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ABSTRACT

Evolution strategies or zeroth-order optimization algorithms have become popular
in some areas of optimization and machine learning where only the oracle of func-
tion value evaluations is available. The central idea in the design of the algorithms
is by querying function values of some perturbed points in the neighborhood of
the current update and constructing a pseudo-gradient using the function values.
In recent years, there is a growing interest in developing new ways of perturba-
tion. Though the new perturbation methods are well motivating, most of them
are criticized for lack of convergence guarantees even when the underlying func-
tion is convex. Perhaps the only methods that enjoy convergence guarantees are
the ones that sample the perturbed points uniformly from a unit sphere or from a
multivariate Gaussian distribution with an isotropic covariance. In this work, we
tackle the non-convergence issue and propose sampling perturbed points from a
mixture of distributions. Experiments show that our proposed method can identify
the best perturbation scheme for the convergence and might also help to leverage
the complementariness of different perturbation schemes.

1 INTRODUCTION

We consider optimizing a function f(·) : Rd → R in the setting that only querying function values
is allowed and there is no access to gradients of the function. Alternatively, we aim at minimizing a
black-box function in which only the oracle of function value evaluations is available,

min
w

f(w). (1)

There are growing interest in studying “gradient-free” optimization due to its applications in hyper-
parameter search (e.g., Bergstra et al. (2011); Koch et al. (2018)), reinforcement learning (e.g.,
Sehnke et al. (2010); Mania et al. (2018); Salimans et al. (2017); Choromanski et al. (2018); Vemula
et al. (2019)), or black-box adversarial attacks on deep neural nets (e.g., Chen et al. (2017); Ilyas
et al. (2018); Papernot et al. (2017)). In hyper-parameter search, the goal is to find the best values
of a set of hyper-parameters for a machine learning model (e.g., a neural net). One can model the
task of hyper-parameter search as optimizing an unknown/black box function as (1). Specifically,
one can let w be in the space of hyper-parameters in the way that each element of w represents the
value of a specific hyper-parameter and different points w in the hyper-parameter space correspond
to different realizations of the hyper-parameters. The mapping (i.e., f(·)) from hyper-parameter
values to a performance metric (e.g., classification error) of using those hyper-parameter values is
unknown. Therefore, the gradient of the mapping/function is not available. One can only query the
function value (i.e., obtaining f(w)) by training a model with the hyper-parameter values indicated
by w. Obtaining the arg min of (1) in this case corresponds to finding the best values of the hyper-
parameters (and consequently getting the best trained model). Because of the broad applicability of
zeroth order optimization algorithms, recently there has been a spate of research in improving them
from different respects.

Standard zeroth order algorithms construct pseudo-gradients by sampling some perturbed points
from a Gaussian distribution with an isotropic covariance (e.g., Nesterov & Spokoiny (2017); Duchi
et al. (2012) or uniformly from a unit sphere (e.g., Flaxman et al. (2005); Duchi et al. (2012); Shamir
(2017)). Algorithm 1 describes a popular technique called “‘Gaussian smoothing”. It first samples
some K perturbed vectors vkt from a Gaussian distribution, then a pseudo-gradient gt is constructed
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Algorithm 1 Gaussian smoothing.
1: Require: hyper-parameters σ, K and η.
2: Init: w0 ∈ Rd.
3: for t = 0 to T − 1 do
4: Sample K perturbed vectors vkt ∼ N (0, Id) for each k ∈ [K].
5: Construct a pseudo-gradient gt :=

∑K
k=1

1
σ

(
f(wt + σvkt )− f(wt)

)
vkt .

6: Obtain the next update wt+1 = wt − ηgt.
7: end for

by taking a weighted average of these perturbed points. The pseudo gradient is subsequently used to
obtain the next update wt+1. Very recently, there has been a trend of studies in proposing sampling
the perturbed vectors from some non-isotropic Gaussian distributions (e.g. Maheswaranathan et al.
(2019); Choromanski et al. (2019a); Ye et al. (2019)). They consider sampling perturbed vectors
by vkt ∼ N (0,Σ) such that the covariance Σ may not be a scale of the identity matrix. Mah-
eswaranathan et al. (2019) propose letting Σ be related with the span of latest r pseudo-gradients to
reflect the local geometry. Choromanski et al. (2019a) propose updating Σ in the sense to tracking
the low-dimensional manifold of the gradient space. Ye et al. (2019) propose letting Σ be the in-
verse of a diagonal matrix in a way that the update rule of each diagonal element is in the fashion of
updating the second moment quantity in “Adam” optimization algorithm of Kingma & Ba (2015).
Nevertheless, these sampling methods have not really been shown to lead to the convergence to
a global minimum even when the underlying function f(·) is convex, albeit some motivating toy
examples or some analysis (but not related to the convergence) are provided.

