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ABSTRACT

Neural Architecture Search (NAS) has emerged as a promising technique for
automatic neural network design. However, existing NAS approaches often utilize
manually designed action space, which is not directly related to the performance
metric to be optimized (e.g., accuracy). As a result, using manually designed action
space to perform NAS often leads to sample-inefficient explorations of architectures
and thus can be sub-optimal. In order to improve the sample efficiency, this paper
proposes Latent Action Neural Architecture Search (LaNAS), which learns actions
to recursively partition the search space into good or bad regions that contain
networks with concentrated performance metrics, i.e., low variance. During the
search phase, as different architecture search action sequences lead to regions
with different performance, the search efficiency can be significantly improved by
biasing towards the good regions. On 3 NAS datasets, our experimental results
demonstrated that LaNAS is 37×, 21.7×, 19.3×, 10.7×, 12.3×, 16.5× more
sample-efficient than Random Search, Regularized Evolution, Monte Carlo Tree
Search, Neural Architecture Optimization, TPE and SMAC, respectively. When
applied to the open domain, LaNAS achieves 98.0% accuracy on CIFAR-10 and
75.0% top1 accuracy on ImageNet in only 803 samples, outperforming SOTA
AmoebaNet with 33× fewer samples.

1 INTRODUCTION
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Figure 1: Latent Action Neural Archi-
tecture Search: Starting from the entire
model space, at each search stage we
learn an action (or a set of linear con-
straints) to separate good from bad mod-
els for providing distinctive rewards for
better searching.

During the past two years, there has been a growing inter-
est in Neural Architecture Search (NAS) that aims to auto-
mate the laborious process of designing neural networks.
Architectures found by NAS have achieved remarkable
results in image classification (Zoph and Le (2016); Real
et al. (2018)), object detection and segmentation (Ghiasi
et al. (2019); Chen et al. (2019); Liu et al. (2019)), as
well as other domains such as language tasks (Luong et al.
(2018); So et al. (2019)).

Starting from hand-designed discrete model space and ac-
tion space, NAS utilizes search techniques to explore the
search space and find the best performing architectures
with respect to a single or multiple objectives (e.g., accu-
racy, latency, or memory), and preferably with minimal
search cost.

However, one common issue faced by the previous works
on NAS is that the action space needs to be manually de-
signed. The action space proposed by Zoph et al. (2018)
involves sequential actions to construct a network, such as
selecting two nodes, and choosing their operations. Other
prior works including reinforcement learning based (Zoph
and Le (2016); Baker et al. (2016)), evolution-based (Real et al. (2018; 2017)), and MCTS-
based (Wang et al. (2019); Negrinho and Gordon (2017)) approaches, all use manually designed
action spaces. As suggested in Sciuto et al. (2019); Li and Talwalkar (2019); Xie et al. (2019), action
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Figure 2: Illustration of motivation: (a) visualizes the MCTS search trees using sequential and
global action space. The node value (i.e. accuracy) is higher if the color is darker. (b) For a given
node, the reward distributions for its children. d is the average distance over all nodes. global
better separates the search space by network quality, and provides distinctive reward in recognizing a
promising path. (c) As a result, global finds the best network much faster than sequential.

space design alone can be critical to network performance. Furthermore, it is often the case that
manually designed action space is not related to the performance that needs to be optimized. In Sec 2,
we demonstrate an example where subtly different action space can lead to significantly different
search efficiency. Finally, unlike games that generally have a predefined action space (e.g., Atari,
Chess and Go), in NAS, it is the final network that matters rather than the specific path of the search,
which gives a large playground for action space learning.

Based on the above observations, we propose Latent Action Neural Architecture Search(LaNAS) that
learns the action space to maximize search efficiency for performance metrics. Previous methods
typically construct an architecture from an empty network by sequentially applying predefined actions,
e.g. adding layers, setting the kernel or depth, resulting in a state space that provides undiscriminating
rewards to inform the search (Fig. 2a sequential). LaNAS takes a dual approach and treats each
action as a linear constraint that intersects with the search space Ω to bifurcate it into a good and
bad region that contains networks with similar performance metric (Fig. 1). Once multiple actions
are recursively applied to the entire search space, the search space is clearly separated (e.g. Fig. 2a
global, Fig. 4) into regions that provide more informative rewards, thereby greatly improving the
search efficiency. To achieve this goal, LaNAS iterates between learning and searching stage. In the
learning stage, each action in LaNAS is learned to partition the model space into high-performance
and low-performance regions, to achieve accurate performance prediction. In the searching stage,
LaNAS applies MCTS on the learned action space to sample more model architectures. The learned
actions provide an informed guide for MCTS to sample from performance-promising regions, while
the adaptive exploration in MCTS collects more data to progressively refine the learned actions to
zoom into more promising regions for further improving the sample efficiency. The iterative process
is jump-started by first collecting a few random samples.

