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Abstract
In this paper we introduce DeepCrawl, a fully-
playable Roguelike prototype for iOS and An-
droid in which all agents are controlled by
policy networks trained using Deep Reinforce-
ment Learning (DRL). Our aim is to understand
whether recent advances in DRL can be used to
develop convincing behavioral models for non-
player characters in videogames. We begin with
an analysis of requirements that such an AI sys-
tem should satisfy in order to be practically ap-
plicable in video game development, and identify
the elements of the DRL model used in the Deep-
Crawl prototype. The successes and limitations
of DeepCrawl are documented through a series
of playability tests performed on the final game.
We believe that the techniques we propose offer
insight into innovative new avenues for the devel-
opment of behaviors for non-player characters in
video games, as they offer the potential to over-
come critical issues with classical approaches.

1. Introduction
In recent decades the videogame industry has seen con-
sistent improvement in the production of quality games
and today it competes economically with the most impor-
tant multimedia industries. Game companies have a major
impact on the economy through the sales of systems and
software, and in fact the revenue of the videogame indus-
try in 2018 was estimated to be more than twice that of
the international film and music industries combined. This
market is expected to be worth over 90 billion dollars by
2020. Compared to the not so distant past when gaming
consoles and PC gaming were not so diffused, videogames
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are no longer a niche but are instead transversal across ages,
genders and devices. Today there are more than 2.5 billion
gamers worldwide, this especially thanks to the advent of
mobile games and more accessible consoles (WePC, 2019).

Technological advances in the industry have resulted in the
production of increasingly complex and immersive gam-
ing environments. However, the creation of Artificial In-
telligence (AI) systems that control non-player characters
(NPCs) is still a critical element in the creative process that
affects the quality of finished games. This problem is of-
ten due to the use of classical AI techniques that result in
predictable, static, and not very convincing NPC strategies.
Reinforcement learning (RL) can help overcome these is-
sues providing an efficient and practical way to define NPC
behaviors, but its real application in production processes
has issues that can be orthogonal to those considered to date
in the academic field: How can we improve the gaming ex-
perience? How can we build credible and enjoyable agents?
How can RL improve over classical algorithms for game
AI? How can we build an efficient ML model that is also
usable on all platforms, including mobile systems?

At the same time, recent advances in Deep Reinforcement
Learning (DRL) have shown it is possible to train agents
with super-human skills able to solve a variety of environ-
ments. However the main objective of DRL of this type
is training agents to mimic or surpass human players in
competitive play in classical games like Go (Silver et al.,
2016) and video games like DOTA 2 (OpenAI, 2019). The
resulting, however, agents clearly run the risk of being far
too strong, of exhibiting artificial behavior, and in the end
not being a fun gameplay element in a playable product.

Video games have become an integral part of our entertain-
ment experience, and our goal in this work is to demon-
strate that DRL techniques can be used as an effective game
design tool for learning compelling and convincing NPC
behaviors that are natural, though not superhuman, while
at the same time provide challenging and enjoyable game-
play experience. As a testbed for this work we developed
the DeepCrawl Roguelike prototype, which is a turn-based
strategy game in which the player must seek to overcome
NPC opponents and NPC agents must learn to prevent the
player from succeeding. We emphasize that our goals are
different than those of AlphaGo and similar DRL systems
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applied to gameplay: for us it is essential to limit agents
so they are beatable, while at the same time training them
to be convincingly competitive. In the end, playing against
superhuman opponents is not fun, and neither is playing
against trivial ones. This is the balance we try to strike.

The rest of the paper is organized as follows. In the next sec-
tion we give a brief overview of techniques applied to game
AIs, and the current state-of-the-art of DRL applied to video
games. In section 3 we describe the game environment and
the gameplay mechanics of DeepCrawl, and also delineate
the requirements that an AI system should satisfy in order to
be practically applied in videogame production. In section 4
we propose a DRL model used in DeepCrawl, and follow in
section 5 with the implementation details of the model. We
report on results of a series of playability tests performed
on DeepCrawl, and we conclude in section 7 with a dis-
cussion of our results and by indications of important open
challenges.

