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ABSTRACT

Identifiability, or recovery of the true latent representations from which the ob-
served data originates, is de facto a fundamental goal of representation learning.
Yet, most deep generative models do not address the question of identifiability,
and thus fail to deliver on the promise of the recovery of the true latent sources
that generate the observations. Recent work proposed identifiable generative mod-
elling using variational autoencoders (iVAE) with a theory of identifiability. Due
to the intractablity of KL divergence between variational approximate posterior
and the true posterior, however, iVAE has to maximize the evidence lower bound
(ELBO) of the marginal likelihood, leading to suboptimal solutions in both the-
ory and practice. In contrast, we propose an identifiable framework for estimating
latent representations using a flow-based model (iFlow). Our approach directly
maximizes the marginal likelihood, allowing for theoretical guarantees on iden-
tifiability, thereby dispensing with variational approximations. We derive its op-
timization objective in analytical form, making it possible to train iFlow in an
end-to-end manner. Simulations on synthetic data validate the correctness and ef-
fectiveness of our proposed method and demonstrate its practical advantages over
other existing methods.

1 INTRODUCTION

A fundamental question in representation learning relates to identifiability: under which condition
is it possible to recover the true latent representations that generate the observed data? Most exist-
ing likelihood-based approaches for deep generative modelling, such as Variational Autoencoders
(VAE) (Kingma & Welling, 2013) and flow-based models (Kobyzev et al., 2019), focus on per-
forming latent-variable inference and efficient data synthesis, but do not address the question of
identifiability, i.e. recovering the true latent representations.

The question of identifiability is closely related to the goal of learning disentangled representations
(Bengio et al., 2013). While there is no canonical definition for this term, we adopt the one where
individual latent units are sensitive to changes in single generative factors while being relatively
invariant to nuisance factors (Bengio et al., 2013). A good representation for human faces, for ex-
ample, should encompass different latent factors that separately encode different attributes including
gender, hair color, facial expression, etc. By aiming to recover the true latent representation, identifi-
able models also allow for principled disentanglement; this suggests that rather than being entangled
in disentanglement learning in a completely unsupervised manner, we go a step further towards iden-
tifiability, since existing literature on disentangled representation learning, such as β-VAE (Higgins
et al., 2017), β-TCVAE (Chen et al., 2018), DIP-VAE (Kumar et al., 2017) and FactorVAE (Kim &
Mnih, 2018), are neither general endeavors to achieve identifiability; nor do they provide theoretical
guarantees on recovering the true latent sources.
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Recently, Khemakhem et al. (2019) introduced a theory of identifiability for deep generative models,
based upon which the authors proposed an identifiable variant of VAEs called iVAE, to learn the
distribution over latent variables in an identifiable manner. However, the downside of learning such
an identifiable model within the VAE framework lies in the intractability of KL divergence between
the approximate posterior and the true posterior. Consequently, in both theory and practice, iVAE
inevitably leads to a suboptimal solution, which renders the learned model far less identifiable.

In this paper, aiming at avoiding such a pitfall, we propose to learn an identifiable generative model
through flows (short for normalizing flows (Tabak et al., 2010; Rezende & Mohamed, 2015)). A nor-
malizing flow is a transformation of a simple probability distribution (e.g. a standard normal) into
a more complex probability distribution by a composition of a series of invertible and differentiable
mappings (Kobyzev et al., 2019). Hence, they can be exploited to effectively model complex prob-
ability distributions. In contrast to VAEs relying on variational approximations, flow-based models
allow for latent-variable inference and likelihood evaluation in an exact and efficient manner, making
themselves a perfect choice for achieving identifiability.

To this end, unifying identifiablity with flows, we propose iFlow, a framework for deep latent-
variable models which allows for recovery of the true latent representations from which the observed
data originates. We demonstrate that our flow-based model makes it possible to directly maximize
the conditional marginal likelihood and thus achieves identifiability in a rigorous manner. We pro-
vide theoretical guarantees on the recovery of the true latent representations, and show experiments
on synthetic data to validate the theoretical and practical advantages of our proposed formulation
over prior approaches.