We show that LaNAS yields a tremendous acceleration on a diverse set of benchmark tasks, including
publicly available NASBench-101 (420,000 NASNet models trained on CIFAR-10) (Ying et al.
(2019)), our self-curated ConvNet-60K (60,000 plain VGG-style ConvNets trained on CIFAR-10),
and LSTM-10K (10,000 LSTM cells trained on PTB). Our algorithm consistently finds the best
performing architecture on all three tasks with at least an order of fewer samples (on average) than
Random Search, Regularized Evolution, MCTS, Neural Architecture Optimization and Bayesian
Optimization. In the open domain search scenario, our algorithm finds a network that achieves
98.0% accuracy on CIFAR-10 and 75.0% top1 accuracy (mobile setting) on ImageNet in only 803
samples, using 33× fewer samples and achieving higher accuracy than AmoebaNet (Real et al.
(2018)). Moreover, we empirically demonstrate that the learned latent actions can transfer to a new
search task to further boost efficiency. Finally, we provide empirical observations to illustrate the
search dynamics and analyze the behavior of our approach. We also conduct various ablation studies
in together with a partition analysis to provide guidance in determining search hyper-parameters and
deploying LaNAS in practice.

2 A MOTIVATING EXAMPLE

To demonstrate the importance of action space in NAS, we start with a motivating example. Consider
a simple scenario of designing a plain Convolutional Neural Network (CNN) for CIFAR-10 image

2



Under review as a conference paper at ICLR 2020

C

E

A

D GF

B

select w.r.t UCB

A

D

B C

E

𝜋𝑟𝑎𝑛𝑑 → network, 𝒂

search 
space

sampling under linear constraints 

B

E

A

D

C

back-propagate reward

r: accuracy

B.v += r
B.n += 1
B.D.append(a)

A.v += r
A.n += 1
A.D.append(a)

𝑎𝑟𝑔𝑚𝑎𝑥+∈-( .(0, +)
3(0, +)

+ 2𝑐 789:(3 0 )
3(0, +)

)

C

A

D

B

E

SEARCH PHASE

A.S = Union(B.S, C.S)

Learning actions: 𝑾𝒂+ 𝑏 = 𝑎𝑐𝑐
LEARNING PHASE

GF GF GF

Figure 3: An overview of LaNAS: LaNAS is an iterative algorithm in which each iteration comprises
a search phase and learning phase. The search phase uses MCTS to samples networks, while the
learning phase learns a linear model between network hyper-parameters and their accuracies.

classification. The primitive operation is a Conv-ReLU layer. Free structural parameters that can
vary include network depth L = {1, 2, 3, 4, 5}, number of filter channels C = {32, 64} and kernel
size K = {3 × 3, 5 × 5}. This configuration results in a search space of 1,364 networks. To
perform the search, there are two natural choices of the action space: sequential and global.
sequential comprises actions in the following order: adding a layer l, setting kernel size Kl,
setting filter channel Cl. The actions are repeated L times. On the other hand, global uses the
following actions instead: {Setting network depth L, setting kernel size K1,...,L, setting filter channel
C1,...,L}. For these two action spaces, MCTS is employed to perform the search. Note that both
action spaces can cover the entire search space but have very different search trajectories.

Fig. 2(a) visualizes the search for these two action spaces. Actions in global clearly separates
desired and undesired network clusters, while actions in sequential lead to network clusters with
a mixture of good or bad networks in terms of performance. As a result, the overall distribution of
accuracy along the search path (Fig. 2(b)) shows concentration behavior for global, which is not
the case for sequential. We also demonstrate the overall search performance in Fig.2(c). As
shown in the figure, global finds desired networks much faster than sequential.

This observation suggests that changing the action space can lead to very different search behavior
and thus potentially better sample efficiency. In other words, an early exploration on the network
depth is critical. Increasing the depth is an optimization direction that can potentially lead to better
model accuracy. One might come across a natural question from this motivating example. Is it
possible to find a principle way to distinguish a good action space from a bad action space in NAS? Is
it possible to learn an action space such that it can best fit the performance metric to be optimized?

3 LEARNING LATENT ACTIONS

In this section, we describe LaNAS, which comprises two phases: (1) learning phase, and (2) search
phase. Fig. 3 presents a high level description of LaNAS, of which the corresponding algorithms are
further described in Alg.1.

3.1 LEARNING PHASE

In the learning phase at iteration t, we have a dataset Dt = {(ai, vi)} obtained from previous
explorations. Each data point (ai, vi) in Dt has two components: ai represents network attributes
(e.g., depth, number of filters, kernel size, connectivity, etc) and vi represents the performance metric
estimated from training (or from pre-trained dataset such as NASBench-101). Our goal is to learn a
good action space from Dt to guide future exploration as well as to find the model with the desired
performance metric efficiently.

Starting from the entire search space Ω, the learnt actions recursively (and greedily) split it into
smaller regions such that the estimation of performance metric becomes more accurate. This helps us
prune away poor regions as soon as possible and increase the sample efficiency of NAS.

In particular, we model the recursive splitting process as a tree. The root node corresponds to the
entire model space Ω, while each tree node j corresponds to a region Ωj (Fig. 1). At each tree
node j, we partition Ωj into disjoint regions Ωj = ∪k∈(j)Ωk, such that on each child region Ωk, the
estimation of performance metric V (Ωk) is the most accurate (or equivalently, has lowest variance).
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At each node j, we learn a classifier that embodies an latent action to split the model space Ωj .
The linear classifier takes the portion of the dataset that falls into its own region Dt ∩ Ωj , The
performance of a region Ωj , V (Ωj), is estimated by 1/N

∑
i∈Dt∩Ωj

vi. To minimize the variance of
V (Ωk) for all child nodes, we learn a linear regressor fj that minimizes

∑
i∈Dt∩Ωj

(fj(ai)− vi)2.

