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ABSTRACT

Exploration in sparse reward reinforcement learning remains an open challenge.
Many state-of-the-art methods use intrinsic motivation to complement the sparse
extrinsic reward signal, giving the agent more opportunities to receive feedback
during exploration. Commonly these signals are added as bonus rewards, which
results in a mixture policy that neither conducts exploration nor task fulfillment
resolutely. In this paper, we instead learn separate intrinsic and extrinsic task
policies and schedule between these different drives to accelerate exploration and
stabilize learning. Moreover, we introduce a new type of intrinsic reward denoted
as successor feature control (SFC), which is general and not task-specific. It
takes into account statistics over complete trajectories and thus differs from previ-
ous methods that only use local information to evaluate intrinsic motivation. We
evaluate our proposed scheduled intrinsic drive (SID) agent using three different
environments with pure visual inputs: VizDoom, DeepMind Lab and DeepMind
Control Suite. The results show a substantially improved exploration efficiency
with SFC and the hierarchical usage of the intrinsic drives. A video of our exper-
imental results can be found at https://gofile.io/?c=HpEwTd.

1 INTRODUCTION

Reinforcement learning (RL) agents learn on evaluative feedback (reward signals) instead of in-
structive feedback (ground truth labels), which takes the process of automating the development of
intelligent problem-solving agents one step further (Sutton & Barto, 2018). With deep networks
as powerful function approximators bringing traditional RL into high-dimensional domains, deep
reinforcement learning (DRL) has shown great potential (Mnih et al., 2015; 2016; Schulman et al.,
2017; Horgan et al., 2018). However, the success of DRL often relies on carefully shaped dense ex-
trinsic reward signals. Although shaping extrinsic rewards can greatly support the agent in finding
solutions and shortening the interaction time, designing such dense extrinsic signals often requires
substantial domain knowledge, and calculating them typically requires ground truth state informa-
tion, both of which is hard to obtain in the context of robots acting in the real world. When not
carefully designed, the reward shape could sometimes serve as bias or even distractions and could
potentially hinder the discovery of optimal solutions. More importantly, learning on dense extrinsic
rewards goes backwards on the progress of reducing supervision and could prevent the agent from
taking full advantage of the RL framework.

In this paper, we consider terminal reward RL settings, where a signal is only given when the final
goal is achieved. When learning with only an extrinsic terminal reward indicating the task at hand,
intelligent agents are given the opportunity to potentially discover optimal solutions even out of the
scope of the well established domain knowledge.

However, in many real-world problems defining a task only by a terminal reward means that the
learning signal can be extremely sparse. The RL agent would have no clue about what task to
accomplish until it receives the terminal reward for the first time by chance. Therefore in those
scenarios guided and structured exploration is crucial, which is where intrinsically-motivated ex-
ploration (Oudeyer & Kaplan, 2008; Schmidhuber, 2010) has recently gained great success (Pathak
et al., 2017; Burda et al., 2018b). Most commonly in current state-of-the-art approaches, an intrinsic
reward is added as a reward bonus to the extrinsic reward. Maximizing this combined reward signal,
however, results in a mixture policy that neither acts greedily with regard to extrinsic reward max-

1

https://gofile.io/?c=HpEwTd


Under review as a conference paper at ICLR 2020

imization nor to exploration. Furthermore, the non-stationary nature of the intrinsic signals could
potentially lead to unstable learning on the combined reward. In addition, current state-of-the-art
methods have been mostly looking at local information calculated out of 1-step lookahead for the
estimation of the intrinsic rewards, e.g. one step prediction error (Pathak et al., 2017), or network
distillation error of the next state (Burda et al., 2018b). Although those intrinsic signals can be prop-
agated back to earlier states with temporal difference (TD) learning, it is not clear that this results in
optimal long-term exploration. We seek to address the aforementioned issues as follows:

1. We propose a hierarchical agent scheduled intrinsic drive (SID) that focuses on one moti-
vation at a time: It learns two separate policies which maximize the extrinsic and intrinsic
rewards respectively. A high-level scheduler periodically selects to follow either the extrin-
sic or the intrinsic policy to gather experiences. Disentangling the two policies allows the
agent to faithfully conduct either pure exploration or pure extrinsic task fulfillment. More-
over, scheduling (even within an episode) implicitly increases the behavior policy space
exponentially, which drastically differs from previous methods where the behavior policy
could only change slowly due to the incremental nature of TD learning.