2 BACKGROUND

An enduring demand in statistical machine learning is to develop probabilistic models that explain
the generative process that produce observations. Oftentimes, this entails estimation of density that
can be arbitrarily complex. As one of the promising tools, Normalizing Flows are a family of
generative models that fit such a density of exquisite complexity by pushing an initial density (base
distribution) through a series of transformations. Formally, let x ∈ X ⊆ Rn be an observed random
variable, and z ∈ Z ⊆ Rn a latent variable obeying a base distribution pZ(z). A normalizing flow
f is a diffeomorphism (i.e an invertible differentiable transformation with differentiable inverse)
between two topologically equivalent spaces X and Z such that x = f(z). Under these conditions,
the density of x is well-defined and can be obtained by using the change of variable formula:

pX(x) = pZ(h(x))

∣∣∣∣det

(
∂h

∂x

)∣∣∣∣ = pZ(z)

∣∣∣∣det

(
∂f

∂z

)∣∣∣∣−1

, (1)

where h is the inverse of f . To approximate an arbitrarily complex nonlinear invertible bijection, one
can compose a series of such functions, since the composition of invertible functions is also invert-
ible, and its Jacobian determinant is the product of the individual functions’ Jacobian determinants.
Denote φ as the diffeomorphism’s learnable parameters. Optimization can proceed as follows by
maximizing log-likelihood for the density estimation model:

φ∗ = arg max
φ

Ex

[
log pZ(h(x;φ)) + log

∣∣∣∣det

(
∂h(x;φ)

∂x

)∣∣∣∣]. (2)

3 RELATED WORK

Nonlinear ICA Nonlinear independent component analysis (ICA) is one of the biggest problems
remaining unresolved in unsupervised learning. Given the observations alone, it aims to recover the
inverse mixing function as well as their corresponding independent sources. In contrast with the
linear case, research on nonlinear ICA is hampered by the fact that without auxiliary variables, re-
covering the independent latents is impossible (Hyvärinen & Pajunen, 1999). Similar impossibility
result can be found in (Locatello et al., 2018). Fortunately, by exploiting additional temporal struc-
ture on the sources, recent work (Hyvarinen & Morioka, 2016; Hyvarinen et al., 2018) established
the first identifiability results for deep latent-variable models. These approaches, however, do not
explicitly learn the data distribution; nor are they capable of generating “fake” data.
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Khemakhem et al. (2019) bridged this gap by establishing a principled connection between VAEs
and an identifiable model for nonlinear ICA. Their method with an identifiable VAE (known as
iVAE) approximates the true joint distribution over observed and latent variables under mild condi-
tions. Nevertheless, due to the intractablity of KL divergence between variational approximate pos-
terior and the true posterior, iVAE maximizes the evidence lower bound on the data log-likelihood,
which in both theory and practice acts as a detriment to the achievement of identifiability.

We instead propose identifying through flows (normalizing flow), which maximizes the likelihood in
a straightforward way, providing theoretical guarantees and practical advantages for identifiability.

Normalizing Flows Normalizing Flows are a family of generative approaches that fits a data
distribution by learning a bijection from observations to latent codes, and vice versa. Compared
with VAEs which learn a posterior approximation to the true posterior, normalizing flows directly
deal with marginal likelihood with exact inference while maintaining efficient sampling. Formally,
a normalizing flow is a transform of a tractable probability distribution into a complex distribution
by compositing a sequence of invertible and differentiable mappings. In practice, the challenge lies
in designing a normalizing flow that satisfies the following conditions: (1) it should be bijective and
thus invertible; (2) it is efficient to compute its inverse and its Jacobian determinant while ensuring
sufficient capabilities.