2. Related work
Game AI has been a critical element in video game produc-
tion since the dawn of this industry; agents have to be more
and more realistic and intelligent to provide the right chal-
lenge and level of enjoyment to the user. However, as game
environments have grown in complexity over the years, scal-
ing traditional AI solutions like Behavioral Trees (BT) and
Finite State Machines (FSM) for such complex contexts is
an open problem (Yannakakis & Togelius, 2018).

Reinforcement Learning (RL) (Sutton et al., 1998) is di-
rectly concerned with the interaction of agents in an en-
vironment. RL methods have been widely used in many
disciplines, such as robotics and operational research, and
games. The breakthrough of applying DRL by DeepMind
in 2015 (Mnih et al., 2015) brought techniques from su-
pervised Deep Learning (such as image classification and
Convolutional Neural Networks) to overcome core prob-
lems of classical RL. This combination of RL and neural
networks has led to successful application in games. In
the last few years several researchers have improved upon
the results obtained by DeepMind. For instance, OpenAI
researchers showed that with an Actor Critic (Konda &
Tsitsiklis, 2003) algorithm such as Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) it is possible to train
agents to superhuman levels that can win against profes-
sional players in complex and competitive games such as
DOTA 2 (OpenAI, 2019) and StarCraft (DeepMind, 2019).

As already discussed in the introduction, most of the works
in DRL aim to build agents replacing human players either
in old-fashioned games like Go or chess (Silver et al., 2016;
Asperti et al., 2018) or in more recent games such as Doom
or new mobiles games (OpenAI, 2019; Vinyals et al., 2017;

Figure 1. Screenshot of the final version of DeepCrawl. Each level
of the game consists of one or more rooms, in each of which there
is one or more agents that must be defeated. In each room there
is collectible loot that can help both the player and the agents. To
clear a level the player must fight and win against all the enemies in
the dungeon. The game is won if the player completes ten dungeon
levels.

Oh et al., 2019; Kempka et al., 2016; Juliani et al., 2019).
Our objective, however, is not to create a new AI system
with superhuman capabilities, but rather to create ones that
constitute an active part of the game design and gameplay
experience. In the next section we define the main character-
istics of the game created for this purpose, with an overview
of the fundamental requirements that a ML system must
satisfy to support an enjoyable gaming experience.

3. Game design and desiderata
In this section we describe the main gameplay mechanics
of DeepCrawl and the requirements that the system should
satisfy in order to be used in a playable product. The Deep-
Crawl prototype is a fully playable Roguelike game and can
be downloaded for Android and iOS 1. In figure 1 we give a
screenshot of the final game.

3.1. Gameplay mechanics

DeepCrawl is a Roguelike game. The term Roguelike refers
to a particular type of turn-based roleplaying game, typically
2D with a third-person perspective. The Roguelike genre
was born in 1980 with the game Rogue, and Roguelikes are
experiencing a sort of renaissance in the gaming community.
In 2019 we find several hundreds of games claiming to be
Roguelikes in the Steam catalog.

1Android Play: http://tiny.cc/DeepCrawl
App Store: http://tiny.cc/DeepCrawlApp

http://tiny.cc/DeepCrawl
http://tiny.cc/DeepCrawlApp
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There are several aspects of Roguelikes that make them an
interesting testbed for DRL as a game design tool. A few
characteristics of particular note for us are that Roguelikes:

• are generally considered to be a single-player game,
which reduces the actions and interactions to those
between player and environment;

• have a procedurally created environment with ran-
dom elements, which makes them especially suitable
to long-term, episodic training;

• are turn-based in that time passes only when an ac-
tor makes an action, which simplifies the action and
environment model;

• are non-modal in that every action is available for the
actors regardless the level of the game; and

• are focused on a hack-and-slash gameplay, focusing
on killing opponents encountered during exploration,
which lends itself well for defining sparse rewards for
training.

In fact, Roguelikes are often used as a testbed game genre
specifically because they involve a limited set of game me-
chanics, which allows game designers to concentrate on
emergent complexity of gameplay as a combination of the
relatively simple set of possibilities given to the player.

The primary gameplay mechanics in DeepCrawl are defined
in terms of several distinct, yet interrelated elements.