In this paper, we tackle the issue by proposing sampling from a mixture of distributions in which one
of them is the standard Gaussian distribution with an isotropic covariance. Our method leverages
a bandit algorithm for adaptively selecting which distribution the perturbed vectors are sampled
from. By building the theoretical guarantee of the bandit algorithm and the convergence guarantee
of the algorithm which always sampling from an isotropic Gaussian distribution (i.e., Algorithm 1),
we can show that our method converges with a high probability when the underlying function is
convex. We conduct experiments to show that our algorithm works well in practice. Our proposed
algorithm is competitive with any algorithms that always sample perturbed vectors from a fixed
component (distribution) of the mixture which our algorithm considers. This shows the effectiveness
of the proposed method, as one would not know which perturbation scheme is the best beforehand.
Furthermore, the proposed algorithm might outperform any of them when the complementariness of
different perturbation schemes are exploited.

2 RELATED WORKS

Zeroth order optimization is studied in different areas, from optimization, online learning, to bioin-
formatics. In optimization community, the setting that an algorithm can only query function values
might date back to Nemirovski & Yudin (1983) (Chapter 9.3). Nemirovski & Yudin (1983) develop
sampling perturbed vectors on a 2-norm sphere for constructing the pseudo gradients. Furthermore,
they also develop a different family of zeroth order optimization algorithms that uses binary search
(see also Spall (2003); Agarwal et al. (2011); Jamieson et al. (2012)). On the other hand, some
lower bound results regarding the iteration complexity are obtained in recent years (e.g., Duchi et al.
(2015); Shamir (2013); Jamieson et al. (2012) ). For online learning, Flaxman et al. (2005) introduce
online convex optimization with “bandit” feedback. It considers that, in each round, the learner first
plays a point in a convex set and then it suffers a loss which is the function value at the point that the
learner plays. The learner only knows the function value at the point it plays. The goal of the learner
is to minimize a quantity called “regret”. Flaxman et al. (2005) make the minimal assumption that
the loss function in each round is convex while allow the loss functions be adversarially different in
different rounds. Many follow-up papers consider different variants of the setting (see e.g., Agarwal
et al. (2010); Shamir (2013; 2017)). Zeroth order optimization also has a connection with some
biological evolution (see Rechenberg (1989) and Section 2 of Salimans et al. (2017)). As the re-
sult, there are many zeroth order algorithms named as evolution strategies (e.g., Glasmachers et al.
(2010); Hansen & Ostermeier (2001); Wierstra et al. (2014)). We also notice that many evolution
strategies consider sampling from full covariance Gaussian distributions.
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Substantial progress has been made in zeroth order optimization. Ghadimi & Lan (2013); Lian et al.
(2016); Liu et al. (2018b); Ji et al. (2019) propose some zeroth order algorithms for non-convex
optimization. On the other hand, there are some efforts in integrating the “gradient-free” technique
into some first-order algorithms. For example, there are a zeroth order counterpart of Alternative Di-
rection method of Multipliers (Liu et al. (2018a)), a zeroth order version of the Frank-Wolfe method
(Balasubramanian & Ghadimi (2018)), and a zeroth order version of Adam (Chen et al. (2019)).
The design principle is basically replacing the step of computing a gradient with that of constructing
the pseudo one. Another direction is by reducing or removing the dependency of convergence rate
on the dimension. Since without further assumptions, the convergence rate of any zeroth order opti-
mization algorithms depends on the dimension (see e.g., Nesterov & Spokoiny (2017); Duchi et al.
(2012; 2015); Shamir (2013; 2017)), a zeroth order algorithm can suffer from high dimensionality.
To deal with the issue, Wang et al. (2018) assume a statistical model for an optimization problem
and exploit the assumption to design some algorithms whose convergence rates do not depend on the
dimension. Other directions in zeroth order optimization include designing a new estimator of the
pseudo-gradient (Choromanski et al. (2019b); Rowland et al. (2018)), which can lead to a smaller
variance of the estimator compared to the standard Monte-Carlo approach.