The framework of normalizing flows was first defined in (Tabak et al., 2010) and (Tabak & Turner,
2013) and then explored for density estimation in (Rippel & Adams, 2013). Rezende & Mohamed
(2015) applied normalizing flows to variational inference by introducing planar and radial flows.
Since then, there had been abundant literature towards expanding this family. Kingma & Dhariwal
(2018) parameterizes linear flows with the LU factorization and “1 × 1” convolutions for the sake
of efficient determinant calculation and invertibility of convolution operations. Despite their limits
in expressive capabilities, linear flows act as essential building blocks of affine coupling flows as
in (Dinh et al., 2014; 2016). Kingma et al. (2016) applied autoregressive models as a form of
normalizing flows, which exhibit strong expressiveness in modelling statistical dependencies among
variables. However, the forwarding operation of autoregressive models is inherently sequential,
which makes it inefficient for training. Splines have also been used as building blocks of normalizing
flows: Müller et al. (2018) suggested modelling a linear and quadratic spline as the integral of
a univariate monotonic function for flow construction. Durkan et al. (2019a) proposed a natural
extension to the framework of neural importance sampling and also suggested modelling a coupling
layer as a monotonic rational-quadratic spine (Durkan et al., 2019b), which can be implemented
either with a coupling architecture RQ-NSF(C) or with autoregressive architecture RQ-NSF(AR).

The expressive capabilities of normalizing flows and their theoretical guarantee of invertibility make
them a natural choice for recovering the true mixing mapping from sources to observations, and thus
identifiability can be rigorously achieved. In our work, we show that by aligning normalizing flows
with an existing identifiability theory, it is desirable to learn an identifiable latent-variable model
with theoretical guarantees of identifiability.

4 IDENTIFIABLE FLOW

In this section, we first introduce the identifiable latent-variable family and the theory of identifi-
ability (Khemakhem et al., 2019) that makes it possible to recover the joint distribution between
observations and latent variables. Then we derive our model, iFlow, and its optimization objective
which admits principled disentanglement with theoretical guarantees of identifiability.

4.1 IDENTIFIABLE LATENT-VARIABLE FAMILY

The primary assumption leading to identifiability is a conditionally factorized prior distribution over
the latent variables, pθ(z|u), where u is an auxiliary variable, which can be the time index in a time
series, categorical label, or an additionally observed variable (Khemakhem et al., 2019).

Formally, let x ∈ X ⊆ Rn and u ∈ U ⊆ Rm be two observed random variables, and z ∈ Z ⊆
Rn a latent variable that is the source of x. This implies that there can be an arbitrarily complex
nonlinear mapping f : Z → X . Assuming that f is a bijection, it is desirable to recover its inverse
by approximating using a family of invertible mappings hφ parameterized by φ. The statistical
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dependencies among these random variables are defined by a Bayesian net: u → z → x, from
which the following conditional generative model can be derived:

p(x, z|u; Θ) = p(x|z;φ)p(z|u;T,λ), (3)

where p(x|z;φ)
def
= pε(x−h−1(z)) and p(z|u;T,λ) is assumed to be a factorized exponential fam-

ily distribution conditioned upon u. Note that this density assumption is valid in most cases, since
the exponential families have universal approximation capabilities (Sriperumbudur et al., 2017).
Specifically, the probability density function is given by

pT,λ(z|u) =

n∏
i=1

pi(zi|u) =
∏
i

Qi(zi)

Zi(u)
exp

[
k∑
j=1

Ti,j(zi)λi,j(u)

]
, (4)

where Qi is the base measure, Zi(u) is the normalizing constant, Ti,j’s are the components of
the sufficient statistic and λi,j(u) the natural parameters, critically depending on u. Note that k
indicates the maximum order of statistics under consideration.

