
Correlated Uncertainty for Learning
Dense Correspondences from Noisy Labels

Natalia Neverova, David Novotny, Andrea Vedaldi
Facebook AI Research

{nneverova, dnovotny, vedaldi}@fb.com

Abstract

Many machine learning methods depend on human supervision to achieve optimal
performance. However, in tasks such as DensePose, where the goal is to establish
dense visual correspondences between images, the quality of manual annotations
is intrinsically limited. We address this issue by augmenting neural network
predictors with the ability to output a distribution over labels, thus explicitly and
introspectively capturing the aleatoric uncertainty in the annotations. Compared to
previous works, we show that correlated error fields arise naturally in applications
such as DensePose and these fields can be modelled by deep networks, leading
to a better understanding of the annotation errors. We show that these models,
by understanding uncertainty better, can solve the original DensePose task more
accurately, thus setting the new state-of-the-art accuracy in this benchmark. Finally,
we demonstrate the utility of the uncertainty estimates in fusing the predictions
produced by multiple models, resulting in a better and more principled approach to
model ensembling which can further improve accuracy.

1 Introduction

Deep neural networks achieve state-of-the-art performance in many applications, but at the cost of
collecting large quantities of annotated training data. Manual annotations are time consuming and, in
some cases, of limited quality. This is particularly true for quantitative labels such as the 3D shape of
objects in images or dense correspondence fields between objects. In these cases, one should consider
manual labels as a form of weak supervision and design learning algorithm accordingly.

An emerging approach to handle annotation noise is to task the network with predicting the aleatoric
uncertainty in the labels. Consider a predictor ŷ = Φ(x) mapping a data point x to an estimate ŷ of
its label. Given the “ground-truth” label y, the standard approach is to minimize a loss of the type
`(y, ŷ) so that ŷ approaches y as much as possible. However, if the “ground-truth” value y is affected
by noise, then naively minimizing this quantity may be undesirable. An alternative approach is to
predict instead a distribution p(ŷ|x) = Φŷ(x) over possible values of the annotation y. This has
several advantages: (1) it can model the distribution of annotation errors specific to each data point x
(as not all data points are equally difficult to annotate), (2) it can model the prediction uncertainty
(as knowing x may not be sufficient to fully determine y), and (3) it allows the model to account
for its own limitations (by assessing the difficulty of the prediction task). Under such a model, the
point-wise loss is replaced by the negative log-likelihood `(y,Φ(x)) = − log p(y|x) = − log Φy(x).

Approaches using these ideas have demonstrated their power in a number of applications. However,
most methods have adopted simplistic uncertainty models. In particular, when the goal is to predict
a label vector y ∈ Rn, errors have been assumed to be uncorrelated, so that − log p(y|x) =
−
∑n
i=1 log p(yi|x). However, this is very seldom the case. For example, if yi is a label associated to

a particular pixel i in an image x, we can expect annotation and prediction errors to be very strongly
correlated for pixels in the same neighborhood.
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Figure 1: Systematic errors in manual dense correspondences (DensePose [5]). The annotators
are shown a set of points sampled randomly and uniformly over one of predefined body parts of
a person in an image. Their task is to click on corresponding pixels in another image obtained by
rendering and therefore providing ground truth correspondences to a canonical 3D model of a human
body. Due to self-occlusions and ambiguities, errors made by the annotators tend to be correlated
within each given body part and can be partially described by global affine transforms (translation,
rotation, scaling) w.r.t true locations. We model the structure of these errors by learning a neural
network that estimates a distribution over the correlated annotation field.

In this paper, we investigate richer uncertainty models that can better exploit the data structure. As a
running example, we consider the task of dense pose estimation, or DensePose (fig. 1): namely, given
an image x of a human, the goal is to associate to every pixel i a coordinate chart (pi, ui) where
pi ∈ {0, 1, . . . , P} is a part label (where 0 is the background) and ui ∈ [0, 1]2 is a chart coordinate,
specific to part pi (fig. 1). This is an interesting test case for three reasons: (1) the task consists of
pixel-wise, and hence correlated, predictions; (2) the quality of human annotations is uneven and data
dependent advantages; (3) there is structure in the data (body parts) that may align with the structure
of the annotation errors.

We make three contributions. The first is to apply a standard uncertainty model to this task of learning
dense correspondences; this was not done before and alone achieves a significant improvement over
strong baselines trained with regression losses.

