
A systematic framework for natural perturbations from videos
Abstract

We introduce a systematic framework for quantifying the

robustness of classifiers to naturally occurring perturba-

tions of images found in videos. As part of this frame-

work, we construct ImageNet-Vid-Robust, a human-

expert–reviewed dataset of 22,668 images grouped into

1,145 sets of perceptually similar images derived from

frames in the ImageNet Video Object Detection dataset. We

evaluate a diverse array of classifiers trained on ImageNet,

including models trained for robustness, and show a median

classification accuracy drop of 16%. Additionally, we eval-

uate the Faster R-CNN and R-FCN models for detection,

and show that natural perturbations induce both classifica-

tion as well as localization errors, leading to a median drop

in detection mAP of 14 points. Our analysis shows that nat-

ural perturbations in the real world are heavily problematic

for current CNNs, posing a significant challenge to their

deployment in safety-critical environments that require reli-

able, low-latency predictions.

1. Introduction
Despite their strong performance on various computer

vision benchmarks, convolutional neural networks (CNNs)
still have many troubling failure modes. At one extreme, `p-
adversarial examples can cause large drops in accuracy for
state of the art models with visually imperceptible changes
to the input image [5]. But since carefully crafted `p-
perturbations are unlikely to occur naturally in the real
world, they usually do not pose a problem outside a fully
adversarial context.

To study more realistic failure modes, researchers have
investigated benign image perturbations such as rotations &
translations, colorspace changes, and various image corrup-
tions [7, 8, 4]. However, it is still unclear whether these per-
turbations reflect the robustness challenges commonly aris-
ing in real data since the perturbations also rely on synthetic
image modifications.

Recent work has therefore turned to videos as a source of
naturally occurring perturbations of images [6, 1]. In con-
trast to other failure modes, the perturbed images are taken
from existing image data without further modifications that
make the task more difficult. As a result, robustness to such
perturbations directly corresponds to performance improve-
ments on real data.

However, it is currently unclear to what extent such
video perturbations pose a significant robustness challenge.
Azulay and Weiss [1] only provide anecdotal evidence from

Figure 1: Two examples of natural perturbations from
nearby video frames and resulting classifier confidences
from a ResNet-152 model fine-tuned on ImageNet Video.

a small number of videos. While [6] work with a larger
video dataset to obtain accuracy estimates, they only ob-
serve a small drop in accuracy of around 2.7% on video-
perturbed images, suggesting that small perturbations in
videos may not actually reduce the accuracy of current
CNNs significantly.

We address this question by conducting a thorough eval-
uation of robustness to natural perturbations arising in
videos. As a cornerstone of our investigation, we intro-
duce ImageNet-Vid-Robust, a carefully curated sub-
set of ImageNet-Vid [12]. In contrast to earlier work, all
images in ImageNet-Vid-Robust were screened by a
set of expert labelers to ensure a high annotation quality
and to minimize selection biases that arise when filtering
with CNNs. Overall, ImageNet-Vid-Robust contains
22,668 images grouped into 1,145 sets of temporally adja-
cent and visually similar images of a total of 30 classes.

We then utilize ImageNet-Vid-Robust to measure
the accuracy of current CNNs to small, naturally occurring
perturbations. Our testbed contains over 40 different model
types, varying both architecture and training methodology
(adversarial training, data augmentation, etc). We find that
natural perturbations from ImageNet-Vid-Robust in-
duce a median 16% accuracy drop for classification tasks
and a median 14% drop in mAP for detection tasks. Even
for the best-performing model, we observe an accuracy drop
of 14% – significantly larger than the 2.7% drop in [6] over
the same time horizon in the video.

Our results show that robustness to natural perturbations
in videos is indeed a significant challenge for current CNNs.
As these models are increasingly deployed in safety-critical
environments that require both high accuracy and low la-
tency (e.g., autonomous vehicles), ensuring reliable predic-
tions on every frame of a video is an important direction for
future work.



2. The ImageNet-Vid-Robust dataset
The ImageNet-Vid-Robust dataset is sourced from

videos contained in the ImageNet-Vid dataset [12], we pro-
vide more details about ImageNet-Vid in the supplemen-
tary.

