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Abstract

We present Newtonian Monte Carlo (NMC), a method to improve Markov Chain Monte
Carlo (MCMC) convergence by analyzing the first and second order gradients of the target
density to determine a suitable proposal density at each point. Existing first order gradient-
based methods suffer from the problem of determining an appropriate step size. Too small
a step size and it will take a large number of steps to converge, while a very large step size
will cause it to overshoot the high density region. NMC is similar to the Newton-Raphson
update in optimization where the second order gradient is used to automatically scale the
step size in each dimension. However, our objective is not to find a maxima but instead to
find a parameterized density that can best match the local curvature of the target density.
This parameterized density is then used as a single-site Metropolis-Hastings proposal.

As a further improvement on first order methods, we show that random variables with
constrained supports don’t need to be transformed before taking a gradient step. NMC
directly matches constrained random variables to a proposal density with the same support
thus keeping the curvature of the target density intact.

We demonstrate the efficiency of NMC on a number of different domains. For statistical
models where the prior is conjugate to the likelihood, our method recovers the posterior
quite trivially in one step. However, we also show results on fairly large non-conjugate
models, where NMC performs better than adaptive first order methods such as NUTS
or other inexact scalable inference methods such as Stochastic Variational Inference or
bootstrapping.

1. Introduction

Markov Chain Monte Carlo (MCMC) methods are often used to generate samples from an
unnormalized probability density π(θ) that is easy to evaluate but hard to directly sample.
Such densities arise quite often in Bayesian inference as the posterior of a generative model
p(θ, Y ) conditioned on some observations Y = y, where π(θ) = p(θ, y). The typical setup is
to select a proposal distribution q(.|θ) that proposes a move of the Markov chain to a new
state θ∗ ∼ q(.|θ). This Metropolis-Hastings acceptance rule is then used to accept or reject

this move with probability: min
[
1, π(θ

∗)q(θ|θ∗)
π(θ)q(θ∗|θ)

]
.

When θ ∈ Rk, a common proposal density is the Gaussian distribution N (θ, ε2Ik) cen-
tered at θ with covariance ε2Ik, where ε is the step size and Ik is the identity matrix defined
over Rk,k. This proposal forms the basis of the so-called Random Walk MCMC (RWM)
first proposed in Metropolis et al. (1953).
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In cases where the target density π(θ) is differentiable, an improvement over the basic
RWM method is to propose a new value in the direction of the gradient, as follows:

q(.|θ) = N
(
θ +

ε2

2
∇ log{π(θ)}, ε2Ik

)
.

This method is known as Metropolis Adjusted Langevin Algorithm (MALA), and arises
from an Euler approximation of a Langevin diffusion process (Robert and Tweedie, 1996).
MALA has been shown to reduce the number of steps required for convergence to O(n1/3)
from O(n) for RWM (Roberts and Rosenthal, 1998). An alternate approach, which also
uses the gradient, is to do an L-step Euler approximation of Hamiltonian dynamics known
as Hamiltonian Monte Carlo (Neal, 1993), although it was originally published under the
name Hybrid Monte Carlo (Duane et al., 1987).

In HMC the number of steps, L, can be learned dynamically by the No-U-Turn Sam-
pler (NUTS) algorithm (Hoffman and Gelman, 2014). However, in all three of the above
algorithms – RWM, MALA, and HMC – there is an open problem of selecting the optimal
step size. Normally, the step size is adaptively learned by targeting a desired acceptance
rate. This has the unfortunate effect of picking the same step size for all the dimensions
of θ, which forces the step size to accomodate the dimension with the smallest variance
as pointed out in Girolami and Calderhead (2011). The same paper introduces alternate
approaches, using Reimann manifold versions of MALA (MMALA) and HMC (RMHMC).
They propose a Reimann manifold using the expected Fisher information matrix plus the

negative Hessian of the log-prior as a metric tensor, −Ey|θ
[
∂2

∂θ2
log{p(y, θ)}

]
, and proceed to

derive the Langevin diffusion equation and Hamiltonian dynamics in this manifold. The use
of the above metric tensor does address the issue of differential scaling in each dimension.
However, the method as presented requires analytic knowledge of the Fisher information
matrix. This makes it difficult to design inference techniques in a generic way, and requires
derivation on a per-model basis. A more practical approach involves using the negative
Hessian of the log-probability as the metric tensor, ∂2