2. We introduce successor feature control (SFC), a novel intrinsic reward that is based on
the concept of successor features. This feature representation characterizes states through
the features of all its successor states instead of looking at local information only. This
implicitly makes our method temporarily extended, which enables more structured and far-
sighted exploration that is crucial in exploration-challenging environments.

We note that both the proposed intrinsic reward SFC and the hierarchical exploration framework
SID are without any task-specific components, and can be incorporated into existing DRL methods
with minimal computation overhead. We present experimental results in three sets of environments,
evaluating our proposed agent in the domains of visual navigation and control from pixels, as well
as its capabilities of finding optimal solutions under distraction.

2 RELATED WORK

Intrinsic Motivation and Auxiliary Tasks Intrinsic motivation can be defined as agents conduct-
ing actions purely out of the satisfaction of its internal rewarding system rather than the extrinsic
rewards (Oudeyer & Kaplan, 2008; Schmidhuber, 2010). There exist various forms of intrinsic mo-
tivation and they have achieved substantial improvement in guiding exploration for DRL, in tasks
where extrinsic signals are sparse or missing altogether.

(Pathak et al., 2017) proposed to evaluate curiosity, one of the most widely used kinds of intrinsic
motivation, with the 1-step prediction error of the features of the next state made by a forward
dynamics model. Their ICM module has been shown to work well in visual domains including
first-person view navigation. Since ICM is potentially susceptible to stochastic transitions (Burda
et al., 2018a), Burda et al. (2018b) propose as a reward bonus the error of predicting the features of
the current state output by a randomly initialized fixed embedding network. The value function is
decomposed for extrinsic and intrinsic reward, but different to us a single mixture policy is learned.
Another form of curiosity, learning progress or the change in the prediction error, has been connected
to count-based exploration via a pseudo-count (Bellemare et al., 2016; Ostrovski et al., 2017) and
has also been used as a reward bonus. Savinov et al. (2018) propose to train a reachability network,
which gives out a reward based on whether the current state is reachable within a certain amount of
steps from any state in the current episode. Similar to our proposed SFC, their intrinsic motivation
is related to choosing states that could lead to novel trajectories. However, we use two different
distance metrics, theirs is explicitly learned to be proportional to the time step differences while
ours is based on successor features which measures two states by the difference of the average
feature activations of future trajectories. Moreover, their method rewards states with high distance
to the states in the current episode while our method rewards states with high distance to the states
also from past trajectories, as the successor features are trained from samples of the replay buffer.

Auxiliary tasks have been proposed for learning more representative and distinguishable features.
Mirowski et al. (2016) add depth prediction and loop closure prediction as auxiliary tasks for learn-
ing the features. Jaderberg et al. (2016) learn separate policies for maximizing pixel changes (pixel
control) and activating units of a specific hidden layer (feature control). However, their proposed
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UNREAL agent never follows those auxiliary policies as they are only used to learn more suitable
features for the main extrinsic task.

Hierarchical RL Various HRL approaches have been proposed (Kulkarni et al., 2016a; Bacon
et al., 2017; Vezhnevets et al., 2017; Krishnan et al., 2017). In the context of intrinsic motivation,
feature control (Jaderberg et al., 2016) has been adopted into a hierarchical setting (Dilokthanakul
et al., 2017), in which options are constructed for altering given features. However, they report that
a flat policy trained on the intrinsic bonus achieves similar performance to the hierarchical agent.