2.1. Constructing ImageNet-Vid-Robust

Next, we describe how we extracted neighboring sets
of naturally perturbed frames from ImageNet-Vid to create
ImageNet-Vid-Robust. A straightforward approach
is to select a set of anchor frames and use nearby frames
in the video with the assumption that such frames contain
only small perturbations from the anchor frame. However,
as Figure 1 in the supplementary illustrates, this assump-
tion is frequently broken, especially in the presence of fast
camera or object motion.

Instead, we collect a preliminary dataset of natural per-
turbations and then we manually review each of the frame
sets. For each video, we first randomly sample an anchor
frame and then take k = 10 frames before and after the an-
chor frame as candidate perturbation images. This results in
a dataset containing 1 anchor frame each from 1,314 videos,
with approximately 20 candidate perturbation frames each
1.

Next, we curate the dataset with the help of four expert
human annotators. The goal of the curation step is to ensure
that each anchor frame and nearby frame is correctly labeled
with the same ground truth class and that the anchor frame
and the nearby frame are visually similar. For each pair of
anchor and candidate perturbation frame, an expert human
annotator labels (1) whether the pair is correctly labeled in
the dataset, (2) whether the pair is similar.

Asking human annotators to label whether a pair of
frames is similar can be highly subjective. We took several
steps to mitigate this issue and ensure high annotation qual-
ity. First, we trained reviewers to mark frames as dissimilar
if the scene undergoes any of the following transformations:
(1) significant motion, (2) significant background change,
or (3) significant blur change, and additionally asked re-
viewers to mark each of the dissimilar frames with one of
these transformations, or “other”. Second, as presenting
videos or groups of frames to reviewers could cause them to
miss potentially large changes due to the well-studied phe-
nomenon of change blindness [9], we present only a single
pair of frames at a time to reviewers. Finally, to increase
consistency in annotation, human annotators proceed using
two rounds of review. In the first round, all annotators were
given identical labeling instructions, and then individually
reviewed 6500 images pairs. We instructed annotators to
err on the side of marking a pair of images as dissimilar if a

1Note that some anchor frames may have less than 20 candidate frames
if the anchor frame is near the start or end of the video.

distinctive feature of the object is only visible in one of the
two frames (such as the face of a dog). If an annotator was
unsure about a pair he or she could mark the pair as “don’t
know”.

For the second round of review, all annotators jointly re-
viewed all frames marked as dissimilar, “don’t know” or
“incorrect”. A frame was only considered similar if a strict
majority of the annotators marked the pair of as “similar”.

After the reviewing was complete, we discarded all an-
chor frames and candidate perturbations that annotators
marked as dissimilar or incorrectly labeled. Our final
dataset contains 1,145 anchor frames with a minimum of
1, maximum of 20 and median of 20 similar frames.

3. The pm-k evaluation metric
Given the dataset above, we would like to measure a

model’s robustness to natural perturbations. In particular,
let A = {a1, ..., an} be the set of valid anchor frames in our
dataset. Let Y = {y1, ..., yn} be the set of labels for A. We
let Nk(ai) be the set of frames marked as similar to anchor
frame ai. In our setting Nk is a subset of the 2k temporally
adjacent frames (plus/minus k frames from anchor).

The pm-k analogues of the standard metrics for de-
tection and classification evaluate only on the worst-case
frame in the set of Nk. We formally define the pm-k ana-
logues for the standard metrics for classification and detec-
tion (accpmkand mAPpmk) in the supplementary.

4. Main Results
We evaluate a testbed of 50 classification mod-

els and 3 state of the art detection models on
ImageNet-Vid-Robust. We first discuss the var-
ious types of classification models evaluated with pm-k
classification metric. We then study the per-class accuracies
to study whether our perturbations exploits a few “hard”
classes or affects performance uniformly across classes.

Second we use the bounding box annotations inherited
from ImageNet-VID to study the effect of detection models
evaluated on ImageNet-Vid-Robust using the pm-k
metric. We then analyze the errors made on the detection
adversarial examples to isolate the effects of localization

errors vs classification errors.

4.1. Classification
In Figure 2, we plot accorig versus accpmk for all classifi-

cation models in our test bed and find that there is a surpris-
ingly linear relationship between accorig and accpmk across
all 48 models in our test bed. We note the similarity of this
plot to Figure 1 in [10].