4.2 IDENTIFIABILITY THEORY

The objective of identifiability is to learn a model that is subject to:

for each quadruplet (Θ,Θ′,x, z), pΘ(x) = pΘ′(x) =⇒ pΘ(x, z) = pΘ′(x, z), (5)

where Θ and Θ′ are two different choices of model parameters that imply the same marginal density
(Khemakhem et al., 2019). One possible avenue towards this objective is to introduce the definition
of identifiability up to equivalence class:

Definition 4.1. (Identifiability up to equivalence class) Let ∼ be an equivalence relation on Θ. A
model defined by p(x, z; Θ) = p(x|z; Θ)p(z; Θ) is said to be identifiable up to ∼ if

pΘ(x) = pΘ′(x) =⇒ Θ ∼ Θ′, (6)

where such an equivalence relation in the identifiable latent-variable family is defined as follows:

Proposition 4.1. (φ, T̃, λ̃) and (φ′, T̃′, λ̃′) are of the same equivalence class if and only if there
exist A and c such that ∀ x ∈ X ,

T(hφ(x)) = AT′(hφ′(x)) + c, (7)

where

T̃(z) = (Q1(z1), ..., Qn(zn), T1,1(z1), ..., Tn,k(zn)),

λ̃(u) = (Z1(u), ..., Zn(u), λ1,1(u), ..., λn,k(u)).
(8)

One can easily verify that∼ is an equivalence relation by showing its reflexivity, symmetry and tran-
sitivity. Then, the identifiability of the latent-variable family is given by Theorem 4.1 (Khemakhem
et al., 2019).

Theorem 4.1. LetZ = Z1×· · ·×Zn and suppose the following holds: (i) The set {x ∈ X |Ψε(x) =
0} has measure zero, where Ψε is the characteristic function of the density pε; (ii) The sufficient
statistics Ti,j in (2) are differentiable almost everywhere and ∂Ti,j/∂z 6= 0 almost surely for z ∈ Zi
and for all i ∈ {1, ..., n} and j ∈ {1, ..., k}. (iii) There exist (nk+1) distinct priors u0, ...,unk such
that the matrix

L =

λ1,1(u1)− λ1,1(u0) · · · λ1,1(unk)− λ1,1(u0)
...

. . .
...

λn,k(u1)− λn,k(u0) · · · λn,k(unk)− λn,k(u0)

 (9)

of size nk × nk is invertible. Then, the parameters (φ, T̃, λ̃) are ∼-identifiable.
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4.3 OPTIMIZATION OBJECTIVE OF IFLOW

We propose identifying through flows (iFlow) for recovering latent representations. Our proposed
model falls into the identifiable latent-variable family with ε = 0, that is, pε(·) = δ(·), where δ
is a point mass, i.e. Dirac measure. Note that assumption (i) in Theorem 4.1 holds true for iFlow.
In stark contrast to iVAE which resorts to variational approximations and maximizes the evidence
lower bound, iFlow directly maximizes the marginal likelihood conditioned on u:

max
Θ

pX(x|u; Θ) = pZ(hφ(x)|u;θ)

∣∣∣∣det

(
∂hφ

∂x

)∣∣∣∣ , (10)

where pZ(·|u) is modeled by a factorized exponential family distribution. Therefore, the log
marginal likelihood is obtained:

log pX(x|u; Θ) =

n∑
i=1

(
logQi(zi)− logZi(u) + Ti(zi)

T
λi(u)

)
+ log

∣∣∣∣det

(
∂hφ

∂x

)∣∣∣∣ , (11)

where zi is the ith component of the source z = hφ(x), and T and λ are both n-by-k matrices.
Here, hφ is a normalizing flow of any kind. For the sake of simplicity, we set Qi(zi) = 1 for all i’s
and consider maximum order of sufficient statistics of zi’s up to 2, that is, k = 2. Hence, T and λ
are given by

T(z) =


z2

1 z1

z2
2 z2

...
...

z2
n zn

 and λ(u) =


ξ1 η1

ξ2 η2

...
...