Once learned, the parameters of fj and V̂ (Ωj) form a linear constraint that bifurcates Ωj into a
good region (> V̂ (Ωj)) and a bad region (≤ V̂ (Ωj)) for sampling. For convenience, the left child
always represents the good region. The partition threshold V̂ (Ωj), combined with fj , forms two
latent actions at node j, going left (fj(ai) > V̂ (Ωj)) and going right (fj(ai) ≤ V̂ (Ωj)).

Note that we need to initialize each node classifier properly with a few random samples to establish
initial boundary in the search space. An ablation study on the number of samples for initialization is
provided in Fig. 7d.

3.2 SEARCH PHASE

Once actions are learned, the search phase follows. The search uses the learned actions to sample
more architectures ai as well as their performance vi, and store (ai, vi) in dataset Dt to refine the
action space in the next learning phase. Note that in the search phase, the tree structure and the
parameters of those classifiers are fixed and static. Instead, the search phase learns to decide which
region Ωj on tree leaves to sample ai, with a proper balance between the exploration of less known
Ωj and exploitation of promising Ωj .

Following the construction of the classifier at each node, a trivial go-left greedy based search strategy
can be used to exclusively exploit the most promising Ωk defined by the current action space.
However, this is not a good strategy since it only exploits the current action space, which is learned
from the current samples and may not be optimal. There can be good model regions that are hidden
in the right (or bad) leaves that need to be explored.

In order to overcome this issue, we use Monte Carlo Tree Search (MCTS) as the search method,
which has the characteristics of adaptive exploration, and has shown superior efficiency in various
tasks. MCTS keeps track of visiting statistics at each node to achieve the balance between exploitation
of existing good region and exploration of new region. In lieu of MCTS, our search phase also has
select, sampling and backpropagate stages. LaNAS skips the expansion stage in regular MCTS since
the connectivity of our search tree is static. When the action space is updated, previous sampled
networks and their performance metrics in Dt are reused and redirected to (maybe different) nodes in
initializing visitation counts n(s) and node values v(s). When there is no learned action space, we
random sample the model space to get jump started.

Algorithm 1: LaNAS search procedure.
Data: specifications of the search domain

1 Function get_ucb (X̄next, nnext, ncurt )
2 c = 0.5

3 return X̄next
nnext

+ 2c
√

2log(ncurt)
nnext

if nnext 6= 0

else +∞
4 begin
5 while acc < target do
6 for n ∈ Tree.N do
7 n.g.train()

8 for i = 1→ #selects do
9 leaf, path = ucb_select(root)

10 constraints =
get_constraints(path)

11 network =
sampling(constraints)

12 acc = network.train()
13 back − propagate(network, acc)

Algorithm 2: Subroutines in Alg. 1.
1 Function get_constraints (s_path)
2 constraints = []
3 for node ∈ s_path do
4 W, b = node.g.params(), X̄ = node.X̄
5 if node on left then

constraints.add(Wa + b ≥ X̄) else
constraints.add(Wa + b < X̄)

6 return constraints
7 Function ucb_select (c = root)
8 path = []
9 while c not leaf do

10 path.add(c)

11 lucb = get_ucb(c.left.X̄, c.left.n, c.n),
rucb =
get_ucb(c.right.X̄, c.right.n, c.n)

12 if lucb > rucb then c = c.left else
c = c.right

13 return path, c
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3.3 LANAS PROCEDURES

Learning phase: (Alg.1 line 6 → 7) the learning phase is to train fj at every node j. With more
samples, f becomes more accurate, and V (Ωj) becomes closer to V̂ (Ωj). However, as MCTS biases
towards selecting good samples, LaNAS will zoom into the promising hyper-space to further improve
the sample efficiency. We provided an analysis of such search dynamics in Fig. 4.

Search phase: (Alg.1 line 8 → 13) the search phase consists of 3 major steps. 1) select w.r.t
UCB: the calculation of UCB follows the standard definition in Auer et al. (2002). We present the
equation of πUCB in Fig. 3. The input to πUCB is the number of visits of current node n(s) and
next nodes n(s, a), and the next node value v(s, a), where s stands for a node, and a stands for an
action. Therefore, the next node is deterministic given s and a. At node j, the number of visits n(s) is
determined by the number of samples in Dt ∩ Ωj , while v(s) is determined by V̂ (Ωj). The selecting
policy πucb takes the node with the largest UCB score. Starting from root, we follow πucb to traverse
down to a leaf (Alg. 3 line 7-13). 2) sampling from a leaf : the select traverses a path from the root
to a leaf, and each node in the path carries a linear classifier, Ws ∗ ai + bs = v(s). If the path goes
to left child, i.e. Ws ∗ ai + bs ≥ v(s), ai ∈ Ω, and < v(s) otherwise. If the original model space is
convex, then any selected path corresponds to several linear constraints and thus defines a convex
polytope. Sampling in a polytope is known to be efficient using Gibbson sampling (Bishop, 2006) or
hit-and-run sampler (Smith, 1996). While our implementation uses Gibbson sampling, other method
is also available (e.g., hit-and-run1). 3) back-propagate reward: after training the sampled network,
LaNAS back-propagates the reward, i.e. accuracy, to update the node statistics n(s) and v(s). It also
back-propagates the sampled network so that every parent node j keeps the network in Dt ∩ Ωj for
training.