1578 out 22668 frames in ImageNet-Vid-Robust
have multiple correct classification labels, due to multiple
objects in the frame. To handle this in a classification set-



Figure 2: Model accuracy on original vs. perturbed images.
Each data point corresponds to one model in our testbed
(shown with 95% Clopper-Pearson confidence intervals).
Each “perturbed” frame was taken from a neighborhood of
a maximum 10 adjacent frames to the original frame in a
30 FPS video. This allows the scene to change for roughly
0.3s. All frames were reviewed by humans to confirm visual
similarity to the original frames.

ting, we opt for the most conservative approach: we count
a prediction as correct if the model predicts any of the
classes for a frame. We note that this is a problem that
plagues many classification datasets, where objects of mul-
tiple classes can be in an image [10] but there is only one
true label.

We considered 5 models types of increasing levels of su-
pervision. We present our full table of classification accu-
racies in the supplementary material, and results for repre-
sentative models from each model type in Table 1.

ILSVRC Trained As mentioned in ??, leveraging the
WordNet hierarchy enables evaluating models available
from [2] trained on the 1000 class ILSVRC challenge on
images in ImageNet-Vid-Robust directly. We exploit
this to evaluate a wide array of model architectures against
our natural perturbations. We note that this test set is a sub-
stantial distribution shift from the original ILSVRC valida-
tion set that these models are tuned for. Thus we will expect
the benign accuracy accorig to be lower than the comparable
accuracy on the ILSVRC validation set. However the quan-
tity of interest for this experiment is the difference between
the original and perturbed accuracies accuracies accorig -

accpmk, which should be less sensitive to an absolute drop
in accorig.

ILSVRC Trained with Noisy Augmentation One hy-
pothesis for the accuracy drop is that subtle artifacts
and corruptions introduced by video compression schemes
could introduce a large accuracy drop when evaluated on
these corrupted frames. The worst-case nature of the pm-k
metric could be biasing evaluation towards these corrupt
frames. One model for these corruptions are the pertur-
bations introduced in [7]. To test this hypothesis we eval-
uate models augmented with a subset of the perturbations
(Gaussian noise Gaussian blur, shot noise, contrast change,
impulse noise, JPEG compression) found in [7]. We found
that this augmentation scheme did little to help robustness
against our perturbations.

ILSVRC Trained for L2/L1 Robustness We evaluate
the best performing robust model against the very strong
L2/L1 attacks [14]. We find that this model does have a
slightly smaller performance drop than both ILSVRC and
ILSVRC trained with noise augmentation but the difference
is well within the error bars induced by the small size of
our evaluations set. We also note that this robust model gets
significantly lower original and perturbed accuracy than ex-
amples from either of the model types above.

ILSVRC Trained + Finetuned on ImageNet-VID To
adapt to the 30 class problem and the different domain of
videos we fine tune several network architectures on the
training set in ImageNet VID. We start with a base learning
rate of 1e�4 and train with the SGD optimizer until the val-
idation accuracy plateaus. We trained using cross entropy
loss using the largest object in the scene as the label during
training, as we found this performed better than training us-
ing a multi-label loss function. After training for 10 epochs
we evaluate on ImageNet-Vid-Robust. These models
do improve in absolute accuracy over their ILSVRC pre-
trained counterparts (12% for a ResNet50). However, this
improvement in absolute accuracy does not significantly de-
crease the accuracy drop induced by natural perturbations.

ILSVRC Trained + Finetuned on ImageNet-Vid-Det
Finally, we analyze whether additional supervision, in the
form of bounding box annotations, improves robustness. To
this end, we train the Faster R-CNN detection model [11]
with a ResNet 50 backbone on ImageNet Vid. Following
standard practice, the detection backbone is pre-trained on
ILSVRC. To evaluate this detector for classification, we as-
sign the score for each label for an image as the score of
the most confident bounding box for that label. We find
that this transformation reduces accuracy compared to the



Model Type Accuracy
Original

Accuracy
Perturbed �

Trained on ILSVRC 66.8 [64.0, 69.5] 51.9 [48.9, 54.8] 14.9
ILSVRC + Noise Augmentation 66.7 [63.9, 69.5] 50.4 [47.5, 53.3] 16.3
ILSVRC for L2/L1 Robustness (ResNext-101) 53.7 [50.8, 56.6] 41.4 [38.5, 44.3] 12.3
ILSVRC + Finetune ImageNet-VID 79.5 [77.0, 81.8] 65.5 [62.7, 68.3] 14.0
ILSVRC + Finetune ImageNet-VID (ResNet-152) 83.7 [81.4, 85.8] 69.7 [66.9, 72.3] 14.0
ILSVRC + Finetune ImageNet-VID-Det 76.3 [73.8, 78.8] 64.2 [61.3, 67.0] 12.1