ξn ηn

 . (12)

Therefore, the optimization objective is to minimize

L(Θ) = E(x,u)∼pD

[( n∑
i=1

logZi(u)

)
− trace

(
T(z)λ(u)T

)
− log

∣∣∣∣det

(
∂hφ

∂x

)∣∣∣∣
]
, (13)

where pD denotes the empirical distribution, and the first term in (13) is given by

n∑
i=1

logZi(u) = log

∫
Rn

( n∏
i=1

Qi(zi)

)
exp

(
trace

(
T(z)λ(u)T

))
dz

= log

∫
Rn

exp

( n∑
i=1

ξiz
2
i + ηizi

)
dz

= log

n∏
i=1

∫
R

exp (ξiz
2
i + ηizi)dzi

= log

n∏
i=1

(√
− π
ξi

)
exp

(
− η

2
i

4ξi

)

=

n∑
i=1

(
log

√
− π
ξi
− η2

i

4ξi

)
.

(14)

In practice, λ(u) can be parameterized by a multi-layer perceptron with learnable parameters θ,
where λθ : Rm → R2n. Here,m is the dimension of the space in which u’s lies. Note that ξi should
be strictly negative in order for the exponential family’s probability density function to be finite.
Negative softplus nonlinearity can be exploited to force this constraint. Therefore, optimization
proceeds by minimizing the following closed-form objective:

min
Θ
L(Θ) = E(x,u)∼pD

[
n∑
i=1

(
log

√
− π
ξi
− η2

i

4ξi

)
− trace

(
T(z)λθ(u)T

)
− log

∣∣∣∣det

(
∂hφ

∂x

)∣∣∣∣
]
.

(15)
where Θ = {θ,φ}.
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4.4 IDENTIFIABILITY OF IFLOW

The identifiability of our proposed model, iFlow, is characterized by Theorem 4.2.

Theorem 4.2. Minimizing LΘ with respect to Θ, in the limit of infinite data, learns a model that is
∼-identifiable.

Proof. Minimizing LΘ with respect to Θ is equivalent to maximizing the log conditional like-
lihood, log pX(x|u; Θ). Given infinite amount of data, maximizing log pX(x|u; Θ) will give
us the true marginal likelihood conditioned on u, that is, pX(x|u; Θ̂) = pX(x|u; Θ∗), where
Θ̂ = arg maxΘ log pX(x|u; Θ) and Θ∗ is the true parameter. According to Theorem 4.1, we obtain
that Θ̂ and Θ∗ are of the same equivalence class defined by ∼. Thus, according to Definition 4.1,
the joint distribution parameterized by Θ is identifiable up to ∼.

Consequently, Theorem 4.2 guarantees strong identifiability of our proposed generative model,
iFlow. Note that unlike Theorem 3 in (Khemakhem et al., 2019), Theorem 4.2 makes no assumption
that the family of approximate posterior distributions contains the true posterior. And we show in
experiments that this assumption is unlikely to hold true empirically.

5 SIMULATIONS

To evaluate our method, we run simulations on a synthetic dataset. This section will elaborate on the
details of the generated dataset, implementation, evaluation metric and fair comparison with existing
methods.

5.1 DATASET

We generate a synthetic dataset where the sources are non-stationary Gaussian time-series, as de-
scribed in (Khemakhem et al., 2019): the sources are divided into M segments of L samples each.
The auxiliary variable u is set to be the segment index. For each segment, the conditional prior
distribution is chosen from the exponential family (4), where k = 2, Qi(zi) = 1, and Ti,1(zi) = z2

i ,
Ti,2(zi) = zi, and the true λi,j’s are randomly and independently generated across the segments
and the components such that their variances obey a uniform distribution on [0.5, 3]. The sources to
recover are mixed by an invertible multi-layer perceptron (MLP) whose weight matrices are ensured
to be full rank.