Our second, and more significant, contribution is to propose more sophisticated uncertainty models.
These models allow to predict for each pixel i a direction for the error in labelling the chart coordinate
vectors. This can for example be used to express different degrees of uncertainty due to foreshortening
of a limb. They also allow to express a degree of correlation between all vectors that belong to a
common region, in this case identified as a human body part. While richer, our models can still be
integrated efficiently in deep neural networks for end-to-end training.

Our third contribution is a deeper departure from prior work. Instead of just modelling uncertainty
as distribution − log p(ŷ|x) = Φŷ(x) conditioned on the input data x, we consider the possibility of
conditioning the uncertainty on the annotation y directly. For example, in the DensePose task, the
annotation y can be used to predict image regions where uncertainty is likely to be higher even before
observing the image x.

2 Related work

Uncertainty in machine learning is usually decomposed into three types [9]: approximation, due to
the fact that the model is not sufficiently expressive to model the data-to-label association, aleatoric,
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due to the intrinsic stochastic nature of the association, and epistemic, due to the model’s limited
knowledge about this association, which prevents it form determining it uniquely.

Uncertainty in deep neural network has been modelled using approximate Bayesian approaches [6,
1, 7, 8] using dropout as a way to generate the necessary samples [4, 7]. Ensembling [3], which
combines multiple models, has been explored in [15, 10, 16]. The recent method of [18] proposes a
frequentist method that can estimate both aleatoric and epistemic uncertainty.

The work of [7, 14] is probably the most related to ours. They also model approximation and aleatoric
uncertainty by configuring a deep neural network to produce an explicit estimate of the latter, in the
form of a parametric posterior distribution. In this paper, we build a similar model, but apply it to a
dense, structure image labelling tasks. We thus extend the model to express structured uncertainty,
where errors are highly correlated in a way which depends on the input image and annotation.

We apply our approach to the DensePose problem, originally introduced in [5]. We not only show
that we can accurately model uncertainty in the annotation process, but also learn better overall
DensePose regressor, outperforming the current state-of-the-art results of [12], from which we borrow
our experimental setup.

3 Method

We consider the problem of predicting, given a data point x, a label vector y ∈ Rdn formed by n
subvectors yi ∈ Rd, i = 1, . . . , n of dimension d. In our test application, namely DensePose, these
subvectors are the chart coordinates yi = ui ∈ [0, 1]2 that associate to pixels i of image x a particular
point on the human body. However, there are many other problems, including colorization, depth
prediction and inpainting, that can be modelled in a similar manner.

We denote by δ = ŷ − y the error between the predicted value ŷ of the label and the annotated
value y. In order to model uncertainty in the system, we train a predictive model Φ(x) that outputs
not only the point estimate ŷ ≈ y, but also a distribution p(y|x) over possible values. For simplicity,
we express the latter as

p(y|x) = q(ŷ − y|x) (1)
where q(δ|x) is an unbiased distribution of the residual (i.e. E[q(δ|x)] = 0 and argmaxδ q(δ|x) = 0).
Hence, the output of the neural network is a pair (ŷ, q) = Φ(x) comprising a point estimate ŷ and the
distribution of the residual q. This model can be trained by optimizing the negative log-likelihood
`(y,Φ(x)) = − log q(y − ŷ).

Next, we discuss possible variants of the model with different complexity and expressive power.

3.1 Elementary uncertainty model

In the simplest case, we let y ∈ Rn and assume that subvectors yi are single scalars. The uncertainty
model then is given by q(δ|x) =

∏n
i=1 q(δi|x) which amounts to assuming that the residuals are

statistically independent. The simplest choice for q(δi|x) is a Gaussian N (0, σ2
i ) with standard

deviation σ2
i . Hence, the neural network (ŷ, σ) = Φ(x) outputs for each pixel i the prediction ŷi as

well as an estimate σ2
i of the prediction uncertainty. In this case, the training loss expands as:

`(y,Φ(x)) =
n

2
log 2π +

1

2

n∑
i=1

(
log σ2

i +
(ŷi − y)2

σ2
i

)
(2)

Note that minimum of the r.h.s. w.r.t. σ2
i is obtained by setting σ2 = |ŷi − y|. Hence, the predictor Φ

will try to output a value of σi which is equal to the error actually incurred at that pixel; crucially,
however, the model Φ cannot measure this error directly as it only receives the data point x (and not
the annotation y) as input. Hence, the model is encouraged to perform introspection.