Table 1: Accuracies of 5 different model types and best performing model, with ResNet 50 except where otherwise noted.
See Section 4.1 for details.

model trained for classification (76.3 vs. 79.5). While there
is a slight reduction in the accuracy drop caused by natural
perturbations, the reduction is well within the error bars for
this task.

4.2. Detection
To analyze the generalizability of natural perturbations

to other tasks, we next analyze their impact on the object lo-
calization and detection tasks. We report results for two re-
lated tasks: object localization and detection. Object detec-
tion is the standard computer vision task of correctly clas-
sifying an object and regressing the coordinates of a tight
bounding box containing the object. “Object localization”,
meanwhile, refers to the only the subtask of regressing to
the bounding box, without attempting to correctly classify
the object. This is an important problem from a practical
perspective (for example, the size and location of an ob-
stacle may be more important for navigation than the cate-
gory), as well as from an analytical perspective, as it allows
analyzing mistakes orthogonal to classification errors. For
example, it may be the case that natural perturbations cause
misclassification errors frequently, as it may be natural to
mistake a cat for a fox, but cause few localization errors.

We present our results using the popular Faster R-
CNN [11] and R-FCN [3, 13] architectures for object de-
tection and localization in Table 2. We first note the sig-
nificant drop in mAP of 12 � 15% for object detection due
to perturbed frames for both the Faster R-CNN and R-FCN
architectures. Next, we show that localization is indeed eas-
ier than detection, as the mAP increases significantly (e.g.,
from 61.8 to 75.5 for Faster R-CNN with ResNet 50 back-
bone). Perhaps surprisingly, however, switching to the lo-
calization task does not improve the delta between original
and perturbed frames, indicating that natural perturbations
induce both classification and localization errors. Finally,
we show examples of detection failures in Figure 3.

Figure 3: Naturally perturbed examples for detection. Red,
green, and white boxes indicate false positives, true pos-
itives, and groundtruth, respectively. Classification errors
are one of the most common failures, such as the fox on the
left, is misclassified as a sheep in the perturbed frame. How-
ever, detection models also have localization errors, such as
the airplane (middle) and the motorcycle (right). All visu-
alizations show predictions with confidence > 0.5.

Model mAP
Original

mAP
Perturbed

mAP
�

FRCNN, R50 61.8 47.8 14.3
FRCNN, R101 62.3 49.8 12.5
R-FCN, R101[13]* 79.0* 63.1* 15.9*

FRCNN, R50 - Loc. 75.5 63.1 12.4
FRCNN, R101 - Loc. 76.8 65.3 11.5
R-FCN, R101- Loc. 80.8* 70.2* 10.6*

Table 2: Detection and localization mAP for two Faster R-
CNN backbones. As localization is an easier task, the mAP
for localization is higher than for detection. However, both
detection and localization suffer from significant drops in
mAP due to the perturbations. (*Model trained on ILSVRC
Det and VID 2015 datasets, and evaluated on ILSVRC 2015
subset.)
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Appendix: A Systematic Framework for Natural
Perturbations from Videos

Anonymous Author(s)
Affiliation
Address
email

1 ImageNet-VID Details1

The 2015 ImageNet-Vid dataset is widely used for training video object detectors [8] as well as2

trackers [2]. We chose to work with the 2017 ImageNet-Vid dataset because it is a superset of the3

2015 dataset. In total, the 2017 ImageNet-Vid dataset consists of 1,181,113 training frames from4

4,000 videos and 512,360 validation frames from 1,314 videos. The videos have frame rates ranging5

from 9 to 59 frames per second (fps), with a median fps of 29. The videos range from 0.44 to 966

seconds in duration with a median duration of 12 seconds. Each frame is annotated with labels7

indicating the presence or absence of 30 object categories and corresponding bounding boxes for any8

label present in the frame.9

An advantage of using the ImageNet-Vid dataset as the source of our dataset is that all 30 object10

categories in the ImageNet-Vid dataset are contained within the WordNet [16] hierarchy, and are11

ancestors to 288 of the 1000 ILSVRC classes. Using the WordNet hierarchy we construct a canonical12

mapping from ILSVRC classes to ImageNet-Vid classes, which allows us to evaluate a litany of13

off-the-shelf ILSVRC-2012 models on ImageNet-Vid.14

2 Dissimilar Nearby Frames15

Anchor frame Discarded frame Anchor frame Anchor frame Discarded frameDiscarded frame