3.4 RELATIONSHIP TO OTHER BLACK-BOX OPTIMIZATIONS

Bayesian Optimization (BO). Bayesian Optimization is a popular method for black-box optimiza-
tion (Snoek et al., 2012; 2015; Wang et al., 2013; Gardner et al., 2014). While BO only uses a fixed
kernel which makes it harder to adapt to function with uneven smoothness, LaNAS uses MCTS and
online action space learning to dynamically adapt itself towards the important region of the space,
and thus achieves better performance in the presence of a decent amount of samples is available.

Sequential Model-based Global Optimization (SMAC).SMAC (Hutter et al., 2011) is a generic
black box optimization framework when function evaluation is expensive. SMAC (summarized
in Appendix A.3) approximates the expensive evaluation with predictions from a surrogate model
φ, and proposes the next sample by optimizing an acquisition function (S) on the search space Ω
using φ. LaNAS can be viewed as an instantiation of SMAC framework, but overcomes substantial
computational difficulties at different stage. In NAS, the architecture space is huge (∼ 1016) and
taking argmaxa∈ΩS(a, φt) is hard with conventional approaches. Prior works have focused on
combining the landscape information of acquisition function with Evolutionary Algorithm (EA) to
maximize S(a, φt) (Bergstra et al., 2011; Kandasamy et al., 2019; Hansen, 2006), as we will show
in Fig. 6(b)(c), the high dimensional Ω in NAS is too large for EA to work well. The contribution of
this work is to propose a new search model that utilizes a regression tree as a surrogate model and
MCTS as the acquisition function. Instead of solve an optimization every iterations, the tree surrogate
learns to partition f(ai), i ∈ Ω to pinpoint the promising region for the MCTS acquisition function,
and it becomes more accurate as the search progresses as shown by Fig. 4), thereby more efficient.

Regression/Decision Tree.LaNAS is similar to Decision/Regression tree that recursively splits
the data into smaller and smaller bins, and makes decision/prediction at the leaves. While deci-
sion/regression tree does it in one shot, LaNAS augments it with online components (e.g., exploration
with MCTS, retraining splitting function). As a result, LaNAS is able to drive itself towards interesting
regions that initial samples do not touch.

1https://github.com/fontclos/hitandrun
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(a) Search dynamics: KL-divergence and mean distance (b) Search dynamics: sample distribution vs. dataset distribution

leftmost leaves: 15, 16
rightmost leaves: 28, 29

Figure 4: Evaluations of search dynamics:(a) KL-divergence of pj and p∗j dips and bounces back.
v̄− v̄∗ continues to grow, showing the average metric v̄ over different nodes becomes higher when the
search progresses. (b) sample distribution pj approximates dataset distribution p∗j when the number
of samples n ∈ [200, 700]. The search algorithm then zooms into the promising sub-domain, as
shown by the growth of v̄j when n ∈ [700, 5000].

4 EXPERIMENT

We performed extensive experiments on both offline collected benchmark datasets (e.g., NAS-
Bench Ying et al. (2019)) and open search domain to validate the effectiveness of LaNAS.

4.1 ANALYSIS OF SEARCH ALGORITHM

We analyze LaNAS by looking into the dynamics of sample distributions on tree leaves during the
search. We used NASBench-101 in experiments to form a constrained search space that contains
420K models. NASBench-101 provides us with the true distribution of model accuracy, given any
subset of model specifications, or equivalently a collection of actions (or constraints). By construction,
left nodes contain regions of the good metric while right nodes contain regions of the poor metric.
Therefore, at each node j, we can construct reference distribution p∗j (v) by training toward the entire
dataset to partition the search space into small regions with concentrated performances on leaves.
We compare p∗j (v) with the estimated distribution pnj (v), where n is the number of accumulated
samples in Dt ∩ Ωj at the node j. Since the reference distribution p∗j (v) is static, comparing pnj (v)
to p∗j (v) enables us to see the variations of Ωj on tree leaves w.r.t the growing samples. To provide
a quantitative view, we also calculated the KL-divergence DKL[pnj ‖‖p∗j ], and their mean value
v̄∗j = Ep∗j [v] and v̄j = Epnj [v].

In our experiments, we use a complete binary tree with the height of 5. We label nodes 0-14
as internal nodes, and nodes 15-29 as leaves. By definition, v̄∗15 > v̄∗16... > v̄∗29 reflected by
p∗15,16,28,29 in Fig. 4b. At the beginning of the search (n = 200 for random initialization), p200

15,16

are expected to be smaller than p∗15,16, and p200
28,29 are expected to be larger than p∗15,16; because the

tree still learns to partition at that time. With more samples (n = 700), pj starts to approximate
p∗j , manifested by the increasing similarity between p700

15,16,28,29 and p∗15,16,28,29, and the decreasing
DKL in Fig. 4a. This is because MCTS explores the under-explored regions. As the search continues
(n → 5000), LaNAS explores deeper into promising regions and pnj is biased toward the region
with good performance, deviated from p∗j . As a result, DKL bounces back in Fig. 4a. The mean
accuracy of p700,5000

15 > p700,5000
16 > p700,5000

28 > p700,5000
29 in Fig. 4(b) indicates that LaNAS

successfully minimizes the variance of rewards on a search path making architectures with similar
metrics concentrated in a region, and LaNAS correctly ranks the regions on tree leaves. These search
dynamics show how our model adapts to different stages during the course of the search, and validate
its effectiveness for the purpose of searching.