Our hierarchical design is perhaps inspired mostly by the work of Riedmiller et al. (2018). Un-
like other HRL approaches that try to learn a set of options (Sutton et al., 1999) to construct the
optimal policy, their proposed SAC agent aims to learn one flat policy that maximizes the extrinsic
reward. While SAC schedules between following the extrinsic task and a set of pre-defined auxiliary
tasks such as maximizing touch sensor readings or translation velocity, in this paper we investigate
scheduling between the extrinsic task and intrinsic motivation that is general and not task-specific.
A concurrent work along this line is presented by Beyer et al. (2019).

Successor Representation The successor representation (SR) was first introduced to improve gen-
eralization in TD learning (Dayan, 1993). While previous works extended SR to the deep setting
for better generalized navigation and control algorithms across similar environments and changing
goals (Kulkarni et al., 2016b; Barreto et al., 2017; Zhang et al., 2017), we focus on its temporarily
extended property to accelerate exploration.

SR has also been investigated under the options framework. Machado et al. (2017); Tomar* et al.
(2019) evaluate successor features with random policies to discover bottlenecks or landmarks based
on the clustering of such features. Options are then learned to navigate to those sub-goals. However,
it remained unclear if the options framework would help in sparse exploration setups.

When using SR to measure the intrinsic motivation, the most relevant work to ours is that of
Machado et al. (2018). They also design a task-independent intrinsic reward based on SR, how-
ever they rely on the concept of count-based exploration and propose a reward bonus, that vastly
differs from ours. Their bonus is inverse proportional to the norm of the SR while our formulation
rewards change in the SR of two successive states. We will present our proposed method in the next
section.

3 METHODS

We use the RL framework for learning and decision-making under uncertainty. It is formalized by
Markov decision processes (MDPs) defined by the tuple 〈S,A, p, r, γ〉. At time step t the agent
samples an action a ∈ A according to policy π(·|s), which depends on its current state s ∈ S . The
agent receives a scalar reward r ∈ R and transits to the next state s′ ∈ S. The distribution of the
corresponding state, action and reward process (St, At, Rt+1) is determined by the distribution of
the initial state S0, the transition operator p and the policy π. The goal of the agent is to find a
policy that maximizes the expectation of the sum of discounted rewards

∑T
k=0 γ

kRt+k+1. We seek
to speed up learning in sparse reward RL, where the reward signal is uninformative for almost all
transitions. We set the focus on terminal reward scenarios, where the agent only receives a single
reward of +1 for successfully accomplishing the task and 0 otherwise.

We will first introduce our proposed intrinsic reward successor feature control (SFC) (3.1,3.2), then
present our proposed hierachical framework for accelerating intrinsically motivated exploration,
which we denote as scheduled intrinsic drive (SID) (Sec.3.3,3.4).

3.1 SUCCESSOR DISTANCE METRIC

In order to encode long-term statistics into the design of intrinsic rewards for far-sighted exploration,
we build on the formulation of successor represention (SR), which introduces a temporally extended
view of the states. Dayan (1993) introduced the idea of representing a state s by the occupancies
of all other states from a process starting in s following a fixed policy π, where the occupancies
denote the average number of time steps the state process stays in each state per episode. Successor
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(a) Successor Distance (b) SFC Rewards (c) Random Exploration (d) Exploration with SFC

Figure 1: The four-room domain (Sutton et al., 1999). The agent starts at the red cross and transitions
to an adjacent state at each time step. The goal is to explore the four rooms when no extrinsic reward
is provided. In a) each state is annotated by its SD (Eq.3) to the starting state and b) shows for each
state the highest possible SFC reward (Eq.4) for a one-step transition from it. Here the successor
features are learned using a random walk. c) and d) show a comparison between visitation counts of
each state from a random agent and an agent that uses the SFC rewards for control via Q-learning.
In the latter case the successor features are learned from scratch via TD.
In this environment, the agent receives high rewards for crossing bottleneck states, when the SF are
learned beforehand, using a random policy. But even when the SF are learned during exploration,
bottleneck states are still visited disproportionately high. Furthermore the intrinsic reward greatly
improves exploration compared to a random agent. For implementation details see Appendix. D.4

features (SF) (Kulkarni et al., 2016b; Barreto et al., 2017) extend the concept to an arbitrary feature
embedding φ : S → Rm. For a fixed policy π and embedding φ the SF is defined by the |m|-
dimensional vector