In this paper, we consider combining different ways of sampling perturbed vectors, which to our
knowledge is a new direction. As mentioned in the introduction, some recent works propose con-
structing pseudo gradients by sampling from a non-isotropic Gaussian distributions whose covari-
ance reflects a local geometry around the current update (e.g. Maheswaranathan et al. (2019); Choro-
manski et al. (2019a); Ye et al. (2019)). Though the methods are interesting and well motivating, it
is unclear if they can guarantee the convergence. We tackle the issue by proposing sampling from a
mixture of distributions. Our method builds on a technique in bandit literature called EXP3.P (Auer
et al. (2002)), which is used for adaptively selecting a sampling scheme during the optimization
process.

3 PRELIMINARIES

Notation: For a vector u ∈ Rd, we denote u2 as the element-wise square and denote diag(u) as
the d× d diagonal matrix whose diagonal elements are the elements of u. We use um to denotes its
mth element of u, which should be distinguished from ut that stands for the vector u in iteration t.

Many zeroth order optimization algorithms construct a “pseudo” gradient in the following ways.
First, the so called Gaussian smoothing is applied to the underlying function f(·) to get a new
function fσ(·),

fσ(w) := Ev∼N (0,Id)[f(w + σv)]. (2)

The new function fσ(·) is differentiable and the gradient of fσ(·) can be shown to be (see e.g.,
Nesterov & Spokoiny (2017))

∇fσ(w) =
1

σ
Ev∼N (0,Id)

[
f(w + σv)v

]
=

1

σ
Ev∼N (0,Id)

[
f(w + σv)v − f(w)v

]
,

(3)

where the second equality is due to that v ∈ Rd is a zero mean vector. The pseudo gradient∇fσ(w)
can be viewed as the expectation of the perturbed vectors weighted by the corresponding function
values at the near-by points of w. Since it involves the expectation, in practice one uses a mini-batch
of perturbed vectors to estimate∇fσ(w) (like Algorithm 1 does). The parameter σ controls a trade-
off. The larger σ, the larger bias of fσ(·) (i.e., larger |fσ(·) − f(·)|), but large σ might help faster
convergence (to the optimum of fσ(·)) (Nesterov & Spokoiny (2017); Duchi et al. (2012)). Since
the algorithms actually optimize fσ(·) instead of the original function f(·), one should not choose
too large σ, as the difference between fσ(w) and f(w) increases as σ increases.

Several algorithms in the literature can be written as a generic scheme equipped with different kinds
of perturbation. Specifically, many existing algorithms can be generated from Algorithm 2 by using
different sampling oracles. For example, we can see that Algorithm 1 is an instance of Algorithm 2
with sampling oracle on step 5 being Algorithm 3. Moreover, the recently proposed methods Mah-
eswaranathan et al. (2019); Choromanski et al. (2019a); Ye et al. (2019) can all be viewed as some
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instances of Algorithm 2. As an illustration, an algorithm in Ye et al. (2019) is an instance of Al-
gorithm 2 with the sampling oracle on step 5 being Algorithm 4. Ye et al. (2019) argue that the
covariance matrix Σ should be the inverse of the Hessian. However, only the function value oracle
is available in zeroth order optimization, let alone the second-order information is provided. Ye et al.
(2019) propose to use the second moment quantity of Adam optimization algorithm (Kingma & Ba
(2015)) to construct a surrogate of the Hessian. However, when the perturbed vectors are sampled
from a non-isotropic Gaussian distribution, it may not lead to the convergence to an optimal point
even when the function is convex.

Algorithm 2 A template of zeroth order algorithms.
1: Require: a sampling oracle.
2: Require: hyper-parameters σ, K, and η.
3: Init: w0 ∈ Rd.
4: for t = 0 to T do
5: Update Σt ← SAMPLINGORACLE.
6: Sample K perturbed vectors vkt ∼ N (0,Σt) for each k ∈ [K].
7: Construct pseudo-gradient gt := 1

Kσ

∑K
k=1

(
f(wt + σvkt )− f(wt)

)
vkt .