3.2 Higher-order uncertainty models

The model of section 3.1 is simplistic as it assumes that errors are statistically independent, which
is seldom the case in applications. In order to address this limitation, we assume that residuals are
instead generated by the model

δi = ε+ ηi + ξiwi (3)
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where ε ∼ N (0, σ2
1Id) is an overall isotropic offset, ηi ∼ N (0, σ2

2iId), is a subvector specific
isotropic offset and ξi ∼ N (0, σ2

3i) is a subvector specific directional offset along the unit vector wi.
Here Id denotes the d× d identity matrix, where d is the dimensionality of the subvectors yi (d = 2
in the DensePose application).

This model extends (2) in several ways. First, the term ε indicates that errors are overall correlated.
For instance, in DensePose it is likely that all points annotated for a given human body part would be
affected by a similar annotation shift compared to the “correct” annotation. This is because humans
are better at relative rather than absolute judgments when it comes to establishing ambiguous visual
correspondences. Second, the term ηi expresses local isotropic uncertainty, similar to (2). Third, the
term ξiwi express local directional uncertainty. This can be used to capture any expected directionally
in the error. For instance, in DensePose we expect errors to be larger in the direction of visual
foreshortening of a limb.

Next, we calculate the negative log-likelihood q(δ|x) under this model in order to evaluate and learn
it. The collection of residuals δ is a Gaussian vector with co-variance matrix

Σ = JJ> + diag(Σ1, . . . ,Σn), Σi = σ2
2iId + σ2

3iwiw
>
i , (4)

where J = σ1 · [Id . . . Id]
> ∈ Rdn×d.

Some algebra shows that the determinant of the covariance matrix and the concentration matrix are
given by

det Σ = detK ·
n∏
i=1

det Σi, C = Σ−1 = C̄ − C̄JK−1J>C̄, K = I + σ2
1 ·

n∑
i=1

Σ−1i . (5)

Here C̄ = diag(C, . . . , Cn) is the block-diagonal matrix containing the subvector-specific concentra-
tion matrices Ci = Σ−1i . We can expand this further by noting that:

Ci =
1

σ2
2i

·Πi, Πi = I − ρiwiw>i , det Σi =
σ2d
2i

1− ρi
, ρi =

σ2
3i

σ2
2i + σ2

3i

(6)

where Πi can be interpreted as a projection operator and ρi as a correlation coefficient. Then:

− log q(δ|x) =
n

2
log 2π +

1

2

n∑
i=1

(
log

σ2d
2i

1− ρi
+
δ>i Πiδi
σ2
2i

)

+
1

2
log detK +

1

2

(
n∑
i=1

Πiδi
σ2
2i

)>
K−1

(
n∑
i=1

Πiδi
σ2
2i

)
, K = I + σ2

1 ·
n∑
i=1

Πi

σ2
2i

. (7)

In practice, it is easier for a network to predict ri = σ3iwi ∈ R2 instead of ρi and wi separately, so
we use the parametrization

σ2d
2i

1− ρi
= σ

2(d−1)
2i (σ2

2i + ‖ri‖2), ρi =
‖ri‖2

σ2
2i + ‖ri‖2

, Πi = Id −
rir
>
i

σ2
2i + ‖ri‖2

. (8)

Spatially-independent model. Model (7) correlates the errors of all subvectors. We can loose this
condition by setting σ1 = 0. In this case K = 0 and J = 0 and the model reduces to:

− log q(δ|x) =
n

2
log 2π +

1

2

n∑
i=1

(
log

σ2d
2i

1− ρi
+
δ>i Πiδi
σ2
2i

)
. (9)

This requires the model to estimate for each pixel the value of the variance σ2
2i as well as of the

directional correlation parameters ri ∈ R2.

Fully-independent model. The elementary model corresponding to eq. (2) is obtained by further
setting parameter ri = 0 in eq. (9).
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Figure 2: Uncertainty-aware training pipeline. We extend a standard predictor based on a Hour-
glass architecture [13, 12] with an additional uncertainty head to estimate uncertainty parameters.

3.3 Label-conditioned uncertainty

Next, we consider modifying the approach so that uncertainty is predicted not only from the input
data x, but also based on the label y itself.