ψπ,φ(s) := Eπ

[ ∞∑
t=0

γtφ(St)
∣∣∣S0 = s

]
. (1)

Analogously, the SF represent the average discounted feature activations, when starting in s and
following π. They can be learned by temporal difference (TD) updates

ψπ,φ(St)← ψπ,φ(St) + α
[
φ(St) + γψπ,φ(St+1)− ψπ,φ(St)

]
. (2)

SF have several interesting properties which make them appealing as a basis for an intrinsic reward
signal: 1) They can be learned even in the absence of extrinsic rewards and without learning a tran-
sition model and therefore combine advantages of model-based and model-free RL (Stachenfeld
et al., 2014). 2) They can be learned via computationally efficient TD. 3) They capture the expected
feature activations for complete episodes. Therefore they contain information even of spatially and
temporarily distant states which might help for effective far-sighted exploration. Given the discus-
sion, we introduce the successor distance (SD) metric that measures the distance between states by
the similarity of their SF

dπ,φ(s, s
′) := ||ψπ,φ(s)− ψπ,φ(s′)||2. (3)

Fig.1 a) shows an example of the successor distance metric in the tabular case. There the SD
roughly correlates to the length of the shortest path between the states. Using this metric to evaluate
the intrinsic motivation, one choice could be to use the SD to a fixed anchor state as the intrinsic
reward, which depends heavily on the anchor position. Even when a sensible choice for the anchor
can be found, e.g. the initial state of an episode, the SDs of distant states from the anchor assimilate.

For a pair of states with a fixed spatial distance, their SD is higher when they are located in different
rooms and the SD increases substantially when crossing rooms. Therefore the metric might capture
the connectivity of the underlying state space.

3.2 SUCCESSOR FEATURE CONTROL

This observation motivates us to define the intrinsic reward successor feature control (SFC) as the
squared SD of a pair of consecutive states

Rsfc
t+1 := ‖ψπ,φ(St+1)− ψπ,φ(St)‖22 . (4)
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A high SFC reward indicates a big change in the future feature activations when π is followed. We
argue this big change is a strong indicator of bottleneck states, since in bottlenecks a minor change
in the action selection can lead to a vastly different trajectory being taken. Fig.1b) shows that those
highly rewarding states under SFC and the true bottlenecks agree, which can be very valuable for
exploration (Lehnert et al., 2018).

3.3 SCHEDULED INTRINSIC DRIVE

The classical way of adding the intrinsic reward to the extrinsic reward has several drawbacks. First,
the final policy is not trained to maximize the actual objective but a mixed version. Second, the
intrinsic reward signal is usually changing over time. Including this non-stationary signal in the
overall reward can make learning of the actual task unstable. Furthermore, the performance is often
extremely sensitive to the scaling of the intrinsic reward relative to the extrinsic and hence it has to
be tuned very carefully for every environment.

To overcome these issues we propose scheduled intrinsic drive (SID), which learns two separate
policies, one for each reward signal. During each episode the scheduler samples several times which
of the two policies to follow for the next time steps. Each policy is trained off-policy from all of the
transitions irrespective of which policy collected the data.

As SID does not add the two reward signals no scaling parameter is needed. A policy is learned that
exclusively maximizes extrinsic reward and hence neither the final policy nor the learning process
is disturbed by the intrinsic reward. At the same time exploration is ensured as there is experience
collected by the policy that learns from the intrinsic reward. Furthermore, scheduling can help
exploration as each policy is acted on for an extended time interval, allowing long-term exploration
instead of local exploration. Besides that the agent is less susceptible to always go to a nearby
small reward instead of looking for other larger rewards that maybe further away. A mixture policy
might be attracted to the small reward while with SID the exploration policy is followed for several
timesteps which can bring the agent to new states with larger rewards that it did not know of before.

