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Abstract

The lottery ticket hypothesis states that smaller subnetworks within a larger deep
network can be trained in isolation to achieve accuracy similar to that of original
network, as long as they are initialized appropriately. However, whether these
subnetworks or winning tickets are transferable across datasets and optimizers
remains unclear. The paper "One ticket to win them all:generalizing lottery ticket
initializations across datasets and optimizers" empirically shows that these winning
tickets are transferable. We reproduce the results in the paper from scratch by
implementing all the experiments. Our results support the original paper’s claim of
the winning ticket initializations being transferable. While the paper is replicable,
we find that reproducing the paper requires access to large amount of computing
resources for generating the winning tickets. Hence we also open-source the
winning tickets we find, so others can avoid the compute-intensive procedure of
generating them.

Track : Replication

1 Introduction

Prior works have shown that 90% of the parameters of a neural network can be eliminated without
compromising accuracy [1; 2]. Eliminating unnecessary parameters by techniques like pruning
reduces the computation requirements and energy consumption of neural networks thereby making
inference more efficient. The procedure for pruning networks involves training the entire neural
network and eliminating the least important weights after the training phase has been completed.
However, if the number of parameters in a neural network can be reduced, why not train the pruned
network itself and make training phase more efficient?

Pruned networks were not trained from scratch as previous works [2; 1] mention that when pruned
networks are trained from scratch they achieve lower accuracy when compared to a network which is
pruned after training. However, the recently proposed lottery ticket hypothesis states the following:
"A randomly-initialized, dense neural network contains a subnetwork that is initialized such
that—when trained in isolation—it can match the test accuracy of the original network after training
for at most the same number of iterations" [3]. These subnetworks along with the appropriate
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initializations are referred to as the winning tickets. If true, the lottery ticket hypothesis implies that
pruned networks can be trained from scratch to achieve accuracy commensurate to the accuracy of
original network as long as the pruned network is initialized appropriately.

Unfortunately, finding these winning ticket initializations requires one to iteratively prune the network
which is a computationally expensive procedure. One can potentially avoid this procedure if one
can reuse the same winning ticket initialization across multiple datasets and optimizers. However,
the answer to the question of whether these winning ticket initializations generalize to the spectrum
of datasets and optimizers remains obscure. The paper we reproduce, "One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers" [4] provides empirical
evidence that these winning ticket initializations generalize across multiple datasets as well as
optimizers2.

As a part of the NeurIPS Reproducibility Challenge’s Replication Track, we replicate the work
done by [4] and investigate if the winning ticket initializations are generalizable across datasets and
optimizers. The target questions of our work are as follows:

• Do winning ticket initializations generalize within same data distribution?
• Do winning ticket initializations generalize across datasets?
• Do winning ticket initializations generalize across optimizers?

In this report, Section 2 describes the techniques we used for our experiments and their implementation.
Section 3 describes the experimental setting and computing resources we use. Section 4 describes the
efforts needed to replicate the results in terms of computing resources required, development time
and contact with authors. Further, in Section 5 we present and discuss our results. We open source
the code we use for our experiments3. Finally, as finding these winning tickets is computationally
expensive, we open-source the winning tickets we found for usage by the community4.

2 Methodology

2.1 Iterative Pruning and implementation

There are two widely used methods for pruning - one shot pruning and iterative pruning. Suppose we
want to prune p% of a network. In one shot pruning, we first train the network, then prune p% of the
weights and finally reset the weights to the original initialization that the network had before training.
In iterative pruning the network is trained, pruned and reset every round for n rounds. As can be
observed, at the end of each round, p

1
n% of the weights that survived the previous round are pruned.

In this work we use iterative pruning for pruning the neural networks. We use iterative pruning as
prior work [3] shows that it finds winning tickets that match the accuracy of original network at
higher pruning fractions when compared to one shot pruning.