8: Update parameter wt+1 = wt − ηgt.
9: end for

Algorithm 3 SAMPLINGORACLE: ISOTROPIC COVARIANCE

1: Output: Σt = Id.

Algorithm 4 SAMPLINGORACLE: ADAM-STYLE HESSIAN Ye et al. (2019).
1: Require: hyper-parameter α and ε.
2: Input: pseudo gradient gt.
3: Init: D0 = εId.
4: Dt+1 = αDt + (1− α)diag(gt)

2.
5: Output: Σt = inverse (Dt).

4 PROPOSED METHOD

Consider that there are M different sampling oracles available. Each oracle (indexed by m ∈ [M ])
maintains its covariance matrix Σm and one of them always outputs the isotropic covariance (e.g.,
Algorithm 3). So each oracle is actually associated with a Gaussian distribution which the perturbed
vectors can be sampled from.

We propose Algorithm 5. The idea is sampling the perturbed vectors vkt from a mixture of Gaussian
distributions which are individually updated by their corresponding sampling oracles,

vkt ∼
M∑
m=1

pmN (0, σΣm
t ) ∈ Rd, ∀k ∈ [K] (4)

where we should have the weight of each mixture component pm satisfy

• pm ∈ [0, 1] and
∑M
m=1 pm = 1.

• p ∈ [0, 1]M adapts over time.

To sample vkt from the mixture, Algorithm 5 first samples an index mt ∈ [M ] with each m ∈ [M ]
following the categorical distribution indicated by p. After that, it samples vkt from the Gaussian
distribution indexed by mt. The pseudo gradient is then constructed and is used to obtain the next
update wt+1. At the end of an iteration, the covariance of the Gaussian distribution in which the
vectors are sampled from is updated before continuing the next iteration. Notice that only one per-
turbation scheme (one sampling oracle) is used in each iteration of Algorithm 5; the computational
complexity is basically the same as that of an algorithm which always uses a fixed sampling oracle
(except the overhead for possibly updating the mixture weight p).
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Algorithm 5 A mixture of evolution strategies.
1: Require: M sampling oracles with one oracle being Algorithm 3.
2: Require: hyper-parameters σ, K, and ηt.
3: Init: w0 ∈ Rd and a vector p ∈ ∆M (∆M stands for the M -dimensional simplex).
4: for t = 0 to T − 1 do
5: Select an index mt ∈ [M ] with each m ∈ [M ] following the categorical distribution m ∼ pm.
6: Sample K perturbed vectors vkt ∼ N (0,Σmt

t ) for each k ∈ [K].
7: Construct pseudo-gradient gt := 1

Kσ

∑K
k=1

(
f(wt + σvkt )− f(wt)

)
vkt .

8: Update parameter wt+1 = wt − ηtgt.
9: Update Σmt

t+1 ← SAMPLINGORACLE mt.
10: end for

Algorithm 6 EXP3.P algorithm (Auer et al. (2002)).
1: Require: hyper-parameters ηexp3, ν, γ.
2: Init: A vector p ∈ ∆M (∆M stands for the M -dimensional simplex).
3: for t = 0 to T − 1 do
4: Select an index mt ∈ [M ] with each m ∈ [M ] following the categorical distribution m ∼ pm.
5: Observe the loss `(mt)t for picking mt.

6: Compute the estimated loss for eachm as ˜̀(m)
t :=

`
(m)
t 1[mt=m]+ν

pm
and update the estimated cumulative

loss L(m)
t :=

∑t
s=0

˜̀(m)
s .

7: Update the weight of each component pm = (1− γ)
exp(−ηexp3L

(m)
t )∑M

m=1 exp(−ηexp3L
(m)
t )

+ γ
M

.