On a first glance, this may look as simple as adding the argument y to the predictor Φ(x) to obtain a
new predictor Φ(x, y). This is however nonsensical as (ŷ, q) = Φ(x, y) is tasked with producing an
estimate of ŷ itself, so this would immediately lead to a degenerate solution.

Instead, we consider two separate networks. The first, ŷ = Φ1(x), is tasked with predicting only the
label y. The second, q = Φ2(x, y), is tasked with predicting only the uncertainty distribution q. Still,
without any constraint, this scheme still does not work as the distribution q can shift the prediction ŷ
arbitrarily. This is prevented by the fact that E[q(δ)] = 0; in fact, in practice we require q(y) to be
a simple uni-modal distribution. In this manner, q can effectively only predict the data uncertainty,
but ŷ must still try to predict the label correctly in order to minimize the log-likelihood loss.

3.4 Introspective ensemble

Assume that we have densities qk(δ|x), k = 1, . . . ,K generated from an ensemble of K models and
let ŷ(k) be the corresponding label estimates (we use the superscript to indicate that we index different
estimates instead of different components of a single vector estimate). We can fuse the estimates by
finding y = argmaxy

∑K
k=1 log qk(y − ŷ(k)|x) = argmaxy

∑K
k=1(y − ŷ(k))>C(k)(y − ŷ(k)). The

maximizer is then y = (
∑K
k=1 C

(k))−1
∑K
k=1 C

(k)ŷ(k). Note that, while the section above gives us
the inverse of the concentration matrices of each model, in case of the probabilistic model of the
highest order eq. (7) we require the inverse of the sum, which must be obtained numerically. In time-
constrained applications, such as real time, rather than solving such a large system of equations, we
can utilize conjugate gradient descend to obtain an approximate solution starting from an initial guess
(which can be obtained as the average of the individual models’ predictions). For the simpler cases of
ensembles of spatially-independent models and fully-independent models, the fused estimates can
be computed in closed form. For the spatially independent model (eq. (9)), it follows that the fused
uv predictions yspai at position i are defined as yspai = (

∑K
k=1 C

(k)
i )−1(

∑K
k=1 C

(k)
i ŷki ), which now

only requires to invert a small 2x2 matrix formed by accumulating C(k)
i above each pixel. In case of

the fully independent model with isotropic covariance matrices (eq. (2)), the ensembled prediction

yisoi =
∑K
k=1

σ̂
−2(k)
i∑K

k=1 σ̂
−2(k)
i

ŷ
(k)
i is a mere weighted sum of ŷ(k)i .

4 Application to DensePose

In this section we show in more detail how the ideas explained above can be applied to the DensePose
problem [5]. In this work, we adapt the DensePose setting of [12], where the input is an image x ∈
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Figure 3: Example of predictions produced by our model. Ground truth locations (in red) and
predicted locations (in green) are shown together with learned isotropic offsets described by σ2.

R3×H×W tightly containing a person (DensePose can also be applied to full images in combination
with an object detector, but we are not concerned with that here). DensePose then trains a network Φ
to predict a label y ∈ RC×H×W where the C = 3 · P channels of vector yi for pixel i comprise a
P -dimensional indicator vector for the part that contains pixel i (e.g. left forearm) and the 2D location
in the chart of each part, accounting for 2P dimensions. Note that only one of the 2P predicted
locationa is used at pixel i, as indicated by the part selector, but all of them are still computed.

We extend the basic architecture with an additional uncertainty head that estimates the prediction con-
fidences (see fig. 2). Depending on which specific model is implemented, the output dimensionality
of this branch may differ. However, each variant amounts to predicting a certain number of additional
channels per part, estimating part-specific uncertainty values, and can be generally expressed as
Nu × P , where Nu is the number of uncertainty parameters. Note that depending on the application,
at test time the uncertainty head may be either utilized to get confidence estimates, or ignored. In
the latter case, the uncertainty aware training results in a boost of model performance at no extra
computational cost during inference.

All uncertainty parameters are predicted by applying a set of two convolutional blocks to an interme-
diate feature level F , produced by the main network Φ1. As mentioned in section 3.3, in addition, we
explore a variant of the model where the sparse ground truth annotations are passed directly to the
uncertainty head as an additional input. The annotated points are first mapped onto the image space,
preprocessed by a set of partial convolutional layers [11] and then concatenated with features F . This
process is illustrated in fig. 2. An example of model predictions is shown in fig. 3.