∂θ2
log{p(y, θ)}. However, this encoun-

ters the problem that this is not necessarily positive definite throughout the state space.
An alternate approach for scaling the moves in each dimension is to use a preconditioning
matrix M (Roberts and Stramer, 2002) in MALA, q(.|θ) = N

(
θ + ε2M∇ log{π(θ)}, ε2M

)
,

also known as the mass matrix in HMC and NUTS, but it’s unclear how to compute this.
An alternate approach is to approximately compute the Hessian (Zhang and Sutton,

2011) using ideas from quasi-Newton optimization methods such as L-BFGS (Nocedal and
Wright, 2006). This approach and its stochastic variant (Simsekli et al., 2016) use a fixed
window of previous samples of size M to approximate the Hessian. However, this makes
the chain an order M Markov chain, which introduces considerable complexity in designing
the transition kernel in addition to introducing a new parameter M . The key observation
in our work is that for single-site methods we only need to compute the Hessian of one
coordinate at a time, and this is usually tractable. The other key observation is that we
don’t need to always make a Gaussian proposer using the Hessian. In some cases, other
densities which are less concentrated such as Cauchy are more appropriate. In general, the
Hessian can be used for the purpose of matching the curvature of any parameterized density
that best approximates the conditional posterior. This approach of curvature-matching to
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an approximating density allows us to deal with constrained random variables without
introducing a transformation such as in Stan (Carpenter et al., 2017).

In the rest of the paper, we will describe our approach to exploit the curvature of the
target density, and show some results on multiple data sets.

2. Newtonian Monte Carlo

This paper introduces the Newtonian Monte Carlo (NMC) technique for sampling from a
target distribution via a proposal distribution that incorporates curvature around the cur-
rent sample location. We wish to choose a proposal distribution that uses second order
gradient information in order to closely match the target density. Whereas related MCMC
techniques discussed in Section 1 may utilize second order gradient information, those tech-
niques typically use it only to adjust step size when simulating steps along the general
direction of the target density’s gradient.

Our proposed method involves matching the target density to a parameteric density
that best explains the current state. We have a library of 2-parameter target densities Fi,
and simple inference rules such that, given the first and second order gradients, we can solve
the following two equations:

∇ log{π(θ)} =
∂

∂θ
Fi(θ;αi, βi) ∇2 log{π(θ)} =

∂2

∂θ2
Fi(θ;αi, βi),

to determine αi and βi. For example, in the case of θ ∈ Rk, we use either the multivariate
Gaussian or the multivariate Cauchy. For the former, the update equation leads to the
natural proposal,

N (µ = θ −∇2 log{π(θ)}−1∇ log{π(θ)},Σ = −∇2 log{π(θ)}−1).

The update term in the mean of this multivariate Gaussian is precisely the update term of
the Newton-Raphson Method (Whittaker and Robinson, 1967), which is where NMC gets
its name from. In case the estimated Σ has a negative eigenvalue we set those negative
eigenvalues to a very small positive number, and reconstruct Σ.

The full list of estimation methods are enumerated in Appendix A. For example, for
positive real values we use a Gamma proposer,

Gamma(α = 1− x2∇2 log{π(x)}, β = −x∇2 log{π(x)} − ∇ log{π(x)}),

and we don’t need a log-transform to an unconstrained space. In case multiple distributions
can be fit, we pick the one which assigns the highest log-probability to the current state.
Even though we may pick a different proposer at each point in the state space, the choice
of this proposer is a deterministic function of θ, and so we can precisely compute the MH
acceptance probability. We rely on generic Tensor libraries such as PyTorch (Paszke et al.,
2017) that make it easy to write statistical models and also automatically compute the
gradients. This makes our approach easy to apply to models generically.

An important observation related to our method is that we don’t need to compute the
Hessian of all the parameters in the latent space. Most statistical models can be decomposed
into multiple latent variables. This decomposition allows for single site MCMC methods
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that change the value of one variable at a time. In this case, we only need to compute the
gradient and Hessian of the target density w.r.t. the variable being modified. Consider a
model with N variables each drawn from RK . The full Hessian is of size (NK)2 and has a
cost of (NK)3 to invert. On the other hand, a single site approach computes N Hessians
each of size K2 with a total cost of NK3 to invert.

