∼ N (0, I)

dense, 4× 4× 1024

ResBlock up 1024

ResBlock up 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3×3 conv 3

Tanh

(a) Generator

RGB image x ∈ R64×64×3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock down 1024

ResBlock 1024

ReLU

Global sum pooling

dense→ 1

(b) Discriminator for uncondi-
tional GANs.

Table 6: EGAN(Dai et al., 2017)’s decoder models used in our experiments on CIFAR-10 and
CIFAR-100 . The slopes of all lReLU functions in the networks were set to 0.2. Fig 6 illustrates our
Resblock model.

RGB image x ∈ RM×M×3

3×3, stride=1 conv 64 lReLU
4×4, stride=2 conv 64 lReLU

3×3, stride=1 conv 128 lReLU
4×4, stride=2 conv 128 lReLU

3×3, stride=1 conv 256 lReLU
4×4, stride=2 conv 256 lReLU

3×3, stride=1 conv. 512 lReLU

dense→ 128 * 2

(a) Convolution decoder, M = 32 for CIFAR10 and
CIFAR-100

RGB image x ∈ R32×32×3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock down 1024

ResBlock 1024

ReLU

Global sum pooling

dense→ 128 * 2

(b) ResNet decoder.
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C.4 DETAILS FOR THE EXPERIMENTS ON CIFAR-10 AND CIFAR-100

Experimental setting for the evaluation of the method’s robustness against the choice of objec-
tive functions
For the model, we chose the architecture of DCGAN(Radford et al., 2016) (Table 2) and ResNet (Ta-
ble 3) with spectral normalization applied to full connect layer and convolution layer(SNDCGAN,
SNResNet). For the optimization, we used Adam(Kingma & Ba, 2015) and chose (α =
0.0002, β1 = 0, β2 = 0.9) for the hyperparameters. Also, we chose ndis = 1, ngen = 1 for
SNDCGAN and (ndis = 5, ngen = 1) for SNResNet. We updated the generator 100k times and
linearly decayed the learning rate over last 5k iterations.

Experimental setting for the evaluation of the method’s robustness against the choice of the
prior dimension
We chose SNDCGAN for the model, and optimized the network with Adam using the hyperparam-
eter (α = 0.0002, β1 = 0, β2 = 0.9). For the update of the discriminator and the generator, we set
ndis = 1, ngen = 1. We trained the generator 50k times and linearly decayed the learning rate over
last 5k iterations. For the objective function, we chose GAN-variant2 in Appendix C.2. We also set
λ = 3.0, d = 0.01 for the parameters in (13). For this set of the experiments, we repeated the exper-
iments three times with different seeds, and reported the maximum, mean and minimum. We tested
with prior dimensions of range dim(z) = 3, 4, 5, 7, 10, 500, 1000, 2000, 4000, 6000, 8000, 10000.

Comparison with EGAN and other methods
For the model, we chose SNDCGAN , SNResNet and SNResNetLarge, and trained the networks
using Adam with hyperparameters (α = 0.0002, β1 = 0, β2 = 0.9). SNResNetLarge is a model
that was used in (Miyato et al., 2018). It is a same model as SNResNet except that it is uses a larger
generator (Table 4). For both models, We trained the generator 100k times and linearly decayed the
learning rate over last 10k iterations. For EGAN-Ent-VI (Dai et al., 2017), we used an additional
decoder equipped with convolution layers. We used ndis = 1, ngen = 1, ndec = 5 for SNDCGAN,
and ndis = 1, ngen = 5, ndec = 5 for SNResNet. The table below is the list of the choices of the
hyperparameters (λ, d) in equation (13). we used in our comparative study, sorted by models.

Table 7: List of the hyperparameter choices.