4.2 PERFORMANCE ON NAS DATASETS

Evaluating on NAS Datasets: We use NASBench-101 (Ying et al. (2019)) as one benchmark that
contains over 420K NASNet CNN models. For each network, it records the architectures and their
accuracy for fast retrieval by NAS algorithm, avoiding time-consuming model retraining. In addition,
we construct two more datasets for benchmarking, ConvNet-60K (60K plain ConvNet models, VGG-
style, no residual connections, trained on CIFAR-10) and LSTM-10K (10K LSTM cells trained on
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(a) NASBench-420K, large (b) ConvNet-60K, medium (c) LSTM-10K, small

LaNAS: Cp =0.1, init = 10, select = 10 LaNAS: Cp = 0.1, Init = 10, select = 10 LaNAS: Cp = 10, Init = 10, select = 10

Figure 5: Evaluations of sample-efficiency on NASBench, ConvNet-60K and LSTM-10K. Each
search algorithm is repeated 100 times on each datasets with different random seeds. The top row
shows the time-course of the search algorithms (current best accuracy with interquartile range), while
the bottom row illustrates the number of samples to reach the global optimum. NASBench-420K
limits the edges ≤ 9 and LSTM-10K limits the edges = 9, rendering a huge number of architectures
untrained in the search space. We compared to SMAC and TPE on ConvNet-60k as ConvNet-60k
contains the accuracy of all the architectures in the search space, .

PTB) to further validate the effectiveness of LaNAS. In each task, we perform an independent search
for 100 times with different random seeds. The mean performance, along with the 25th and 75th
percentile, is shown in Fig.5.

Baselines: we compare LaNAS with a diverse types of search algorithms, from Random Search,
gradient based NAS, evolutionary algorithms, to Monte Carlo Tree Search (MCTS), and with a
strong focus on Bayesian Optimization. Random Search finds the global optimum in expected
n/2 samples. Regularized Evolution (Real et al. (2019)) is a type of evolutionary algorithm
that achieves SoTA performance for image recognition. Our implementation of Regularized
Evolution is from NASBench-1012. We used AlphaX 3 as our MCTS implementation. It adopts
a manual action space that incrementally builds up a network, and the predictions is set to 1 per
rollout. Neural Architecture Optimization(NAO) (Luo et al. (2018)) is a gradient
based NAS method that finds the architecture on a performance predictor in a continuous embedding
space with gradient descent. We adopted NAO from its public release4. Regression Tree
removes MCTS from LaNAS, and RT always sample from the most promising node. Bayesian
Optimization(BO) is a competitive method for the black box optimization. We implemented BO
that used Gaussian Process as the surrogate model and Expected Improvement (EI) as the acquisition
function based on here5. However, the vanilla BO suffers from the scaling issue that it incurs O(n3)
cost, where n is the number of samples. To mitigate this issue, we apply BO on collected samples
using a similar strategy to SGD that splits the entire samples into batches, then iteratively fits BO at a
batch size of 2000 for 2 epochs on NASBench-420K and ConvNet-60K. We also compared LaNAS
to other BO variants that does not have the cubic scaling issue such as TPE (Bergstra et al. (2011))
from HyperOpt 6, and SMAC-random forest (Hutter et al. (2013)) from SMAC 7. Additionally, we
compared to the latest BO package Dragonfly (Kandasamy et al. (2019))8. Since Dragonfly is too
expensive to collect 104 samples, we only compared to Dragonfly in Fig 6(a)(b).

2https://github.com/google-research/nasbench/blob/master/NASBench.ipynb
3https://github.com/linnanwang/AlphaX-NASBench101
4https://github.com/renqianluo/NAO
5http://krasserm.github.io/2018/03/21/bayesian-optimization/
6https://github.com/hyperopt/hyperopt
7https://github.com/automl/SMAC3
8https://github.com/dragonfly/dragonfly
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(a) ConvNet (b) NASBench-Node6 (c) optimize acquisition
with TPE

(d) optimize acquisition
with RE

Figure 6: (a-b) Comparing LaNAS to several mainstream BO methods: though BO and TPE
works well when samples ∈ [0, 200] on ConvNet and when samples ∈ [0, 500] on NASBench-
Node6 (a subset of NASBench containing 62010 6-nodes networks), LaNAS quickly dominates
the performance afterwards. This highlights the different focuses of LaNAS and BO methods. (c-
d)illustrations of the limitation of BO methods: optimizing the acquisition function with Tree
Parzen Estimator (TPE) and Regularized Evolution (RE) using different budgets, that represent the
max number of queries to a surrogate model in optimizing the acquisition. We denote the budgets as
the percentages of ConvNet dataset.

Analysis of Results: Fig. 5 demonstrates that LaNAS consistently outperforms the baselines by
significant margins on three separate tasks. Particularly, on NASBench, LaNAS is on average
using 37x, 21.7x, 19.3x, 10.7x, 25.6x fewer samples than Random Search, Regularized
Evolution, MCTS, NAO and Bayesian Optimization to find the global optimum. On
ConvNet-60K, LaNAS used 12.3x, 16.5x and 25.3x fewer samples than TPE, SMAC-random
forest and our relaxed BO. On LSTM, LaNAS still performs the best despite that the dataset is
small. Additionally, LaNAS is 2.3x, 5.4x, 1.8x faster than Regression Tree on NASBench,
ConvNet and LSTM, demonstrating the effectiveness of MCTS to LaNAS. The substantial speedup
w.r.t MCTS that uses a fixed action space also validates the effectiveness of learned actions.