We investigated several types of high-level schedulers, however, none of them consistently outper-
forms a random one. We present possible explanations why a random scheduler already performs
well and present them in Appendix F along with the different scheduler choices we tested.

3.4 ALGORITHM IMPLEMENTATION

Our proposed method can be combined with an any approach that allows off-policy learning. This
section describes an instantiation of the SID framework when using Ape-X DQN as a basic off-
policy DRL algorithm Horgan et al. (2018) with SFC as the intrinsic reward, which we used for all
experiments. We depict this algorithm instance in Appendix Figure 8 and more details are provided
in Appendix C. The algorithm is composed of:

• A Q-Net {θϕ, θE, θI}: Contains a shared embedding θϕ and two Q-value output heads θE
(extrinsic) and θI (intrinsic).

• A SF-Net {θφ, θψ}: Contains an embedding θφ and a successor feature head θψ . θφ is ini-
tialized randomly and kept fixed during training. The output of SF-Net is used to calculate
the SFC intrinsic reward (Eq.4). The SF-net is trained with the samples of the replay buffer,
which contains the experience generated by the behavior policy.

• A high-level scheduler: Instantiated in each actor, selects which policy to follow (extrin-
sic or intrinsic) after a fixed number of environment steps (max episode length/M ). The
scheduler randomly picks one of the tasks with equal probability.

• N parallel actors (N = 8): Each actor instantiates its own copy of the environment, peri-
odically copies the latest model from the learner. We learn from K-step targets (K = 5),
so each actor at each environment step stores (st−K , at−K ,

∑K
k=1 γ

k−1rt−K+k, st) into a
shared replay buffer. Each actor will act according to either the extrinsic or the intrinsic
policy based on the current task selected by its scheduler.

• A learner: Learns the Q-Net (θE and θI are learned with the extrinsic and intrinsic reward re-
spectively) and the SF-Net from samples (Eq.2) from the same shared replay buffer, which
contains all experiences collected from following different policies.
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(a) MyWayHome (b) FlytrapEscape

(c) Corridor. (d) Exit. (e) Wing. (f) Goal.

Figure 2: VizDoom environments we evaluated on. 2a and 2b show the top-down views of My-
WayHome and FlytrapEscape with the same downscaling ratio, with red dots marking the starting
locations, green dots indicating the goal locations; 2c and 2d to 2f show exemplary first-person views
captured from the marked poses (blue dots with arrows) from those two maps respectively.

4 EXPERIMENTS

We evaluate our proposed intrinsic reward SFC and the hierarchical framework of intrinsic motiva-
tion SID in three sets of simulated environments: VizDoom (Kempka et al., 2016), DeepMind Lab
(Beattie et al., 2016) and DeepMind Control Suite (Tassa et al., 2018). Throughout all experiments,
agents receive as input only raw pixels with no additional domain knowledge or task specific in-
formation. We mainly compare the following agent configurations: M: Ape-X DQN with 8 actors,
train with only the extrinsic main task reward; ICM: train a single policy with the ICM reward bonus
(Pathak et al., 2017); RND: train a single policy with the RND reward bonus (Burda et al., 2018b);
Ours: with our proposed SID framework, schedule between following the extrinsic main task policy
and the intrinsic policy trained with our proposed SFC reward.

We carried out an ablation study, where we compare the performance of an agent with intrinsic and
extrinsic reward summed up, to the corresponding SID agent for each intrinsic reward type (ICM,
RND, SFC). We present the plots and discussions in Section 4.4 Appendix A.

For the intrinsic reward normalization and the scaling for the extrinsic and intrinsic rewards we do
a parameter sweep for each environment (Appendix C.4) and choose the best setting for each agent.
We notice that our scheduling agent is much less sensitive to different scalings than agents with
added reward bonus. Since our proposed SID setup requires an off-policy algorithm to learn from
experiences generated by following different policies, we implement all the agents under the Ape-X
DQN framework Horgan et al. (2018). After a parameter sweep we set the number of scheduled
tasks per episode to M = 8 for our agent in all experiments, meaning each episode is divided into
up to 8 sub-episodes, and for each of which either the extrinsic or the intrinsic policy is sampled as
the behavior policy. Appendix C and D contain additional information about experimental setups
and model training details.