Actors. Success and failure in DeepCrawl is based on di-
rect competition between the player and one or more agents
guided by a deep policy network trained using DRL. Player
and agents act in procedurally generated rooms, and player
and agents have exactly the same characteristics, can per-
form the same actions, and have access to the same informa-
tion about the world around them.

Environment. The environment visible at any instant
in time is represented by a random grid with maximum
size of 10× 10 tiles. Each tile can contain either an agent
or player, an impassible object, or collectible loot. Loot
can be of three types: melee weapons, ranged weapons, or
potions. Moreover, player and agent are aware of a fixed
number of personal characteristics such as HP, ATK, DEX,
and DEF (used in practically all Roguelike games). Agents
and player are also aware of their inventory in which loot
found on the map is collected. The inventory can contain at
most one object per type at a time, and a new collected item
replaces the previous one. The whole dungeon is composed
of multiple rooms, where in each of them there are one or
more enemies. The range of action of each NPC agent is
limited to the room where it spawned, while the player is
free to move from room to room.

Action space. Each character can perform 17 different
discrete actions:

• 8 movement actions in the horizontal, vertical and
diagonal directions; if the movement ends in a tile con-
taining another agent or player, the actor will perform a
melee attack: this type of assault deals random damage
based on the melee weapon equipped, the ATK of the
attacker, and the DEF of the defender;

• 1 use potion action, which is the only action that does
not end the actor’s turn. DeepCrawl has two buff po-
tions available, one that increases ATK and DEF for
a fixed number of turns, and heal potion that heals a
fixed number of HP; and

• 8 ranged attack actions, one for each possible di-
rection. If there is another actor in selected direc-
tion, a ranged attack is performed using the currently
equipped ranged weapon. The attack deals a ran-
dom amount of damage based on the ranged weapon
equipped, the DEX of the attacker, and the DEF of the
defender.

3.2. Desiderata

As defined above, our goals were to create a playable game,
and in order to do this the game must be enjoyable from
the player’s perspective. Therefore, in the design phase of
this work it was fundamental to define the requirements that
AI systems controlling NPCs should satisfy in order to be
generally applicable in videogame design:

Credibility. NPCs must be credible, that is they should
act in ways that are predictable and that can be interpreted
as intelligent. The agents must offer the right challenge to
the player and should not make counterintuitive moves. The
user should not notice that he is playing against an AI.

Imperfection. At the same time, the agents must be imper-
fect because a superhuman agent is not suitable in a playable
product. In early experiments we realized that it was rela-
tively easy to train unbeatable agents that were, frankly, no
fun to play against. It is important that the player always
have the chance to win the game, and thus agents must be
beatable.

Model-free. Enemy agents must be model-free in that de-
velopers do not have to manually specify strategies – neither
by hard-coding nor by carefully crafting specific rewards –
specific to the game context. The system should extrapolate
strategies independently through the trial-and-error mech-
anism of DRL. Moreover, this model-free system should
generalize to other Roguelike games sharing the same gen-
eral gameplay mechanics.

Variety. It is necessary to have a certain level of variety
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in the gameplay dynamics. Thus, it is necessary to support
multiple agents during play, each having different behaviors.
The system must provide simple techniques to allow agents
to extrapolate different strategies in the training phase.

These basic gameplay mechanics and broad desiderata pro-
vide the context of the DeepCrawl design and implementa-
tion. In the following we will see our proposed DRL model,
and in particular the main elements chosen specifically to
satisfy these requirements.

4. Proposed model
Here we describe in detail the main elements of the DRL
model that controls the agent in DeepCrawl, with particular
attention to the neural network architecture and the reward
function.

4.1. Policy network and state representation

We used a policy-based method to learn the best strategy for
agents controlling NPCs. For these methods, the network
must approximate the best policy. The neural network ar-
chitecture we used to model the policy for NPC behavior
is shown in figure 2. The network consists of four input
branches:

• the first branch takes as input the whole map of size
10 × 10, with the discrete map contents encoded as
integers:

– 0 = impassable tile or other agent;
– 1 = empty tile;
– 2 = agent;
– 3 = player; and
– 4+ = collectible items.

This input layer is then followed by an embedding layer
which transforms the 10× 10× 1 integer input array
into a continuous representation of size 10× 10× 32,
a convolutional layer with 32 filters of size 3× 3, and
another 3× 3 convolutional layer with 64 filters.