To highlight the different focuses of BO methods and LaNAS, we also compared the first 500 samples
on ConvNet-60K and the first 1000 samples on NASBench-Node6. NASBench-Node6 is a subset of
NASBench that contains networks with nodes=6. Since edges in NASBench ≤ 9, NASBench-Node6
have most networks trained in the search space. Fig. 6 indicates and TPE and BO (no relaxation) are
fast in the first few hundreds samples, but LaNAS quickly catches up afterwards. This indicates BO
and TPE give good results under limited budget, while LaNAS intends to find the global optimum in
the least samples.

In LaNAS, the action space is learned so that in each node, the representing search space can be
partitioned into a separate good/bad region using a linear classifier based on the network attributes
(e.g., depth/width of the network). With the learned action space, the resulting search space clearly
separates good/bad regions, and the search is biased towards the regions that contain better archi-
tectures, therefore becoming more efficient. Besides, with more samples, Fig. 4 shows LaNAS
zooms in the promising regions pinpointing more promising regions to further improve the efficiency.
Random Search gives poor performance, in particular in a large search space like NASBench.
Regularized Evolution utilizes a static exploration strategy that maintains a pool of top
500 architectures for random mutations, which is not guided by previous search experience. BO is
worse than LaNAS on NASBench and ConvNet due to our training relaxation. Though Bayesian
Optimization(BO) (no relaxation) shows slightly worse performance than LaNAS on small
LSTM-10K, it maximizes the acquisition on the entire search space which is not possible for high
dimensional NAS problem that a typical search space contains over 1017 samples. To show the
influence from the quality of acquisition maximization, we also upgraded the vanilla BO to maximize
the acquisition function with Regularized Evolution and TPE. The baseline is the case that using the
surrogate to predict all (100%) the architectures in the search space, as in the vanilla BO on LSTM.
Fig. 6(c-d) shows the apparent performance deterioration after reducing the optimization budget.
Please noted evaluating 0.01% or 1013 architectures in the search space is still not practical for NAS.

4.3 PERFORMANCE ON OPEN DOMAIN SEARCH

To be consistent with existing works, we also evaluated LaNAS on the NASNet open search domain.

Search space: Our search space is consistent with the widely adopted NASNet (Zoph et al. (2018)).
The operations are 3x3, 5x5 and 7x7 max pool, 3x3, 5x5, 7x7 depth-separable conv, 1x1 convolution
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Table 1: Results on CIFAR-10, c/o is cutout.

Model Filters Params Top1 err M GPU days

NASNet-A+c/o 32 3.3 M 2.65 20000 2000
AmoebaNet-B+c/o 36 2.8 M 2.55±0.05 27000 3150
PNASNet-5 48 3.2 M 3.41±0.09 1160 225
NAO 36 10.6 M 3.18 1000 200
ENAS+c/o 36 4.6 M 2.89 - 0.45
DARTS+c/o 36 3.3 M 2.76±0.09 - 1.5
BayesNAS+c/o 32 3.4 M 2.81±0.04 - 0.2
ASNG-NAS+c/o 32 3.9 M 2.83±0.14 - 0.11

LaNet 32 3.2 M 3.13±0.03 803 150
LaNet+c/o 32 3.2 M 2.53±0.05 803 150

NAO+c/o 128 128.0 M 2.11 1000 200
AmoebaNet-B+c/o 128 34.9 M 2.13±0.04 27000 3150

LaNet+c/o 128 38.7 M 1.99±0.02 803 150

M: number of samples selected.

Table 2: Results on ImageNet (mobile setting)

Model FLOPs Params top1 / top5 err

NASNet-A (Zoph et al. (2018)) 564M 5.3 M 26.0 / 8.4
NASNet-B (Zoph et al. (2018)) 488M 5.3 M 27.2 / 8.7
NASNet-C (Zoph et al. (2018)) 558M 4.9 M 27.5 / 9.0
AmoebaNet-A (Real et al. (2018)) 555M 5.1 M 25.5 / 8.0
AmoebaNet-B (Real et al. (2018)) 555M 5.3 M 26.0 / 8.5
AmoebaNet-C (Real et al. (2018)) 570M 6.4 M 24.3 / 7.6
PNASNet-5 (Liu et al. (2018a)) 588M 5.1 M 25.8 / 8.1
DARTS (Liu et al. (2018b)) 574M 4.7 M 26.7 / 8.7
FBNet-C (Wu et al. (2018)) 375M 5.5 M 25.1 / -
RandWire-WS (Xie et al. (2019)) 583M 5.6 M 25.3 / 7.8
BayesNAS (Zhou et al. (2019)) - 3.9 M 26.5 / 8.9

LaNet 570M 5.1 M 25.0 / 7.7
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Figure 7: Ablation study: (a) the effect of different tree heights and #select in MCTS. Number
in each entry is #samples to reach global optimal. (b) the choice of predictor for splitting search
space. (c) the effect of C in UCB toward the performance on nasbench. (d) the effect of #samples for
initialization toward the search performance.

and identity. The number of nodes within a cell is 7, and we constructed the network by stacking
a cell 6 times. Existing works in NAS tends to have very different sizes of search space according
to Table.3 in Radosavovic et al. (2019). Though we follow NASBench-101 and PNAS to share
the normal and reduction cell in constructing the network, our search space contains 4.36 × 1017

architectures, which is decent large for evaluations.