5.2 IMPLEMENTATION DETAILS

The mapping λθ that outputs the natural parameters of the conditional factorized exponential family
distribution is parameterized by a multi-layer perceptron with the activation of the last layer being
the softplus nonlinearity. Additionally, a negative activation is taken on the second-order natural
parameters in order to ensure its finiteness. The bijection hφ is modeled by RQ-NSF(AR) (Durkan
et al., 2019b) with the flow length of 10 and the bin 8, which gives rise to sufficient flexibility and
expressiveness. For each training iteration, we use a mini-batch of size 64, and an Adam optimizer
with learning rate chosen in {0.01, 0.001} to optimize the learning objective (15).

5.3 EVALUATION METRIC

As a standard measure used in ICA, the mean correlation coefficient (MCC) between the original
sources and the corresponding predicted latents is chosen to be the evaluation metric. A high MCC
indicates the strong correlation between the identified latents recovered and the true sources. In
experiments, we found that such a metric can be sensitive to the synthetic data generated by different
random seeds. We argue that unless one specifies the overall generating procedure including random
seeds in particular any comparison remains debatable. This is crucially important since most of the
existing works failed to do so. Therefore, we run each simulation of different methods through seed
1 to seed 100 and report averaged MCCs with standard deviations, which makes the comparison fair
and meaningful.
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(a) (b)

(c) (d)

Figure 1: Visualization of 2-D cases (best viewed in color).

5.4 COMPARISON AND RESULTS

We compare our model, iFlow, with iVAE. These two models are trained on the same synthetic
dataset aforementioned, with M = 40, L = 1000, n = d = 5. For visualization, we also apply an-
other setting with M = 40, L = 1000, n = d = 2. To evaluate iVAE’s identifying performance, we
use the original implementation that is officially released with exactly the same settings as described
in (Khemakhem et al., 2019) (cf. Appendix A.2).

First, we demonstrate a visualization of identifiablity of these two models in a 2-D case (n = d =
2) as illustrated in Figure 1, in which we plot the original sources (latent), observations and the
identified sources recovered by iFlow and iVAE, respectively. Segments are marked with different
colors. Clearly, iFlow outperforms iVAE in identifying the original sources while preserving the
original geometry of source manifold. It is evident that the latents recovered by iFlow bears much
higher resemblance to the true latent sources than those by iVAE in the presence of some trivial
indeterminacies of scaling, global sign and permutation of the original sources, which are inevitable
even in some cases of linear ICA. This exhibits consistency with the definition of identifiability up to
equivalence class that allows for existence of an affine transformation between sufficient statistics,
as described in Proposition 4.1. As shown in Figure 1(a), 1(c), and 1(d), iVAE achieves inferior
identifying performance in the sense that its estimated latents tend to retain the manifold of the
observations. Notably, we also find that despite the relatively high MCC performance of iVAE
in Figure 1(d), iFlow is much more likely to recover the true geometric manifold in which the
latent sources lie. In Figure 1(b), iVAE’s recovered latents collapses in face of a highly nonlinearly
mixing case, while iFlow still works well in identifying the true sources. Note that these are not rare
occurrences. More visualization examples can be found in Appendix A.3.

https://github.com/ilkhem/iVAE/
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(a) (b)

Figure 2: Comparison of identifying performance (MCC) and the energy value (likelihood in loga-
rithm) versus seed number, respectively.

Figure 3: Comparison of identifying performance (correlation coefficient) in each single dimension
of the latent space, respectively. The dashed cyan line represents the source signal.

Second, regarding quantitative results as shown in Figure 2(a), our model, iFlow, consistently out-
performs iVAE in MCC by a considerable margin across different random seeds under consideration
while experiencing less uncertainty (standard deviation as indicated in the brackets). Moreover, Fig-
ure 2(b) also showcases that the energy value of iFlow is much higher than that of iVAE, which
serves as evidence that the optimization of the evidence lower bound, as in iVAE, would lead to sub-
optimal identifiability. As is borne out empirically, the gap between the evidence lower bound and
the conditional marginal likelihood is inevitably far from being negligible in practice. For clearer
analysis, we also report the correlation coefficients for each source-latent pair in each dimension.
As shown in Figure 3, iFlow exhibits much stronger correlation than does iVAE in each single di-
mension of the latent space.