8: end for

Natural questions regarding to the algorithm are (1) which oracle should be called for sampling
the perturbed vectors vkt in each iteration, and (2) how to update p over time. Intuitively, one
should add more weight to the perturbation scheme that works well and decrease the weight of
other perturbation schemes. A concern is that if one chooses a perturbation scheme for the update
in a round, then one would not know the outcomes (i.e., the progress of optimization) of choosing
other schemes in that round. Therefore, we propose to use EXP3.P algorithm in Auer et al. (2002)
(see Algorithm 6) for adaptively selecting a perturbation scheme (i.e., step 5 of Algorithm 5) and
updating the mixture weight p accordingly. To use EXP3.P algorithm, we define the loss of choosing
mt ∈ [M ] as `(mt)t := f(wt+1)− f(wt) + ηtLG, where L and G are constants defined in the later
subsection. One can see that it is small when the function value at the next update wt+1 due to
choosing mt is smaller than f(wt) (which suggests a progress). On the other hand, the loss is
large when choosing mt does not lead to a decrease of the function value. As the next update wt+1

depends on the choice of the sampling oraclemt, in the following we also denote w(mt)
t+1 to explicitly

state wt+1’s dependency on the selected sampling oracle mt. One can view that EXP3.P runs
synchronously with Algorithm 5 in the way that step 4 of EXP3.P implements step 5 of Algorithm 5
and that step 5 and the subsequent steps of EXP3.P are conducted after step 8 of Algorithm 5 is
finished (so that EXP3.P can get `(mt)t for updating its mixture weight p).

4.1 INTUITION IN THE DESIGN OF THE PROPOSED ALGORITHM

In this section, we explain the idea behind the design of the proposed algorithm. Let us begin by
introducing some notations. We denote the M dimensional loss vector `t := [`

(1)
t , `

(2)
t , . . . , `

(M)
t ],

in which each element `(m)
t represents the loss in iteration t if the algorithm chooses to sample the

perturbed vectors from the oracle m. So `(mt)t stands for the loss of EXP3.P for choosing mt. We
will make the assumptions that the function f(·) is non-negative, L-Lipschitz convex and the pseudo
gradient gt satisfies ‖gt‖ ≤ G,∀t for a constant G.

Our proposed method requires a distribution in the mixture to be an isotropic Gaussian distribution.
So in the following, w.l.o.g. we assume thatm = 1 refers to the corresponding oracle. The following
is a convergence guarantee regarding to the algorithm that always samples the perturbed vectors from
the distribution.
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Theorem 1. (Theorem 6 of Nesterov & Spokoiny (2017)) Algorithm 1 guarantees E[f(ŵT )] −
f∗ ≤ ε when T = 4(d+4)2L2R2

ε2 , σ ≤ ε
2Ld1/2

, K = 1, and ηt = R
(d+4)(T+1)1/2L

, where ŵT :=

arg minw[f(w) : w ∈ {w0,w2, . . . ,wT }], R being the bound of ‖w0 − w∗‖ ≤ R, and w∗

represents one of the optimal solutions.

Now let us replicate the theoretical statement of EXP3.P.

Theorem 2. (Theorem 3.3 in Sebastien Bubeck (2012);see also Auer et al. (2002)) Assume that
each element of the loss vector `t is in [0, c′]. If the parameters of EXP3.P are chosen so that

ν =
√

log(Mδ−1)
TM , ηexp3 = 0.95

√
logM
TM , and γ = 1.05

√
M logM

T , then with probability at least

1 − δ, Regret(m)
T :=

∑T
t=1 `

(mt)
t −

∑T
t=1 `

(m)
t ≤ c

√
TM log(Mδ−1), for any fixed m ∈ [M ],

where the constant c is independent from T,M, δ.

Notice that the theorem guarantees a strong result; the regret bound holds for any fixed benchmark
m ∈ [M ]. To use the theorem, let us verify the non-negativeness of the `t. By the Lipschitz
assumption of the algorithm, the loss in any round t is guaranteed to be in the range of [0, c′] with
c′ = 2ηtLG. This is because `(mt)t := f(w

(mt)
t+1 )−f(wt)+ηtLG ≥ −L‖w(mt)

t+1 −wt‖+ηtLG ≥ 0,
where the first inequality is by the L-Lipschitzness of the function f(·) and the second one is by
the update rule and the assumption that gt satisfies ‖gt‖ ≤ G. Similarly, one can also show that
`t ≤ 2ηtLG. So one can apply the theoretical guarantee of EXP3.P.