In the case of conjugate models, our estimation methods automatically recover the
appropriate conditional posterior distribution, such as the ones used in BUGS (Spiegelhalter
et al., 1996). However, even in cases of non-conjugacy, our proposal distributions pick out
reasonable approximations to the conditional posterior of each variable.

3. Results

(a) 10,000 data points (b) Zoomed in view (c) 1,000,000 data points

Figure 1: Bayesian Logistic Regression model.

(a) 10,000 data points (b) 500,000 data points

Figure 2: Robust Regression model.

We present results of our experiments on three models – Bayesian Logistic Regression
(Appendix B.1), Robust Regression (Appendix B.2), and a Crowd-Sourced Annotation
Model (Passonneau and Carpenter (2014), Dawid and Skene (1979), Appendix B.3). In
each experiment, we drew a sample of the latent variables from the model and N observed
variables. Half of the observed variables were given to each inference engine, and the other
half were used to compute the predictive likelihood over the posterior samples.

Figure 1 shows the relative convergence speed of various PPLs including Pyro (Bingham
et al., 2019) and Stan on Bayesian Logistic Regression, which has a relatively easy log-
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(a) 5000 data points (b) 50,000 data points (c) Zoomed in view

Figure 3: Crowd Sourced Annotation model.

Method N Time
NMC 20K 18
Stan 20K 41
JAGS 20K 2440
Bootstrap 20K 50
Pyro 20K 3024

NMC 2M 1030
Stan 2M 4900

(a) Logistic Regres-
sion

Method N Time
NMC 20K 68
Stan 20K 39
JAGS 20K 967

NMC 1M 1777
Stan 1M 3500
(b) Robust Regression

Method N Time
NMC 10K 71
Stan 10K 247
JAGS 10K 28

NMC 100K 430
Stan 100K 2900

(c) Annotation Model

Table 1: Wall clock time in seconds to generate 1000 samples.

concave posterior. All of the inference engines except for Stan converge to the true posterior
fairly quickly in terms of samples. However, most of them are very slow (Table 1) and only
Stan and NMC could be run on a larger data set. NMC is nearly 5 times faster than Stan,
which uses NUTS, in addition to converging faster.

Robust Regression, on the other hand, doesn’t have a log-concave posterior and both
JAGS (Plummer et al., 2003) and Stan struggle to converge (Figure 2). In fact, Stan takes
twice as much time for the same number of samples and it doesn’t appear to have converged.

The final model, Crowd-Sourced Annotation Model, is a classic hierarchical statistical
model. Each random variable has a conjugate conditional posterior, and since JAGS is
designed to exploit conjugacy it really shines in this example. Unfortunately, the version of
JAGS that we used kept crashing on larger data sets. Figure 3 shows that NMC is easily
able to keep up with JAGS in terms of number of samples and is only a factor of 2.5 slower
on the small data set. On the larger data set, NMC is nearly 7 times faster than Stan.

4. Conclusion

We have presented a novel MCMC method that uses the curvature of the target density to
converge faster than existing state of the art methods, and without requiring any adaptive
tuning. As next steps, we will fully integrate NMC into a production PPL and evaluate its
performance across a wider spectrum of illustrative and real-world use cases.
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Appendix A. Estimation of Probability Distributions

The estimation rules presented here are based on the work of Minka (2000).

A.1. Unconstrained spaces

In this section, we will consider distributions with the support Rk.

A.1.1. Normal Distribution

The multivariate Normal distribution has the log-density:

Normal(x;µ,Σ) = const(µ,Σ)− 1

2
(x− µ)TΣ−1(x− µ).

Thus,

∂

∂x
Normal(x;µ,Σ) = −Σ−1(x− µ), and

∂2

∂x2
Normal(x;µ,Σ) = −Σ−1.

This leads to the natural estimation rule:

µ = x−∇2 log{π(x)}−1∇ log{π(x)},
Σ = −∇2 log{π(x)}−1.
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A.1.2. Cauchy Distribution

The multivariate Cauchy distribution has the log-density:

Cauchy(x; b, A) = const(b, A)− log(1 + (x− b)TA(x− b))

Thus,

∂

∂x
Cauchy(x; b, A) =

−2A(x− b)
1 + (x− b)TA(x− b)

, and

∂2

∂x2
Cauchy(x; b, A) =

−2A

1 + (x− b)TA(x− b)
+

4A(x− b)(x− b)TA
(1 + (x− b)TA(x− b))2

.