Figure 1: Temporally adjacent frames may not be visually similar. We visualize three randomly
sampled frame pairs where the nearby frame was marked during human review as "dissimilar" to the
anchor frame and discarded from our dataset.

3 pm-k Metric details16

Classification accuracy is defined as:17

accorig = 1� 1

N

NX

i=0

L0/1(f(ai), yi) (1)

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



Figure 2: Model classification accuracy on perturbed frames as a function of perturbation distance
(shown with 95% Clopper-Pearson confidence intervals). Model accuracies from 5 different model
types + best performing model are shown. Architecture is ResNet50 unless otherwise mentioned,

Where L0/1 is the standard 0-1 loss function. We define the pm-k analog of misclassification error18

as:19

accpmk = 1� 1

N

NX

i=0

max
b2Nk(ai)

L0/1(b, yi) (2)

Which simply corresponds to picking the worst frame from the each Nk(ai) set before computing20

misclassification accuracy.21

Detection The standard metric for detection is mean average precision of the predictions at a fixed22

intersection-over-union (IoU) threshold [14]. We briefly introduce the metric here, and refer the23

reader to [13] for further details.24

The standard detection metric proceeds by first determining whether each predicted bounding box25

in an image is a true or false positive, based on the intersection over union (IoU) of the predicted26

and ground truth boxes. The metric then computes the per-category Average Precision (AP) of the27

predictions across all images. The final metric is reported as the mean of these per-category APs28

(mAP), which we denote mAP({(f(ai), yi)}Ni=0).29

We define the pm-k analog of mAP by replacing each anchor frame in the dataset with a nearby30

frame that minimizes the per-image average precision. Note that as the category-specific average31

precision is undefined for categories not present in an image, we minimize the average precision32

across categories for each frame rather than the mAP. We then define the pm-k mAP as follows, with33

a slight abuse of notation to denote yb as the label for frame b:34

mAPpmk({f(ai), yi}Ni=0) = (3)

mAP
✓n

argminb2N (ai)AP (f(b), yb)
oN

i=0

◆

4 Accuracy vs Frame Perturbation Distance35

In Figure 2, we plot the relationship between perturbed accuracy and and perturbation distance (i.e the36

k in the pm-k metric described in Section 3). We note that the entire x-axis in Figure 2 corresponds37

to a temporal distance of 0s to 0.3s between the original and perturbed frames.38

5 Per Class Accuracies39

We study the effect of our peturbations on the 30 classes found in ImageNet-Vid-Robust to40

determine whethre our performance drop was concentrated in a few “hard” classes. Figure 3 shows a41

bar plot of original and peturbed accuracies across the 30 classes for our best perfoming model (a42

2



finetuned ResNet152). While this model saw a total drop of 13.7% between original and peturbed it43

saw a median drop of of 12.1% in per class accuracy across the 30 classes. Though there are a few44

difficult classes the adversary exploits quite a bit (lion, monkey), we find that the accuracy drop to be45

generally spread out across most of the 30 classes.

Figure 3: Per class accuracy statistics for our best performing classification model (fine-tuned
ResNet152) on ImageNet-Vid-Robust,

46

6 Related Work47

Adversarial Attacks. While adversarial examples have been studied in many settings, the majority48

of researchers focus on Lp robustness. In the `p adversarial model, the attacker adds a perturbation49

vector � such that k�kp < ✏, where ✏ is generally chosen such that the perturbation is imperceptible50

to humans. Adversarial attacks in the `p model are powerful and difficult to defend against; for51

example, the state of the art defenses still achieve mediocre classification accuracies on adversarial52

inputs (below 97% accuracy on MNIST [4] and below 60% on CIFAR-10 [21]). Motivated by the53

“artificial” nature of Lp attacks, recent work has proposed more realistic modifications to images.54