Let us denote the best sampling oracle as m∗ ∈ [M ], which is the best choice if it commits to a
fixed perturbation scheme during optimization. That is, m∗ achieves the smallest optimality gap,
f(w

(m∗)
t )−minw f(w), after a sufficiently large t ≥ T̄ iterations, among all the fixed perturbation

schemes. Let us also denote T1 ≥ T̄ as the number of iterations for the algorithm which always
chooses m = 1 (the isotropic Gaussian) to achieve the optimal gap being less than ε. Now observe

that the average regret, Regret(m
∗)

T

T , approaches 0 as the number of iterations T → ∞. So it implies
that after sufficient number of iterations, say T0, the majority of the choice should converge to the
optimalm∗ with a high probability. By conducting the proposed algorithm with number of iterations
T = max(c∗T1, T0) with some c∗ ≥ 1, it will make the proposed algorithm eventually behaves as
a convergent algorithm which uses a fixed sampling oracle. Therefore, one might show that the
proposed algorithm converges with a high probability.

4.2 TWO AUGMENTATIONS

In this section, we propose two augmentations of the proposed method. The first augmentation is
about changing the definition of the loss `(mt)t . We now allow the loss to be negative and consider

defining `(mt)t :=
f(w

(mt)
t+1 )−f(wt)
f(wt)

instead. The change leads to a more aggressive update of the

mixture weight. Specifically, if the function value at the next update w
(mt)
t+1 is smaller than f(wt),

then `(mt)t is negative (assume that f(·) is non-negative) and consequently the weight pmt is much
more likely to increase or increases more using the new loss.

For the other augmentation, it is due to an observation that the variance of the loss `(mt)t can be
large, since the algorithm only uses K samples to estimate the pseudo gradient ∇fσ(·) (recall that
exactly computing ∇fσ(·) involves expectation). As a result, it might be the case that the selected
sampling oracle mt is actually the right choice for decreasing the function value if ∇fσ(·) can
be computed exactly, but somehow the realization of `(mt)t is large due to the high variance and
consequently the weight of the oracle pmt is severely penalized instead. To deal with this issue,
we consider only calling EXP3.P algorithm for selecting a sampling oracle every τ iterations. This
means that a sampling oracle is chosen for a consecutive τ iterations before the possible switch.

Combining the first augmentation, we define the loss `(mt−τ )t as `(mt−τ )t :=
f(w

(mt−τ )

t )−f(wt−τ )
f(wt−τ )

for
(t mod τ) == 0. Algorithm 7 (MIXTURE) in Appendix A shows the proposed algorithm equipped
with the two augmentations.
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(a) heart scale. (b) german numer scale. (c) a9a.

(d) heart scale. (e) german numer scale. (f) a9a.

Figure 1: Convex optimization minw f(w) := minw
1
n

∑n
i=1 max

(
0, 1− yi(w>xi)

)2
.

5 EXPERIMENTS

We compare our algorithm (MIXTURE) with two baselines: (1) Algorithm 2 with line 5 implemented
by Algorithm 3 (STANDARD), and (2) Algorithm 2 with line 5 implemented by Algorithm 4 (ADAM-
STYLE HESSIAN). The mixture of our algorithm consists of two Gaussian distributions which are
updated by Algorithm 3 and Algorithm 4 respectively. So if it always chooses a specific oracle, then
it would be equivalent to one of the two baselines.

Convex optimization: We consider an empirical risk minimization with squared of hinge loss
f(w) := 1

n

∑n
i=1 max

(
0, 1− yi(w>xi)

)2
, where each (xi, yi) is a feature/label pair. We compare

the algorithms on heart scale, german.numer scale, and a9a datasets 1, which are all with binary
labels yi = {±1}. All the algorithms can only access to the oracle of function value evaluations.
We use the same set of hyper-parameters for different datasets and repeated runs in the experiments.
They are

• (Same for all the algorithms) step size η = 0.01, number of perturbed vectors K = 4, and
perturbation parameter σ = 0.001.

• (ADAM-STYLE HESSIAN) mixing parameter α = 0.9 and ε = 1.0.

• (Algorithm 7) duration τ = 5, step size ηexp3 = 0.1, γ = 0, and ν = 0.