Experiment setup: During the search phase, we set filters to 32 and pre-trained an architecture for
120 epochs. Then we selected top-20 architectures collected from the search, and re-trained them
for 600 epochs to acquire the final accuracy in Table. 1. We reused the training logic from DARTS
and their training settings. The height of search tree is 8; we used 200 random samples for the
initialization, and #select = 50.

Table. 1 compares our results in the context of searching NASNet style architecture on CIFAR-10.
We found the best performing architecture (LaNet) at the 803th sample. LaNet demonstrates an
average accuracy of 97.47% (#filters = 32, #params = 3.22M) and 98.01% (#filters = 128, #params =
38.7M), which is better than all existing NAS-based results on CIFAR-10. It is worth noting that we
achieved this accuracy with 33x fewer samples than AmoebaNet. Though one-shot learning methods,
e.g. Liu et al. (2018b); Zhou et al. (2019); Akimoto et al. (2019), and their weight sharing variants,
e.g. Pham et al. (2018), exhibit weaker performance, they render much lower search costs for greatly
reducing network evaluation costs with techniques such as transfer learning or approximating final
weights with only 1 training iteration. Fig. 5 indicates the search model is cheap to run, but evaluating
networks during the search costs the majority of GPU days. Both NAO and ENAS show that weight
sharing has greatly sped up network evaluations; our approach can also benefit from weight sharing
to reduce the end-to-end search time. On the other hand, one shot learning methods show a small
difference to LaNAS in accuracy, e.g. −0.8%, at much less cost. However, as suggested in Fig. 5,
almost 99.9% search costs, i.e. samples, is at improving the last 1% accuracy. Therefore, one-shot
learning is fast to yield a reasonable result, while LaNAS aims at giving the best accuracy with the
fewest samples.
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4.4 TRANSFER LEARNING
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Figure 8: Latent actions transfer: learned la-
tent actions can generalize within the same task
or across different tasks, to further boost search
efficiency.

Transfer LaNet to ImageNet: Transferring
the best performing architecture (found through
searching) from CIFAR10 to ImageNet has al-
ready been a standard technique. Following the
mobile setting (Zoph et al. (2018)), Table. 2
shows that LaNet found on CIFAR-10, when
transferred to ImageNet mobile setting (FLOPs
are constrained under 600M), achieves compet-
itive performance.

Intra-task latent action transfer: We learn ac-
tions from a subset (1%, 5%, 10%, 20% 60%)
of NASBench and test their transferability to the
remaining dataset, as shown in Fig. 8a. Interestingly, the improvement remain steady after 10%.
Consistent with Fig. 4, it is enough to use 10% of the samples to learn the action space.

Inter-task latent action transfer: We compare 100 architectures selected by LaNAS from sec.4.3
(on CIFAR10) with 100 random trials. Networks are trained for 100 epochs on CIFAR-100 and their
performances are compared. Fig. 8b indicates that inter-task action transfer is also beneficial.

4.5 ABLATION STUDIES

The effect of tree height and #selects: Fig. 7a relates tree height (h) and the number of selects
(#selects) to the search performance. In Fig. 7a, each entry represents #samples to achieve optimality
on NASBench, averaged over 100 runs. A deeper tree leads to better performance, since the model
space is partitioned by more leaves. Similarly, small #select results in more frequent updates of action
space allowing the tree to make up-to-date decisions, and thus leads to improvement. On the other
hand, the number of classifiers increases exponentially as the tree goes deeper, and a small #selects
incurs frequent learning phase. Therefore, both can significantly increase the computation cost.

Choice of classifiers: Fig.7b shows that using a linear classifier performs better than an multi-layer
perceptron (MLP) classifier. This indicates that adding complexity to decision boundary of actions
may not help with the performance. Conversely, performance can get degraded due to potentially
higher difficulties in optimization.

#samples for initialization:We need to initialize each node classifier properly with a few samples to
establish the initial boundary in the search space. As shown in Fig.7d, cold start is necessary (init > 0
is better than init = 0). Also, small init=100-400 converges to top 5% performance much faster than
init=2000, while init=2000 gets the best performance faster (Fig. 7d).

The effect of c in UCB: Fig. 7c shows that the exploration term, 2c
√

2log(ncurt)
nnext

, improves the
overall performance as c increases from 0 to 0.1, while using a large c, e.g. 0.5 and 1, is not desired
for over-exploring. Each values of c represents the LaNAS performance on NASBench in 100 runs.
Please noted LaNAS is still the leading algorithm on NASBench even using a sub-optimum c (e.g. c
= 0 or 1). We find that setting c to 0.1 ∗max(X̄) empirically works well on 3 datasets in Fig.5.

5 FUTURE WORK

Recent work on shared model (Luo et al. (2018); Pham et al. (2018)) improves the training efficiency
by reusing trained components from the similar previously explored architectures, e.g., weight
sharing (Liu et al. (2018b); Luo et al. (2018); Pham et al. (2018)). Our work focuses on sample-
efficiency and is complementary to the above techniques.