4.1 VIZDOOM: SPARSE NAVIGATION

We start by verifying our implementation of the baseline algorithms in ”DoomMyWayHome” which
was previously used in several state-of-the-art intrinsic motivation papers (Pathak et al., 2017; Savi-
nov et al., 2018). The agent needs to navigate based only on first-person view visual inputs through
8 rooms connected by corridors (Fig.2a), each with a distinct texture (Fig.2c). The experimental
results are shown in Fig.3 (left). Since our basic RL algorithm is doing off-policy learning, it has
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Figure 3: Extrinsic rewards per episode obtained in MyWayHome (left) and FlytrapEscape (right).
Each plot shows the mean over 5 non-tuned random seeds. Figures showing the learning curves for
each run can be found in the Appendix in Figure 14 and 13.

relatively decent random exploration capabilities. We see that the M agent is able to solve the task
sometimes without any intrinsically generated motivations, but that all intrinsic motivation types
help to solve the task more reliably and speed up the learning. Our method solve the task the fastest,
but also ICM and RND learn to reach the goal reliably and efficiently.

We wanted to test the agents on a more difficult VizDoom map where structured exploration would
be of vital importance. We thus designed a new map which scales up the navigation task of MyWay-
Home. Inspired by how flytraps catch insects, we design the layout of the rooms in a geometrically
challenging way that escaping from one room to the next with random actions is extremely unlikely.
We show the layout of MyWayHome (Fig.2a) and FlytrapEscape (Fig.2b) with the same downscal-
ing ratio. The maze consists of 4 rooms separated by V-shaped walls pointing inwards the rooms.
The small exits of each room is located at the junction of the V-shape, which is extremely difficult
to maneuver into without a sequence of precise movements. As in the MyWayHome task, in each
episode, the agent starts from the red dot shown in Fig.2b with a random orientation. An episode
terminates if the final goal is reached and the agent will receive a reward of +1, or if a maximum
episode steps of 10,000 (2100 for MyWayHome) is reached. The task is to escape the fourth room.

The experimental results on FlytrapEscape are shown in Fig.3 (right). Neither M nor RND manages
to learn any useful policies. ICM solves the task in sometimes, while we can clearly observe that our
method efficiently explores the map and reliably learns how to navigate to the goal. We visualize
the learned successor features in Appendix E and its evolution over time is shown in the video
https://gofile.io/?c=HpEwTd.

4.2 DEEPMIND LAB: EXPLORATION UNDER DISTRACTION

In the second experiment, we set out to evaluate if the agents would be able to reliably collect the
faraway big reward in the presence of small nearby distractive rewards. For this experiment we
use the 3D visual navigation simulator of DeepMind Lab (Beattie et al., 2016). We constructed
a challenging level ”AppleDistractions” (Fig.10b) with a maximum episode length of 1350. In
this level, the agent starts in the middle of the map (blue square) and can follow either of the two
corridors. Each corridor has multiple sections and each section consists of two dead-ends and an
entry to next section. Each section has different randomly generated floor and wall textures. One of
the corridors (left) gives a small reward of 0.05 for each apple collected, while the other one (right)
contains a single big reward of 1 at the end of its last section. The optimal policy would be to go for
the single faraway big reward. But since the small apple rewards are much closer to the spawning
location of the agent, the challenge here is to still explore other areas sufficiently often so that the
optimal solution could be recovered.