In our implementation of iterative pruning we set the value of the parameters to be pruned to be
zero before each forward pass. This automatically ensures two things: (a) the forward pass is on the
pruned network and (b) the gradients are computed on the pruned network. Note that the gradients
used in updating the weights may make the pruned weight values non-zero. But this is not an issue
since we reset the weights again before the next forward pass.

2.2 Late Resetting

In the original paper on lottery ticket hypothesis [3], the authors reset the weights after each pruning
iteration to the original initialization that the network had before training. They report that learning
rate warm-up is necessary to find winning tickets on larger models. However, a recent work [5],
reports that re-initializing the weights to the weights after the training iteration k, where k is typically
much smaller than the total training iterations, performs consistently better in producing winning
tickets and also removes the need for learning rate warm-up. We employ late resetting of 1 epoch in
all the experiments as used by the authors [4].

2Authors used anywhere in this paper refers to the authors of the paper that we reproduce [4]
3The code base can be found at github.com/varungohil/Generalizing-Lottery-Tickets
4The winning tickets can be found in this Google Drive folder (hyperlinked)
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2.3 Global Pruning and Local Pruning

A neural network can be pruned either in a global manner or in a local manner. When pruning in
a global manner, the weights of all layers of the network are pooled together and then a fraction
of weights are removed from this global pool. In local pruning, the same fraction of weights are
removed in each layer for all the layers. In our work we use global pruning as used in the paper we
are reproducing [4].

2.4 Random Masks

Winning tickets, contain information about two key aspects of the subnetwork: the structure of the
sparse neural network as well as the initialization of the parameters. The structure of the subnetwork
is stored in form of a mask which is a binary vector that is multiplied with the network’s weights, to
set the pruned weights to zero. Prior works have preserved the structure of the mask while randomly
initializing the weights for random tickets. The authors [4] empirically demonstrate that the structure
of the subnetwork contains significant information. Hence for the random ticket the authors apply a
random mask to the network and initialize the parameters randomly. For implementing the random
ticket baseline, we generate random masks by globally permuting the winning masks as mentioned in
[4].

3 Experimental Settings

We implement the code base using PyTorch [6]. We use the inbuilt model definitions, optimizers,
datasets of PyTorch for our experimentation.

3.1 Models

For all our experiments, we use one of the two network architectures: ResNet50 and a modified
VGG19.

In the case of the modified VGG19 architecture, we remove all the fully connected layers from the
network. Following the last convolutional layer, we add a global-average-pooling layer. Finally, we
add a linear classification layer from the global average pool to the number of output classes. We
use the ReLU non-linearity and perform batch normalization after each convolutional layer. For
our experiments, we initialize all the convolutional layers using Xavier normal initialization and the
biases to 0. We set batch norm weights and bias parameters to 1 and 0 respectively. We train all the
VGG19 models for 160 epochs and anneal the learning rates by a factor of 10 at the 80th and the
120th epochs.

We use the standard ResNet50 architecture that was proposed in [7]. We use the Kaiming normal
initialization for convolutional layers, which is also the default initialization for ResNets in PyTorch.
We train all the ResNet models for 90 epochs. We anneal the learning rates by a factor of 10 at the
50th, 65th and 80th epochs.

The initializations, number of epochs, learning rate annealing schedules are in accordance to [4] to
maintain consistency of experiments.

3.2 Optimizers

We used two optimizers for our experiments - The Adam optimizer and Stochastic Gradient Descent
(SGD) optimizer. We use Adam with a learning rate of 0.0003 with betas 0.9 and 0.999 and a weight
decay of 0.0001. We use SGD with a learning rate of 0.1, with a momentum of 0.9 and a weight
decay of 0.0001. We use hyperparameters provided by authors to maintain consistency with the paper
we are reproducing [4].

3.3 Datasets

We use 4 datasets for our experiments - CIFAR10 [8], CIFAR100 [8], SVHN [9] and FashionMNIST
[10]. These datasets are diverse in terms of grayscale vs. color images, input size, number of output
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classes, and training set size. For all these datasets for data augmentation we perform random
horizontal flips and random crops of size 32 with a padding of 4.