• The second branch takes as input a local map with
size 5 × 5 centered around the agent’s position. The
map encoding is the same as for the first branch and an
embedding layer is followed by convolutional layers
with the same structure as the previous ones.

• The third branch is structured like the second, but with
a local map of size 3× 3.

• The final branch takes as input an array of 11 discrete
values containing information about the agent and the
player:

– agent HP in the range [0,20];
– the potion currently in the agent’s inventory;

– the melee weapon currently in the agent’s inven-
tory;

– ranged weapon in the agent’s inventory;
– a value indicating whether the agent has an active

buff;
– a value indicating whether the agent can perform

a ranged attack and in which direction;
– player HP in the range [0,20];
– the potion currently in the player’s inventory;
– the melee weapon in the player’s inventory;
– the ranged weapon in the player’s inventory; and
– a value indicating whether the player has an active

buff.

This layer is followed by an embedding layer of size
64 and a fully-connected (FC) layer of size 256.

The outputs of all branches are concatenated to form a single
vector which is passed through an FC layer of size 256;
we add a one-hot representation of the action taken at the
previous step, and the resulting vector is passed through an
LSTM layer.

The final output of the net is a probability distribution over
the action space (like all policy-based methods such as PPO).
Instead of taking the action with the highest probability, we
sample the output, thus randomly taking one of the most
probable actions. This behavior lets the agent make some
mistakes during its interaction with the environment, guar-
anteeing imperfection and avoids the agent getting stuck in
repetitive loops of the same moves.

With this model we also propose two novel solutions that
have improved the quality of the agent behavior, overcoming
some of the challenges of DRL in real applications:

• Global vs local view: we discovered that the use of
both global and local map representations improves the
score achieved by the agent and the overall quality of its
behavior. The combination of the two representations
helps the agent evaluate both the general situation of
the environment and the local details close to it; we use
only two levels of local maps, but for a more complex
situation game developers could potentially use more
views at different scales;

• Embeddings: the embedding layers make it possible
for the network to learn continuous vector represen-
tations for the meaning of and differences between
integer inputs. Of particular note is the embedding
of the last branch of the network, whose inputs have
their own ranges distinct from each other, which helps
the agent distinguish the contents of two equal but
semantically different integer values. For instance:

– agent HP ∈ [0, 20];
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Figure 2. The policy network used for NPCs in DeepCrawl. The net has four input branches: the first takes as input the global 10× 10
map, the second and third take as input a local map centered around the agent with different sizes, and the fourth takes as input an array
of agent and player properties. All branches contain an embedding layer that transforms the discrete inputs into continuous ones. The
first three branches consist of two convolutional layers, the fourth of a fully-connected layer, and the outputs of all branches are then
concatenated together before a fully-connected layer and an LSTM layer, which also receives a one-hot representation of the previous
action taken by the agent (see section 4.1 for more details.)

– potion ∈ [21, 23];
– melee weapon ∈ [24, 26];
– etc.

4.2. Reward shaping

When shaping the reward function for training policy net-
works, to satisfy the model-free requirement we used an
extremely sparse function:

R(t) = −0.01+

{
−0.1 for an impossible move
+10.0 ∗HP for the win

,

(1)
where HP refers to the normalized agent HPs remaining at
the moment of defeating an opponent. This factor helps the
system to learn as fast as possible the importance of HP:
winning with as many HP as possible is the implicit goal of
Roguelikes.

4.3. Network and training complexity

All training was done on an NVIDIA 1050ti GPU with 4GB
of RAM. On this modest GPU configuration, complete train-
ing of one agent takes about two days. However, the reduced
size of our policy networks (only about 5.5M parameters in
the policy and baseline networks combined) allowed us to
train multiple agents in parallel. Finally, the trained system

needs about 12MB to be stored. We remind though that
more agents of the same type can use the same model: there-
fore this system does not scale with the number of enemies,
but only with the number of different classes.

These are the main elements of the DeepCrawl NPC model,
many of which are directly related to the desiderata outlined
in section 3. We now turn to our implementation and the
technologies that make DeepCrawl possible.

5. Implementation
In this chapter we describe how the DeepCrawl policy net-
works were trained as well as the technologies used to build
both the DRL system and the game.