To encourage reproducibility in NAS research, various of architecture search baselines have been
discussed in Sciuto et al. (2019); Li and Talwalkar (2019). We will also open source the proposed
framework, together with the three NAS benchmark datasets used in our experiments.
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A APPENDIX

A.1 NAS DATASETS AND EXPERIMENT SETUP:

NAS dataset enables directly querying a model’s performance, e.g. accuracy. This allows for truly
evaluating a search algorithm by repeating hundreds of independent searches without involving the
actual training. NASBench-101 Ying et al. (2019) is the only publicly available NAS dataset that
contains over 420K DAG style networks for image recognition. However, a search algorithm might
overfit NASBench-101, losing the generality. This motivates us to collect another 2 NAS datasets,
one is for image recognition using sequential CNN and the other is for language modeling using
LSTM.

Collecting ConvNet-60K dataset: following a similar set in collecting 1,364 networks in sec.2, free
structural parameters that can vary are: network depth D = {1, 2, 3, 4, 5, 6, 7, 8}, number of filter
channels C = {32, 64, 96} and kernel size K = {3× 3, 5× 5}. We train every possible architecture
100 epochs, and collect their final test accuracy in the dataset.

Collecting LSTM-10K dataset: following a similar LSTM cell definition in Pham et al. (2018),
we represent a LSTM cell with a connectivity matrix and a node list of operators. The choice of
operators is limited to either a fully connected layer followed by RELU or an identity layer, while the
connectivity is limited to 6 nodes. We randomly sampled 10K architectures from this constrained
search domain, and training them following the exact same setup in Liu et al. (2018b). Then we keep
the test perplexity as the performance metric for NAS.

A.2 OPEN DOMAIN SEARCH AND EXPERIMENT SETUP:

The best convolutional cell found by LaNAS is visualized below. We constructed LaNet by stacking
this cell 6 times. *arg min

c_{k-2}

0
skip_connect
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skip_connect
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max_pool_3x3
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skip_connect

1

sep_conv_3x3
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max_pool_3x3
c_{k}

4skip_connect

skip_connect

skip_connect

sep_conv_5x5

A.3 SEQUENTIAL MODEL-BASED GLOBAL OPTIMIZATION (SMBO):

Algorithm 3: psudo-codes for Sequential Model-based Global Optimization (SMBO).
1 INPUT: Dt - set of collected samples, Ω - search space, S - acquisition function, φ - surrogate model
2 Function SMBO (f,M0, T, S)
3 Dt← ∅
4 for t← 1 : T do
5 a∗←argmaxa∈ΩS(a, φt) C hard to evaluate in NAS due to large Ω
6 evaluate f(a∗) C expensive to general applications
7 Dt+1 = Dt ∪ (a∗, f(a∗))
8 φt+1 = fit φt on Dt+1

9 return Dt

A.4 PARTITION ANALYSIS

The sample efficiency, i.e. the number of samples to find the global optimal, is closely related to the
partition quality of each tree nodes. Here we seek an upper bound for the number of samples in the
leftmost leaf (the most promising region) to characterize the sample efficiency.
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Assumption 1 Given a search domain Ω containing finite samples N , there exists a probabilistic
density f such that P (a < v < b) =

∫ b
a
f(v)dv, where v is the performance of a network a.

With this assumption, we can count the number of networks in the accuracy range of [a, b] by
N ∗ P (a ≤ v ≤ b). Since v ∈ [0, 1] and σ(v) <∞, the following holds (Mallows (1991))

|E(v −Mv)| < σv (1)

v is the mean performance in Ω, and Mv is the median performance. Note v ∈ [0, 1], and let’s denote
ε = |v̂ − v|. Therefore, the maximal distance from v̂ to Mv is ε+ σv; and the number of networks
falling between v̂ and Mv is N ∗max(

∫Mv

v̂−ε−σv
f(v)dv,

∫ v̂+ε+σv

Mv
f(v)dv), denoted as δ. Therefore,

the root partitions Ω into two sets that have ≤ N
2 + δ architectures.

Theorem 1 Given a search tree of height = h, the sub-domain represented by the leftmost leaf
contains at most 2 ∗ δmax(1− 1

2h ) + N
2h architectures, and δmax is the largest partition error from

the node on the leftmost path.

The theorem indicates that LaNAS is approximating the global optimum at the speed of N/2h,
suggesting 1) the performance improvement will remain near plateau as h ↑ (verified by Fig 7a),
while the computational costs (2h−1 nodes) exponentially increase; 2) the performance improvement
w.r.t random search (cost ∼ N/2) is more obvious on a large search space (verified by Fig.5 (a)→(c)).

Proof of Theorem: In the worst scenario, the left child is always assigned with the large partition; and
let’s recursively apply this all the way down to the leftmost leaf h times, resulting in δh + δh−1

2 +
δh−2

22 + ...+ N
2h ≤ 2 ∗ δmax(1− 1

2h ) + N
2h . δ is related to ε and σv; note δ ↓ with more samples as

ε ↓, and σv becomes more accurate.

A.5 ORIGINAL FIG.5 IN LOG SCALE

(a) NASBench-420K, large (b) ConvNet-60K, medium (c) LSTM-10K, small

Figure 9: previous Fig.5 in log scale.
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