Engstrom et. al. [5] study an adversary that performs minor rotations and translations of the input,55

Hosseni et. al. [10] allow for hue and color changes, and Hendryks et. al. [9] study common56

image corruptions such as Gaussian blur and JPEG compression. Researchers have also successfully57

used generative adversarial networks (GANs) to synthesize more natural adversarial examples [22].58

However, even though the above examples are more realistic than the `p adversarial model, they still59

synthetically modify the images to generate the perturbations. In contrast, our work performs no60

synthetic modification and instead uses images that naturally occur in video.61

Using Videos To Study Robustness. Weiss and Azulay [1] introduce videos as a failure case of62

CNNs, and provide qualitative examples where models misclassify adjacent video frames (similar to63

Figure ??). In concurrent work to our own, Gu et. al. [7] exploit the temporal structure in videos64

to study robustness. However, they see a much smaller drop in classification performance (2.7%65

versus our 16%) when evaluating on worst case neighbor frames. We believe the primary reason66

for this discrepancy is the underlying difference in evaluation datasets. Gu et. al. evaluate on the67

YoutubeBB dataset [17], which is constructed by using CNNs to filter YouTube videos. This dataset68

filtering could introduce selection bias towards videos that are easier to classify by the CNN, possibly69

resulting in overly optimistic robustness evaluations. In contrast, ImageNet-Vid [19], from which70

we derive ImageNet-Vid-Robust, is constructed through expert review of YouTube videos. In71

addition, to the best of our knowledge, there was no exhaustive human verification of the adversarial72

frames in [7], while we use human verification.73

Distribution Shift. Small, benign changes in the test distribution are often referred to as Distribu-74

tion Shift. Recht et. al. [18] explore this phenomena by constructing new test sets for CIFAR-10 and75

ImageNet and observe performance drops for a large suite of models on the newly constructed test76

sets. However, the images in their test set bear little visual similarity to images in the original test set,77

while all of our failure cases in ImageNet-Vid-Robust are on perceptually similar images.78

Computer Vision. The sensitivity of models to small perturbations in videos has been a focus of79

attention in the computer vision community. A common issue when applying image based models80

to videos is flickering, where object detectors spuriously produce false-positives or false-negatives81

3



in isolated frames or groups of frames. Jin et. al. [11] explicitly identify such failures, and use a82

technique reminiscent of adversarially robust training to improve image-based models. A similar line83

of work focuses on improving object detection in videos as objects become occluded or move quickly84

[12, 6, 23, 20]. The focus in this line of work has generally been on improving object detection when85

objects transform in a way that makes recognition difficult from a single frame, such as fast motion86

or occlusion. In this work, we document a broader set of failure cases for image-based classifiers and87

detectors and show that failures occur when the neighboring frames are imperceptibly different.88

7 Discussion89

Modern machine learning methods are increasingly put to use in challenging, safety-critical environ-90

ments. Understanding and measuring the sensitivity of these methods in the real world is crucial for91

building robust and reliable machine learning systems. Our work presents a systematic framework,92

using a human verified dataset collected from videos, for quantifying a model’s sensitivity to natural93

perturbations. Using this framework, we show that these perturbations cause significant drops in94

accuracy across architectures for both classification and detection. Our work on analyzing this95

sensitivity opens multiple avenues for future work:96

Building Robust Models. Our ImageNet-Vid-Robust dataset provides a standard measure97

for robustness that can be applied to any classification or detection model. In ??, we evaluated a litany98

of commonly used models and found that all of them suffer significantly from natural perturbations.99

In particular, we found that improvements in models with respect to accuracy or with respect to100

artificial perturbations (such as image corruptions or L2/Linf adversaries), do not translate significant101

improvements in robustness to natural perturbations. We hope that our standardized dataset and102

evaluation metric will enable future work to quantify improvements in natural robustness directly.103

Other Natural Perturbations. Videos provide a straightforward method for collecting natural104

perturbations of images, admitting the study of “realistic” forms of robustness for machine learning105

methods. Other methods for generating these natural perturbations are likely to provide additional106

insights into model robustness. As an example, photo sharing websites contain a large number of107

near-duplicate images: pairs of images of the same scene captured at different times, viewpoints or108

from a different camera [18]. More generally, devising similar, domain-specific strategies to collect,109

verify and measure robustness to natural perturbations in domains such as natural language processing110

or speech recognition remains a promising direction for future work.111
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8 Experimental Details & Hyperparameters112