5.1. Tensorforce

Tensorforce (Kuhnle et al., 2017; Schaarschmidt et al., 2018)
is an open-source DRL framework built on top of Google’s
TensorFlow framework, with an emphasis on modular, flexi-
ble library design and straightforward usability for applica-
tions in research and practice.

Tensorforce is agnostic to the application context or simula-
tion, but offers an expressive state- and action-space specifi-
cation API. In particular, it supports and facilitates working
with multiple state components, like our global/local map
plus property vector, via a generic network configuration
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agent HPs enemy HP loot quantity

Phase 1 20 1 20%
Phase 2 [5, 20] 10 20%
Phase 3 [5, 20] [10, 20] 20%
Phase 4 [5, 20] [10, 20] [10%, 20%]
Phase 5 [5, 20] [10, 20] [5%, 20%]

Figure 3. Curriculum used for training all agents. Left: a training timeline showing how long each curriculum phase lasts as a percentage
of total training steps. Right: the changing generation parameters of all the curriculum phases. The numbers in parentheses refer to a
random number in that; the loot quantity is a percentage of the empty tiles in the room (e.g. 20% loot quantity indicates a 20% chance of
generating loot on each empty tile). The NPC intrinsic properties (ATK and DEF) stay fixed for the entire duration of the training. These
parameters can be modified by developers to differentiate distinct behavioral classes, as we explain in section 5.4.

interface which is not restricted to simple sequential archi-
tectures only. Moreover, the fact that Tensorforce imple-
ments the entire RL logic, including control flow, in portable
TensorFlow computation graphs makes it possible to export
and deploy the model in other programming languages, like
C# as described in the next section.

5.2. Unity and Unity ML-Agents

The DeepCrawl prototype was developed with Unity (Unity,
2019), a cross-platform game engine for the creation of
2D/3D multimedia contents. The Unity Machine Learning
Agents Toolkit (Unity ML-Agents) (Juliani et al., 2018) is
an open source plugin that enables games and simulations
to serve as environments for training intelligent agents. This
framework allows external Python libraries to interact with
the game code and provides the ability to use pre-trained
graph directly within the game build thanks to the Tensor-
FlowSharp plugin (Icaza, 2019).

5.3. Training setup

To create agents able to manage all possible situations that
can occur when playing against a human player, a cer-
tain degress of randomness is required in the procedurally-
generated environments: the shape and the orientation of the
map, as well as the number of impassable and collectible
objects and their positions are random; the initial position of
the player and the agent is random; and the initial equipment
of both the agent and the player is random.

In preliminary experiments we noticed that agents learned
very slowly, and so to aid the training and overcome the
problem of the sparse reward function, we use curriculum
learning (Bengio et al., 2009) with phases shown in figure 3.
This technique lets the agent gradually learn the best moves
to obtain victory: for instance, in the first phase it is very
easy to win the game, as the enemy has only 1 HP and
only one attack is needed to defeat it; in this way the model

can learn to reach its objective without worrying too much
about other variables. As training proceeds, the environment
becomes more and more difficult to solve, and the “greedy”
strategy will no longer suffice: the agent HP will vary within
a range of values, and the enemy will be more difficult to
defeat, so it must learn how to use the collectible items
correctly and which attack is the best for every situation. In
the final phases loot can be difficult to find and the HP, of
both agent enemy, can be within a large range of values: the
system must develop a high level of strategy to reach the
end of the game with the highest score possible.

The behavior of the enemies agents are pitted against is
of great importance. To satisfy requirements defined in
section 3.2, the enemy always makes random moves during
training of agent NPCs. In this way, the agent sees all the
possible actions that a user might perform, and at the same
time it can be trained against a limited enemy with respect
of human capabilities. This makes the agent beatable in the
long run, but still capable of offering a tough challenge to
the human player.

5.4. Training results

The intrinsic characteristic values for NPCs must be chosen
before training. These parameters are not observed by the
system, but offer an easy method to create different types
of agents. Changing the agent’s ATK, DEF or DEX obliges
that agent to extrapolate the best strategy based on its own
characteristics. For DeepCrawl we trained three different
combinations:

• Archer: ATK = 0, DEX = 4 and DEF = 3;

• Warrior: ATK = 4, DEX = 0 and DEF = 3; and

• Ranger: ATK = 3, DEX = 3 and DEF = 3.