5 Experiments

Datasets. To gain deeper insights on the nature of human annotator errors on the dense labeling
task, we first analyzed DensePose annotations obtained on a set of 88 synthetic images, where ground
truth UV mapping is known by design (analogously to Section 2.2 of [5]). These images were
rendered using the SMPL body model [2] and the rendering pipeline of [19].

We have empirically observed that, by taking all annotated points covering one body part in one
image and applying a simple global affine transformation to them (such as translation or scaling), the
mean error over the whole image set can be reduced by half. This confirms our hypothesis of existing
strong correlation between individual errors.

The majority of experiments in this work were conducted on the DensePose-COCO dataset [5],
containing 48k densely annotated people in the training set and 2.3k in the validation set. We follow
the single person protocol for this task and use ground truth annotations for bounding boxes to crop
images around each person.

Metrics. For evaluation, we adapt a standard per-pixel metric used in [5] and [12] and report the
percentage of points predicted with an error lower than a set of predefined thresholds, where the error
is expressed in geodesic distances measured on the surface of the 3D model. Since, in this work, we
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Model uv-loss 1 cm 2 cm 3 cm 5 cm 10 cm 20 cm

DensePose-RCNN (R50) [5] MSE 5.21 18.17 31.01 51.16 68.21 78.37
full (ours) 5.67 18.67 32.70 53.14 71.25 80.47

HRNetV2-W48 [17] MSE 4.31 15.19 27.14 47.07 69.76 78.66
full (ours) 5.70 18.81 31.88 52.20 74.21 82.12

HG, 1 stack (Slim DensePose [12]) MSE 4.31 15.62 28.30 49.92 74.15 83.01
full 5.34 18.23 31.51 52.40 74.69 82.94

HG, 2 stacks (Slim DensePose [12]) MSE 4.44 16.21 29.64 52.23 76.50 85.99
full 5.99 19.97 34.16 55.68 77.76 85.58

HG, 8 stacks (Slim DensePose [12]) MSE 6.04 20.25 35.10 56.04 79.63 87.55
full 6.41 20.98 35.17 56.48 80.02 87.96

Table 1: Performance of uncertainty-based models on the DensePose-COCO dataset [5]. Our
models significantly outperform the baseline variants, with no extra computational cost at inference
(when uncertainty estimates are not required by application).

Data SMPL renderings (synthetic) DensePose-COCO (real)
MAP gt-real gt-human MAP gt-human

simple (2.9785) 1.0816 1.1716 (3.0797) 1.3159
simple-2D (2.5748) 1.4246 1.4825 (2.5892) 1.3651
iid (3.2285) 1.7026 1.8937 (3.2038) 1.4383
full (3.0683) 2.3448 2.3574 (2.9847) 2.14057

Table 2: Negative log-likelihood of human annotations under different models with uncertainty.
More advanced models show monotonic increase in this metric w.r.t the ground truth locations.
gt-human stands for human annotations on synthetic data, gt-real for the ground truth UV maps.
simple-2D: assumes independent (but not isotropicaly nor identically distributed) per-pixel errors.

focus specifically on the UV-regression part of the DensePose task while keeping the segmentation
pipeline standard, we additionally report performance w.r.t. stricter geodesic thresholds and in two
settings when the segmentation is either predicted by the same network or assumed to be perfect and
correspond to the ground truth at test time.

Implementation details. The architecture of the main DensePose predictor Φ1 is based on the
Hourglass network [13] adapted to this task by [12]. We benchmark performance on 1, 2 and 8 stacks,
but conduct most of the ablation studies on a 1-stack network for speed. All networks are trained for
300 epochs with SGD, batch size 16 and learning rate of 0.1 decreasing by a factor of 10 after 180
and 270 epochs. Input images are normalized to the resolution of 256× 256.

Uncertainty models. In our experiments, we analyze several modifications of networks with
uncertainty heads, which we denote as follows: MSE stands for the uncertainty free baseline of [12]
trained with the MSE regression loss; simple corresponds to the elementary uncertainty model
given by 2; simple-2D is a variant of (2) with two distinct σu and σv learned separately for u- and
v-dimensions; iid denotes the spatially-independent model of (9) and full stands for the complete
model given defined by (7).