For each dataset, we repeat the experiment 5 times and report the average and the standard deviation.
Figure 1 shows the results. The top row on Figure 1 plots the objective value versus iteration while
the bottom row plots the weight of each component in the mixture throughout iterations. We see that
our algorithm MIXTURE is competitive to any of its mixture components. On heart scale dataset,
ADAM-STYLE HESSIAN makes a larger improvement in the early stage, but it suffers from a fluctu-
ation when the update is close to an optimum, while the proposed MIXTURE is stable and converges
to an optimum. On german.numer scale, MIXTURE and ADAM-STYLE HESSIAN decreases func-
tion values more than STANDARD does in the first few iterations, but have some fluctuations of the
function values later. Yet, an interesting observation is that the weight of component STANDARD in

1All are available online https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/.
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(a) heart scale. (b) german numer scale. (c) a9a.

(d) heart scale. (e) german numer scale. (f) a9a.

Figure 2: Non-convex optimization minw f(w) := minw
1
n

∑n
i=1

1
1+exp(yiw>xi)

.

MIXTURE increases in the later iterations, which suggests that MIXTURE might rely on the oracle
STANDARD to reach to an ε-optimal point in this case, as solely using ADAM-STYLE HESSIAN may
not be guaranteed the convergence. The observation also suggests that the proposed algorithm can
adaptively choose a sampling oracle in an effective way.

Non-convex optimization: We also consider a non-convex optimization problem with sigmoid loss
function f(w) := 1

n

∑n
i=1

1
1+exp(yiw>xi)

, which was also considered in Daneshmand et al. (2018).
We use the same set of datasets as the convex optimization experiments but we relabel those data
with yi = −1 as yi = 0 (namely yi = {0, 1} here). The same hyper-parameter values are used,
except that we set η = 1 for all the algorithms in this part of the experiments. Figure 2 shows the
results. We see that always sampling from the inverse of ADAM-STYLE HESSIAN performs the best.
On the other hand, MIXTURE learns a larger weight of ADAM-STYLE HESSIAN (compared to that
of the sampling oracle STANDARD) in the first few iterations, which implies that it identifies the
component that works best in the early stage of optimization and consequently converges faster than
STANDARD.

6 CONCLUSION

In this work, we propose sampling from a mixture of distributions for zeroth order optimization.
The propose method is modular and is complementary to existing works. It allows any proposals
of sampling oracle and is an easy-to-use “meta” algorithm that provides a reliable way to combine
different perturbation schemes and different heuristics. We believe that the proposed method helps
in the applications of hyper-parameter search, reinforcement learning, or black-box adversarial at-
tacks where zeroth order optimization has been used as a building block or as a sub-module of the
algorithms. An interesting future work is designing a life-long zeroth order optimization algorithm.
Consider the setting that a series of similar optimization problems needed to be solved one by one
over time. Is it possible to extend the idea of sampling from a mixture to the life-long optimization
setup by assuming that the best mixture weight p for each optimization problem is similar?
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A AUGMENTED MIXTURE OF EVOLUTION STRATEGIES.

Algorithm 7 MIXTURE

1: Require: M sampling oracles with one oracle being Algorithm 3.
2: Require: hyper-parameters σ, K, η, ηexp3, ν, γ and τ .
3: Init: w0 ∈ Rd, p = [ 1

M
, 1
M
, . . . , 1

M
], m = 1.

4: for t = 0 to T do
5: if (t mod τ) == 0 then
6: Select an index mt ∈ [M ] with each m ∈ [M ] ∼ pm.
7: if t > 0 then

8: `
(mt−τ )
t :=

f(w
(mt−τ )

t )−f(wt−τ )
f(wt−τ )

.

9: Compute the estimated loss for each m as ˜̀(m)
t :=

`
(m)
t 1[mt−τ=m]+ν

pm
and update the estimated

cumulative loss L(m)
t :=

∑t
s=0

˜̀(m)
s .

10: Update the weight of each component pm = (1− γ)
exp(−ηexp3L

(m)
t )∑M

m=1 exp(−ηexp3L
(m)
t )

+ γ
M

.

11: end if
12: m← mt.
13: end if
14: Sample K perturbed vectors vkt ∼ N (0,Σm

t ) for each k ∈ [K].
15: Construct pseudo-gradient gt := 1

Kσ

∑K
k=1

(
f(wt + σvkt )− f(wt)

)
vkt .

16: Update parameter wt+1 = wt − ηgt.
17: Update Σm

t+1 ← SAMPLINGORACLE m.
18: end for
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