For simplicity, the opponent has always the same character-
istics: ATK = 3, DEX = 3 and DEF = 3.
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Figure 4. Plots showing metrics during the training phase for the warrior class as a function of the number of episodes. From left to right:
the evolution of the mean reward, the evolution of the entropy, and the difference between the training with and without curriculum. The
dashed vertical lines on the plots delineate the different curriculum phases.

To evaluate training progress and quality, we performed
some quantitative analysis of the evolution of agent policies.
In figure 4 we show the progression of the mean reward and
entropy for the warrior class as a function of the number
of training episodes. The other two types of agents follow
the same trend. In the same figure we show the differ-
ence between training with and without curriculum learning.
Without curriculum, the agent learns much slower compared
to multi-phase curriculum training. With a curriculum the
agent achieves a significantly higher average reward at the
end of training.

5.5. PPO and hyperparameters

To optimize the policy networks we used the PPO algo-
rithm (Schulman et al., 2017). One agent rollout is made of
10 episodes, each of which lasts at most 100 steps, and it
may end either achieving success (i.e. agent victory), a fail-
ure (i.e. agent death) or reaching the maximum steps limit.
At the end of 10 episodes, the system updates its weights
with the episodes just experiences. PPO is an Actor-Critic
algorithm with two functions that must be learned: the pol-
icy and the baseline. The latter has the goal of a normal
state value function and, in this case, has the exactly same
structure as the policy network show in figure 4.1.

Most of the remaining hyper-parameters values were chosen
after many preliminary experiments made with different
configurations: the policy learning rate lrp = 10−6, the
baseline learning rate lrb = 10−4, the agent exploration
rate ε = 0.2, and the discount factor γ = 0.99.

6. Playability evaluation
To evaluate the DeepCrawl prototype with respect to our
desiderata, we conducted playability test as a form of qual-
itative analysis. The tests were administered to 10 candi-
dates, all passionate videogamers with knowledge of the
domain; each played DeepCrawl for sessions lasting about

60 minutes. Then, each player was asked to answer a Sin-
gle Ease Question (SEQ) questionnaire. All the questions
were designed to understand if the requirements laid out in
section 3.2 had been met and to evaluate the general quality
of DeepCrawl. Table 1 summarizes the results.

We reconsider here each of the main requirements we dis-
cussed above in section 3.2 in light of the player responses:

• Credibility: as shown by questions 3, 4, and 5, the
agents defined with this model offer a tough challenge
to players; the testers perceived the enemies as intel-
ligent agents that follow a specific strategy based on
their properties.

• Imperfection: at the same time, questions 1 and 2
demonstrate that players are confident they can finish
the game with the proper attention and time. So, the
agents we have trained seem far from being superhu-
man, but they rather offer the right amount of challenge
and result in a fun gameplay experience (question 14).

• Model Free: questions 5 and 12 show that, even with
a highly sparse reward, the model is able to learn a
strategy without requiring developers to define spe-
cific behaviors. Moreover, question 13 indicates that
the agents implemented using DRL are comparable to
others in other Roguelikes, if not better.

• Variety: the testers stated that the differences between
the behaviors of the distinct types of agents were very
evident, as shown by question 6. This gameplay ele-
ment was much appreciated as it increased the level of
variety and fun of the game, and improved the general
quality of DeepCrawl.

7. Conclusions and future work
In this we presented a new DRL framework for development
of NPC agents in video games. To demonstrate the poten-
tial of DRL in video game production, we designed and
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Table 1. Results of the SEQ questionnaire administered after the playability tests. Players answered each question with a value between 1
(strongly disagree) and 7 (strongly agree).