As shown in Table 3, introducing uncertainty into the DensePose training brings significant gains
in performance over the considered baseline. Our 2-stack architecture significantly outperforms
much more powerful 8-stack models, especially when measured on tighter geodesic thresholds. This
provides an additional evidence for the hypothesis that uncertainty-based training facilitates learning
with noisy annotations and allows the model to decrease the associated jitter in predictions.

The ablation on different variants of the uncertainty models is given in Table 3. In terms of accuracy
of UV-predictions, the more advanced models (iid and full) perform on par with their simpler
counterparts (simple and simple-2D) (note that test complexity of the main predictor is identical
for all models). Their advantage however becomes apparent when looking at the log-likelihood of the
ground truth labels evaluated by each of the models (see Table 2). In this setting, full model clearly
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Model UV only (GT body parsing) overall performance
1 cm 2 cm 3 cm 5 cm 10 cm 1 cm 2 cm 3 cm 5 cm 10 cm

MSE 5.57 19.92 35.74 61.75 89.53 4.31 15.62 28.30 49.92 74.15
simple 6.71 22.80 38.97 64.30 90.04 5.27 17.96 31.08 52.04 74.39
simple-2D 7.02 23.40 39.76 64.89 90.25 5.54 18.53 31.80 52.67 74.98
iid 6.95 23.39 39.70 64.95 90.25 5.44 18.46 31.70 52.66 74.84
full 6.78 23.08 39.42 64.62 90.14 5.34 18.23 31.51 52.40 74.69

Table 3: Ablation on uncertainty terms. The left part of the table reports upper bound results in
assumption of perfect body parsing at test time.

Model UV only (GT body parsing) overall performance
1 cm 2 cm 3 cm 5 cm 10 cm 1 cm 2 cm 3 cm 5 cm 10 cm

full 6.78 23.08 39.42 64.62 90.14 5.34 18.23 31.51 52.40 74.69
+gt (train) 7.18 23.84 40.33 65.36 90.38 5.60 18.68 31.97 52.57 74.28

Table 4: Label-conditioned uncertainty. Exploiting ground truth labels as an additional direct cue
has shown to accelerate learning and results in higher performance.

Model Best model Average Ours
5 cm 10 cm 20 cm 5 cm 10 cm 20 cm 5 cm 10 cm 20 cm

MSE 49.92 74.15 83.01 50.49 75.09 83.82 – – –
simple 52.04 74.39 82.74 54.26 75.49 82.84 54.46 75.55 82.86
iid 52.66 74.84 83.01 54.15 75.29 82.56 54.55 75.59 82.77

Table 5: Introspective ensemble. We collect a number of models with identical architectures but
trained with different hyperparameters (weights on the UV-term: 0.1, 0.2 and 0.5). More diverse
ensembles are expected to deliver higher gains in performance in all settings.

provides more meaningful representation of the learned distribution, which is no doubt critical for
numerous downstream tasks.

Label-conditioned uncertainty. Following the discussion of Section 3.3, we ablated the effect of
using ground truth annotations as a direct cue for learning uncertainty. Table 4 shows immediate
benefits of doing so in terms of the target UV-metrics, but we also observed significant increase
of log-likelihoods of the true labels evaluated by the gt-based model. Note that no ground truth
information is required by the model at test time, as long as uncertainty estimates are not utilized.

Introspective ensembles. Finally, we benchmark the performance of the proposed ensembling
techniques for several variants of the models with uncertainty. Exploiting uncertainty parameters
for finding the right balance consistently outperforms the averaging late fusion baseline in all tested
scenarios over a range of models (see Table 5).

6 Conclusions

In this paper we have investigated the use of introspective uncertainty prediction models to improve
the robustness and expressiveness of models for dense structured label prediction. We have introduced
a method to estimate, using a convolutional neural network, an uncertainty model which potentially
correlates the errors of all the pixels in an image. We have applied these ideas to the DensePose
tasks, showing how these approaches can result in significant performance improvements compared
to the current state-of-the-art. Since the structure of the regressor is unchanged compared to the
latter approaches, these improvements are solely imputable to the models’ better understanding of
the uncertainty in the data. This is particularly beneficial for problems, such as DensePose, where the
quality of manual labels is intrinsically limited.
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