3.4 Pruning Settings

We perform iterative pruning for 30 pruning iterations and use a 20% pruning rate. For our experiments
we use magnitude-based pruning. The weights with the magnitudes in the lowest 20% of remaining
non-zero weights are removed after each iteration. While performing iterative pruning, we use
late-resetting of 1 epoch.

3.5 Computing Resources

We run our experiments on three GPUs - Nvidia P100, Nvidia K80 and Nvidia GTX 1080. The
Nvidia P100 and Nvidia K80 machines had a 16 core Intel processor and 15GB RAM, while the
Nvidia GTX 1080 machine had a 32 core Intel processor with 256 GB of RAM.

4 Cost of Reproducibility

The authors of the original paper [4] did not release their code. We replicate the results by implement-
ing the all experiments from scratch. We did not experience significant difficulty in developing the
code base we use for our experiments. We believe that a person having experience with PyTorch can
implement the code without major challenges. Further, we also contacted the authors via email. We
inquired about the data-augmentations used while training the networks as they were not mentioned
in the original paper. Further we contacted them to understand the concept of random masks.

Replicating the results required a significant amount of computing resources. We experienced that the
compute resources provided by Code Ocean were not sufficient for the experimentation and hence
we performed the experiments on Google Cloud. Further, finding winning tickets for larger datasets
is computationally expensive, with the authors using 16 GPUs [4]. As we did not have access to such
a large amount of computing resources, we only replicate the results reported on smaller datasets
like Cifar-10, Cifar-100, SVHN and FashionMNIST. We could not conduct experiments for larger
datasets like ImageNet (10 million images) [11] and Places365 (8 million images) [12] as we were
severely limited by compute capability and the time allotted for the reproducibility challenge. Overall,
we used approximately $500 worth of Google Cloud credits for our experimentation.

The process of generating winning tickets is time-consuming as well. Training a ResNet50 model for
90 epochs using Nvidia P100, the fastest GPU we used, takes approximately 33 minutes. Similarly,
training the VGG19 model for 160 epochs using Nvidia P100 takes approximately 43 minutes. For
our experiments we trained a ResNet50 model 450 times and a VGG19 model 540 times. All the
experiments would take approximately 634 hours (26 days) to run sequentially. To complete the
experiments in time we scheduled multiple experiments parallelly on Google Cloud.

We open-source our code base for reproducing the results of [4]. Along with our code base, we also
open-source the winning tickets we found during our experimentation. We hope this will help the
community avoid expensive and time-consuming computation, as these winning tickets can directly
be used for inference and can be studied to improve our understanding of lottery tickets.

5 Results and Discussion

The original paper reports results for 3 experiments, each concerning a target question we mentioned
in Section 1. For each experiment, we plot the test accuracy at convergence as function of fraction of
pruned weights. Owing to the compute and time constraints mentioned in Section 4, we could only
replicate the results with 1 random seed.

5.1 Transfer within same data distribution

With this experiment, we aim to investigate if the winning ticket initializations generalize within
the same data distribution. For this experiment, we divide the CIFAR-10 dataset into 2 halves -
CIFAR-10a and CIFAR-10b. Both these halves contain 25,000 training images, having 2500 images
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of each class. We find the winning ticket initialization for CIFAR-10a using SGD and verify if it
generalizes to CIFAR-10b. As our baselines, we use the CIFAR-10b winning ticket initialization with
SGD and random tickets. We perform this experiment for both, VGG19 and ResNet50 architectures,
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Figure 1: Transfer of winning ticket initializations within same data distribution

Our results are presented in Figure 1. The results show that winning tickets found on CIFAR-10a
generalize well to CIFAR-10b. We also see that while using ResNet50, for low pruning fractions
random ticket provides better accuracy than winning tickets found using CIFAR10-a and CIFAR10-
b. The same phenomena is reported in the original paper [4]. Our results support the hypothesis
presented in original paper that ResNet50 winning tickets are sensitive to smaller datasets at low
pruning fractions.