N° QUESTION MEAN σ

1 WOULD YOU FEEL ABLE TO GET TO THE END OF THE GAME? 5.54 1.03
2 AS THE LEVEL INCREASES, HAVE THE ENEMIES SEEMED TOO STRONG? 4.63 0.67
3 DO YOU THINK THAT THE ENEMIES ARE SMART? 5.72 0.78
4 DO YOU THINK THAT THE ENEMIES FOLLOW A STRATEGY? 6.18 0.40
5 DO YOU THINK THAT THE ENEMIES DO COUNTERINTUITIVE MOVES? 2.00 0.63
6 DO THE DIFFERENT CLASSES OF ENEMIES HAVE THE SAME BEHAVIOR? 1.27 0.46
7 ARE THE MEANING OF THE ICONS AND WRITING UNDERSTANDABLE? 5.72 1.67
8 ARE THE INFORMATION GIVEN BY THE USER INTERFACE CLEAR AND ENOUGH? 5.54 1.21
9 ARE THE LEVEL TOO BIG AND CHAOTIC? 2.00 1.34

10 ARE THE OBJECTS IN THE MAP CLEARLY VISIBLE? 5.81 1.66
11 DO YOU THINK THAT IS USEFUL TO READ THE ENEMY’S CHARACTERISTICS? 6.90 0.30
12 HOW MUCH IS IMPORTANT TO HAVE A GOOD STRATEGY? 6.90 0.30
13 GIVE A GENERAL VALUE TO ENEMY ABILITIES COMPARED TO OTHER ROGUELIKE GAMES 6.00 0.77
14 IS THE GAME ENJOYABLE AND FUN? 5.80 0.87
15 DOES THE APPLICATION HAVE BUGS? 1.09 0.30

implemented a new Roguelike called DeepCrawl that uses
the model defined in this article with excellent results. The
current versions of the agents work very well, and the model
supports numerous agents types only by changing a few pa-
rameters before starting training. We feel that DRL brings
many advantages to the table commonly used techniques
like finite state machines or behavior trees.

Agents in DeepCrawl do not use predefined strategies, but
are able to extrapolate them autonomously. This makes
them more intelligent and unpredictable with respect to
classical techniques. Moreover, this model is not necessarily
limited to DeepCrawl, but can be potentially used in any
Roguelike sharing the same general gameplay mechanics of
this prototype.

Despite the positive reception of DeepCrawl by playtesters,
there remain many open problems in applying DRL to video
game design. One of these is the general scalability of
the system: the neural network described here works rea-
sonably well in a limited and well-defined context such as
DeepCrawl, but in a complex development process it can
be difficult to manage the many changes made on-the-fly
during production. To address this problem and to improve
the scalability and the general efficiency of the system our
efforts are leading in several directions:

• Hierarchical Control: agent strategies are often com-
posed of one or more task levels (e.g. inventory ma-
nipulation, movement, combat, etc.). This suggests
the use of hierarchical control, where separate policy
networks are dedicated to each sub-task. It may also
be possible to learn this hierarchical structure, as in the
FuN architecture (Sasha Vezhnevets et al., 2017);

• Fine-tuning: to deal with gameplay changes during
the development and design process, we are exploring

fine-tuning in DRL, where the behavior of a generic,
pre-trained agent is specialized by replacing a few lay-
ers of its policy network and restarting training;

• Meta-learning: AI for NPCs in video games is an
excellent example of models that must be capable of
adapting quickly to new situations and states which
differ significantly from those seen during training.
Recent works in meta-learning have shown that fast
adaptation in DRL is possible (Finn et al., 2017; Wang
et al., 2016), and we believe that this ability can im-
prove the scalability of the DRL system and will be
needed to perform well in complex scenarios; and

• Learning from Human Preference: it is essential to
allow designers to have some control over the behavior
of the agents. For this, we are looking at applying
a preference-based method (Christiano et al., 2017)
that allows agents to learn from games based on a
combination of human preference learning, in order
to provide designers with a tool that allows to easily
specify desired and/or undesired NPC behaviors.

Videogaming is a mainstream and transversal form of en-
tertainment these days. The recent and highly-publicized
successes of DRL in mimicking or even surpassing human-
level play in games like Go and DOTA have not net been
translated into effective tools for use in developing game
AI. The DeepCrawl prototype is a step in this direction
and shows that DRL can be used to develop credible – yet
imperfect – agents that are model-free and offer variety
to gameplay in turn-based strategy games like Roguelikes.
We feel that DRL, with some more work towards render-
ing training scalable and flexible, can offer great benefits
over classical, hand-crafted agent design that dominates the
industry.
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