Method objective ndis λ d

SNDCGAN + DC reg (CIFAR-10) GAN-variant2 1 3 0
SNDCGAN + DC reg (CIFAR-100) GAN-variant2 1 3 0
SNDCGAN-hinge + DC reg (CIFAR-10) GAN-hinge 1 3 0
SNDCGAN-hinge + DC reg (CIFAR-100) GAN-hinge 1 3 0
SNResNet + DC reg (CIFAR-10) GAN-variant2 3 3 0
SNResNet + DC reg (CIFAR-100) GAN-variant2 5 3 0
SNResNetLarge + DC reg (CIFAR-10) GAN-variant2 5 3 0
SNResNetLarge + DC reg (CIFAR-100) GAN-variant2 5 4 0
SNResNetLarge-hinge + DC reg (CIFAR-10) GAN-hinge 5 4 0.01
SNResNetLarge-hinge + DC reg (CIFAR-100) GAN-hinge 5 4 0.01

C.5 IMAGE GENERATION ON IMAGENET

The images used in this set of experiments were resized to 64× 64 pixels. The details of the archi-
tecture are given in Table 5. For the optimization, we used Adam with the same hyperparameters
we used for ResNet on CIFAR-10 and CIFAR-100 dataset. We trained the networks with 250K
generator updates, and applied linear decay for the learning rate after 200K iterations so that the rate
would be 0 at the end. We set λ = 6.0, d = 0.01 for the parameters in equation (13).
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D APPENDIX RESULTS

D.1 APPENDIX RESULT ON ARTIFICIAL DATA
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(a) without DC regularization
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(b) with DC regularization
Fig 7: Generator samples on GMM fitting by GANs (a) without and (b) with DC regularization

D.2 APPENDIX RESULT ON CIFAR-10 AND CIFAR-100

Experiment with different architectures
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Fig 8: FIDs for unsupervised image generation on CIFAR-10 and CIFAR-100 (lower the better).

Experiment with different architectures on WGAN-GP

CIFAR-10 CIFAR-100
0

1

2

3

4

5

6

7

8

In
ce

pt
io

n 
sc

or
e

WDCGAN-GP
WDCGAN-GP + DC-reg
WResNetGAN-GP
WResNetGAN-GP + DC-reg

(a) Inception score(higher is better)
CIFAR-10 CIFAR-100

0

5

10

15

20

25

30

In
ce

pt
io

n 
sc

or
e

WDCGAN-GP
WDCGAN-GP + DC-reg
WResNetGAN-GP
WResNetGAN-GP + DC-reg

(b) FID(lower is better)

Fig 9: Results of WGAN-GP

Experiment with varying prior dimension
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Fig 10: FID performance of DC regularization on low dimensional prior and high dimensional prior.

Comparison with other methods

Table 8: Inception scores and FIDs with unsupervised image generation on CIFAR-10 and CIFAR-
100. CIFAR-10 results for the models designated with † are cited from (Miyato et al., 2018), and the
CIFAR-10 results results with ‡ are cited from (Karras et al., 2018). For the details of the objective
functions, see Appendix C.2.

Method Inception score FID
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Real data 11.24 14.79 7.6 8.94

EGAN-Ent-VI(SNDCGAN) 6.95±.08 6.62±.10 29.0 33.3
EGAN-Ent-VI(SNResNet) 7.31±.12 6.67±.10 27.0 30.5
feature matching(SNDCGAN) 7.54±.10 7.71±.06 25.9 29.2

proposal
SNDCGAN + DC reg 8.08±.12 8.12±.11 24.6 25.8
SNDCGAN-hinge + DC reg 7.70±.11 7.99±.09 24.7 26.1
SNResNet + DC reg 8.27±.08 8.27±.13 24.3 24.6
SNResnetLarge + DC reg 8.41±.10 8.20±.08 20.6 24.8
SNResnetLarge-hinge + DC reg 8.29±.09 8.41±.11 19.5 23.6

baseline
SNDCGAN† 7.42±.08 7.74±.08 29.3 27.9
SNDCGAN-hinge† 7.58±.12 7.57±.07 25.5 28.1
SNResnetLarge-hinge† 8.22±.05 7.54±.13 21.7 26.6
Progressive GANs‡ 8.56±.06
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Image generation on CIFAR-10 and CIFAR-100

(a) image generation of CIFAR-10

(b) image generation of CIFAR-100
Fig 11: Image generation of CIFAR-10 and CIFAR-100
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D.3 APPENDIX RESULT ON IMAGENET

(a) image generation of baseline model

(b) image generation of proposal model
Fig 12: Image generation of ImageNet
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