Noting that the second term above is the outer product of the first gradient leads to the
following estimation rules:

b = x−
(
∇2 log{π(x)} − ∇ log{π(x)}∇ log{π(x)}T

)−1∇ log{π(x)},

s = ∇ log{π(x)}T
(
∇2 log{π(x)}

)−1∇ log{π(x)},

A =
(
∇2 log{π(x)} − ∇ log{π(x)}∇ log{π(x)}T

) s− 1

2− s
.

A.2. Half Spaces

Half spaces refer to R+. For example, the Gamma distribution, which has the log-density:

Gamma(x;α, β) = const(α, β) + (α− 1) log x− βx.

Thus,

∂

∂x
Gamma(x;α, β) =

α− 1

x
− β,

∂2

∂x2
Gamma(x;α, β) = −α− 1

x2
.

Which leads to the estimation rules:

α = 1− x2∇2 log{π(x)},
β = −x∇2 log{π(x)} − ∇ log{π(x)},

A.3. Simplexes

The K-simplexes refers to the set {x ∈ R+K |
∑K

i=1 xi = 1}. We use the Dirichlet distribution
to propose random variables with this support. The log-density of the Dirichlet is given by,

Dir(x;α) = const(α) +

K∑
i=1

(αi − 1) log(xi).
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We consider the modified density, which includes the simplex constraint,

Dir(x;α) = const(α) +

K∑
i=1

(αi − 1) log
xi∑K
j=1 xj

.

Thus,

∂

∂xi
Dir(x;α) =

(αi − 1)

xi
−
∑K

j=1(αj − 1)∑K
j=1 xj

, and

∂2

∂xi∂xl
Dir(x;α) = −δil

(αi − 1)

x2i
+

∑K
j=1(αj − 1)

(
∑K

j=1 xj)
2
.

Which leads to the following robust estimation rule,

αi = 1− x2i
(
∇2
ii log π(x)−max

j 6=i
∇2
ij log π(x)

)
.

Appendix B. Statistical Models Used in Experiments

In all the models, N is typically the number of observed variables and K is roughly the
number of latent variables, referred to as covariates in Section 3.

B.1. Bayesian Logistic Regression

α ∼ N (0, 10, size = 1),

β ∼ N (0, 2.5, size = K),

Xi ∼ N (0, 10, size = K) ∀i ∈ 1..N

µi = α+Xi
Tβ ∀i ∈ 1..N

Yi ∼ Bernoulli(logit = µi) ∀i ∈ 1..N.

Xi and Yi are observed.

B.2. Robust Regression

ν ∼ Gamma(2, 0.1)

σ ∼ Exponential(σmean)

α ∼ Normal(0, σ = αscale)

β ∼ Normal(βloc, σ = βscale, size = K)

Xi ∼ Normal(0, 10, size = K) ∀i ∈ 1 . . . N

µi = α+ βTx ∀i ∈ 1 . . . N

Yi ∼ Student-T(ν, µi, σ) ∀i ∈ 1 . . . N

Xi and Yi are observed.
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B.3. Annotation Model

There are N items, K labelers, and each item could be one of C categories. Each item i is
labeled by a set Ji of labelers. zi is the true label for item i and yij is the label provided to
item i by labeler j. Each labeler l has a confusion matrix θl such that θlmn is the probability
that an item with true class m is labeled n by l.

π ∼ Dirichlet(
1

C
, . . . ,

1

C
)

zi ∼ Categorical(π) ∀i ∈ 1 . . . N

θlm ∼ Dirichlet(αm) ∀l ∈ 1 . . .K, m ∈ 1 . . . C

|Ji| ∼ Poisson(Jloc)

l ∈ Ji ∼ Uniform(1 . . .K)

yil ∼ Categorical(θlzi) ∀l ∈ Ji

Here αm ∈ R+C . We set αmn = γ · ρ if m = n and αmn = γ · (1− ρ) · 1
C−1 if m 6= n. Where

γ is the concentration and ρ is the a-priori correctness of the labelers. In this model, yil
and Ji are observed. In our experiments we set γ = 10 and ρ = 0.5.
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