5.2 Transfer across optimizers

With this experiment, we aim to investigate if the winning ticket initializations generalize across
optimizers. For our experiments, we use the modified VGG19 architecture discussed in Section 3.
We find the winning tickets for CIFAR-10 dataset using both Adam and SGD optimizers and analyze
the effect on accuracy when the ticket generated using one optimizer is further trained using another
optimizer. Our results show that even after transfering tickets from SGD to Adam and vice-versa the
accuracy of the tickets was comparable to when the tickets were trained using the same optimizer
without any transfer. This supports the claim made in the original paper that VGG19 winning tickets
are optimizer-independent.
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Figure 2: Transfer of winning ticket initializations across optimizers

5.3 Transfer across datasets

With this experiment, we aim to investigate if the winning ticket initializations generalize across
datasets. For our experiments, we used ResNet50 and the modified VGG19 architectures. We train
the models on Cifar-10, Cifar-100, FashionMNIST and SVHN datasets with SGD optimizer.
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Our results also reveal the key trends which the authors discuss in the original paper. Firstly, we see
in Figures 3 and 4 that individual winning tickets show accuracy similar to that of winning ticket
generated on the target dataset. This supports the author’s hypothesis that the inductive bias provided
by the winning tickets is dataset-independent.

Second, we observe that winning tickets generated from more complex datasets (with higher number
of classes) generalize better than those generated on relatively simpler datasets. Winning tickets
generated on CIFAR-100 transfer better than those generated by those on CIFAR-10. This effect can
be clearly seen in Figure 3 for ResNet50 architecture, while for VGG19 architecture both winning
tickets show similar accuracy.

Third, while we observe that the winning rates transferred similarly for both ResNet50 and VGG19
architectures, the ResNet50 architecture tickets showed a sharper degradation in accuracy at higher
pruning fractions compared to VGG19 architecture tickets. This can be observed by comparing
Figure 3 with Figure 4.

We do not report the results of VGG19 winning tickets on FashionMNIST as the experiments for the
same are still running and did not complete till report submission deadline.
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Figure 3: Transfer of winning ticket initializations across datasets with ResNet50

5.4 Discussion

We successfully replicate the experiments in the original paper. From our results, we observe that
the winning ticket initializations transfer across multiple datasets and optimizers. This suggests that
the winning tickets provide an inductive bias while training pruned models and are not overfitting a
particular optimizer or dataset. We also observe that tickets over more complex datasets generalize
better. Finally, we see that the different architectures have different sensitivity to pruning fractions,
with ResNet50 showing sharper accuracy degradation at higher pruning fractions than VGG19.
Overall, these observations motivate further work in area of neural network initializations. Further, as
generating lottery tickets using iterative pruning is computationally expensive and time-consuming,
more efficient methods for generating winning tickets are needed.
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Figure 4: Transfer of winning ticket initializations across datasets with VGG19

6 Future Work

We plan to generate more winning tickets for these experiments with multiple random seeds to
strengthen the reproducibility procedure we follow. If we are provided with access to more compute
resources, we also plan to replicate the results presented on larger datasets like ImageNet and
Places365. We plan to open-source new winning tickets as and when we generate them.

7 Conclusion

The original paper [4] investigates the generalizability of winning ticket initializations across datasets
and optimizers. We replicate the experiments of the original paper from scratch. Our results
support the major claims of the original paper and empirically answer the target questions. Our
results empirically show that the winning ticket initializations can be transferred across datasets and
optimizers. We appreciate the authors’ ability to explain their experiments and observations in a
lucid and replicable manner. While the results are replicable, we find that process of reproducing the
results is extremely compute-intensive. Hence along with our code base, we also open-source the
winning tickets we find during our experiments.
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