All classification experiments were carried out using PyTorch version 1.0.1 on an AWS p3.2xlarge113

with the NVIDIA V100 gpu. All pretrained models were downloaded from [3] at commit hash114

021d9. Evaluations in Table 3 all use the default settings for evaluation. The hyperparameters for115

the finetuned models are presented in Table 1. We searched for learning rates between 1e-3 and116

1e-5 for all models.117

We additionally detail hyperparameters for detection models in Table 2. Detection experiments were118

conducted with PyTorch version 1.0.1 on a machine with 4 Titan X GPUs, using the Mask R-CNN119

benchmark repository[15]. We used the default learning rate provided in [15]. For R-FCN, we used120

the model trained by [20].121

Table 1: Hyperparameters for models finetuned on ImageNet-Vid,

Model Base
Learning Rate

Learning Rate
Schedule Batch Size Epochs

resnet152 1e-4 Reduce LR On Plateau 32 10
resnet50 1e-4 Reduce LR On Plateau 32 10
alexnet 1e-5 Reduce LR On Plateau 32 10
vgg16 1e-5 Reduce LR On Plateau 32 10

Table 2: Hyperparameters for detection models.

Model Base
Learning Rate

Learning Rate
Schedule Batch Size Iterations

F-RCNN ResNet-50 1e-2 Step 20k, 30k 8 40k
F-RCNN ResNet-101 1e-2 Step 20k, 30k 8 40k

5



9 Full Original vs Perturbed Accuracy for ImageNet-Vid-Robust122

Model Accuracy
Original

Accuracy
Perturbed �

resnet152_finetune 83.7 69.7 14.0
resnet50_finetune 81.1 67.0 14.1
resnet50_finetune 79.5 65.5 14.0
resnet50_finetune 79.5 65.2 14.2
nasnetalarge 76.7 61.3 15.4
vgg16_finetune 76.6 61.0 15.6
resnet50_detection 76.3 64.2 12.1
inceptionresnetv2 74.8 58.0 16.8
dpn107 74.6 58.7 15.9
dpn107 74.6 58.7 15.9
inceptionv4 74.4 58.4 16.0
dpn98 73.9 58.7 15.2
dpn92 73.4 56.2 17.2
dpn131 73.1 59.0 14.1
dpn131 73.1 59.0 14.1
dpn68b 72.6 53.6 19.0
resnext101 72.4 56.8 15.6
resnext101 72.1 56.0 16.1
resnet152 71.9 56.3 15.5
resnet101 70.7 53.3 17.5
fbresnet152 70.7 53.6 17.1
densenet169 70.3 54.8 p 15.5
densenet169 69.5 52.5 17.0
densenet201 69.4 52.8 16.6
bninception 68.4 48.6 19.7
densenet121 68.3 50.1 18.2
dpn68 68.3 52.5 15.8
nasnetamobile 67.9 47.9 20.0
resnet50_imagenet_augment_jpeg_compression 67.9 52.4 15.5
resnet50_imagenet_augment_gaussian_blur 67.1 51.7 15.4
resnet34 67.0 47.5 19.5
resnet50_imagenet_augment_impulse_noise 66.9 49.9 17.0
resnet50 66.8 51.9 14.9
resnet50_imagenet_augment_gaussian_noise 66.7 50.4 16.3
resnet50_imagenet_augment_defocus_blur 65.5 47.2 18.3
resnet50_imagenet_augment_shot_noise 65.4 50.6 14.8
vgg16_bn 65.4 47.0 18.4
vgg19_bn 64.7 46.4 18.3
vgg19_bn 62.5 45.3 17.2
vgg13_bn 61.1 42.8 18.3
resnet18 61.0 41.2 19.8
vgg16 60.6 42.9 17.7
vgg11 60.1 42.8 17.3
vgg13 58.7 40.8 17.9
vgg11 56.9 41.0 15.8
alexnet_finetune 56.4 43.0 13.4
feature_denoise 53.7 41.4 12.3
squeezenet1 49.5 32.1 17.5
alexnet 49.0 32.2 16.8
resnet50_imagenet_augment_contrast_change 37.7 23.2 14.5

Table 3: Classification model perturbed and original accuracies for all models in our test bed
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