Finally, we investigate the impact of different choices of activation for generating natural parameters
of the exponential family distribution (see Appendix A.1 for details). Note that all of these choices
are valid since theoretically the natural parameters form a convex space. However, iFlow(Softplus)
achieves the highest identifying performance, suggesting that the range of softplus allows for greater
flexibility, which makes itself a good choice for natural parameter nonlinearity.
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6 CONCLUSIONS

Among the most significant goals of unsupervised learning is to learn the disentangled representa-
tions of observed data, or to identify original latent codes that generate observations (i.e. identifia-
bility). Bridging the theoretical and practical gap of rigorous identifiability, we have proposed iFlow,
which directly maximizes the marginal likelihood conditioned on auxiliary variables, establishing a
natural framework for recovering original independent sources. In theory, our contribution provides
a rigorous way to achieve identifiability and hence the recovery of the joint distribution between
observed and latent variables that leads to principled disentanglement. Extensive empirical studies
confirm our theory and showcase its practical advantages over previous methods.
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A APPENDIX

A.1 ABLATION STUDY ON ACTIVATIONS FOR NATURAL PARAMETERS

Figure 4 demonstrates the comparison of MCC of iFlows implemented with different nonlinear
activations for natural parameters and that of iVAE, in which relu+eps denotes the ReLU activation
added by a small value (e.g. 1e-5) and sigmoid×5 denotes the Sigmoid activation multiplied by 5.

Figure 4: Comparison of MCC of iFlows implemented with different nonlinear activations for natu-
ral parameters and that of iVAE (best viewed in color).

A.2 IMPLEMENTATION DETAILS OF IVAE

As stated in Section 5.4, to evaluate iVAE’s identifying performance, we use the original implemen-
tation that is officially released with the same settings as described in (Khemakhem et al., 2019).
Specifically, in terms of hyperparameters of iVAE, the functional parameters of the decoder and the
inference model, as well as the conditional prior are parameterized by MLPs, where the dimension
of the hidden layers is chosen from {50, 100, 200}, the activation function is a leaky RELU or a
leaky hyperbolic tangent, and the number of layers is chosen from {3, 4, 5, 6}. Here we report all
averaged MCC scores of different implementations for iVAE as shown in Table 1.

Table 1 indicates that adding more layers or more hidden neurons does not improve MCC score,
precluding the possibility that expressive capability is not the culprit of iVAE inferior performance.
Instead, we argue that the assumption (i) of Theorem 3 in (Khemakhem et al., 2019) (i.e the family
of approximate posterior distributions contains the true posterior) often fails or is hard to satisfy
in practice, which is one of the major reasons for the inferior performance of iVAE. Additionally,
Figure 2(b) demonstrates that the energy value of iFlow is much higher than that of iVAE, which
provides evidence that optimizing the evidence lower bound, as in iVAE, leads to suboptimal iden-
tifiability.
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Table 1: Averaged MCC scores versus different iVAE implementations

NUM HIDDENS NUM LAYERS AVG MCC

50 3 0.4964(±0.0723)
50 4 0.4782(±0.0740)
50 5 0.4521(±0.0719)
50 6 0.4276(±0.0686)

100 3 0.4965(±0.0693)
100 4 0.4696(±0.0685)
100 5 0.4555(±0.0736)
100 6 0.4253(±0.0795)

200 3 0.4961(±0.0753)
200 4 0.4723(±0.0707)
200 5 0.4501(±0.0686)
200 6 0.4148(±0.0703)

A.3 VISUALIZATION OF 2D CASES

(a) (b)

(c) (d)

Figure 5: Visualization of 2-D cases (i) (best viewed in color).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Visualization of 2-D cases (ii) (best viewed in color).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Visualization of 2-D cases (iii) (best viewed in color).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Visualization of 2-D cases (iv) (best viewed in color).
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