The results are presented in Fig.4 (left). Ours received on average the highest rewards and is the
only method that learns to navigate to the large reward in every run. The baseline methods get eas-
ily distracted by the small short-term rewards and do not reliably learn to navigate away from the
distractions. With a separate policy for intrinsic motivation the agent can for some time interval
completely ”forget” about the extrinsic reward and purely explore, since it does not get distracted by
the easily reachable apple rewards and can efficiently learn to explore the whole map. In the mean-
while the extrinsic policy can simultaneously learn from the new experiences and might learn about
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Figure 4: Extrinsic rewards per episode obtained in AppleDistractions (left) and Cartpole (right).
Each plot shows the mean over 5 non-tuned random seeds. Left: Each agent is evaluated on the
same 5 sets of random floor and wall textures, with 5 non-tuned environment seeds. In the ablation
study (Appendix A) the SID variant outperforms the reward bonus variant of each of the 3 types of
intrinsic rewards. Right: Ours also outperforms all baseline agents in the very different domain of
classic control from pixels, which shows the general applicability of our proposed agent. Figures
showing the learning curves for each run can be found in the Appendix in Figure 15 and 16.

the final goal discovered by the exploration policy. This highlights a big advantage of scheduling
over bonus rewards, that it reduces the probability of converging to bad local optimums. In Section
4.4 we further showed that SID is generally applicable and also helps ICM and RND in this task.

4.3 DEEPMIND CONTROL SUITE: CLASSIC CONTROL FROM PIXELS

To show that our methods can be used in domains other than first-person visual navigation, we
evaluate on the classic control task ”cartpole: swingup sparse” (DeepMind Control Suite Tassa
et al. (2018)), using third-person view images as inputs (Fig.11). The pole starts pointing down and
the agent receives a single terminal reward of +1 for swinging up the unactuated pole using only
horizontal forces on the cart. Additional details are presented in Appendix D.3. The results are
shown in Fig.4 (right). Compared to the previous tasks, this task is easy enough to be solved without
intrinsic motivation, but we can see also that all intrinsic motivation methods significantly reduce
the interaction time. Ours still outperforms other agents even in the absence of clear bottlenecks
which shows its general applicability, but since the task is relatively less challenging for exploration,
the performance gain is not as substantial as the previous experiments.

4.4 ABLATION STUDY

Further, we conducted an ablation study on AppleDistractions. We denote with ”M+SFC”,
”M+RND”, ”M+ICM” the agents with one policy where the respective intrinsic reward is added
to the extrinsic one. With ”SID(M,SFC)”, ”SID(M,RND)”, ”SID(M,ICM)” the agents are named
that have two policies, one for the respective intrinsic and one for the extrinsic reward and use SID

Figure 5: Ablation study results for AppleDistractions. Each plot shows the mean over 5 non-tuned
random seeds.
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to schedule between them. We note that the ”SID(M,ICM)” agent corresponds to the ”Ours” agent
from the previous experiments. The results are presented in Figure 5. Our SID(M, SFC) agent
received on average the highest rewards. Furthermore, we see that scheduling helped both ICM
and SFC to find the goal and not settle for the small rewards, and SID also helps improve the per-
formance of RND. The respective reward bonus counterparts of the three SID agents were more
attracted to the small nearby rewards. This behavior is expected: By scheduling, the intrinsic policy
of the SID agent is assigned with its own interaction time with the environment, during which it
could completely ”forget” about the extrinsic rewards. The agent then has a much higher probability
of discovering the faraway big reward, thus escaping the distractions of the nearby small rewards.
Once the intrinsic policy collects these experiences of the big reward, the extrinsic policy can im-
mediately learn from those since both policies share the same replay buffer. Ablations for the other
environments are reported in Appendix A.

5 CONCLUSION

In this paper, we investigate an alternative way of utilizing intrinsic motivation for exploration in
DRL. We propose a hierarchical agent SID that schedules between following extrinsic and intrinsic
drives. Moreover, we propose a new type of intrinsic reward SFC that is general and evaluates the
intrinsic motivation based on longer time horizons. We conduct experiments in three sets of envi-
ronments and show that both our contributions SID and SFC help greatly in improving exploration
efficiency.

We consider many possible research directions that could stem from this work, including design-
ing more efficient scheduling strategies, incorporating several intrinsic drives (that are possibly or-
thogonal and complementary) instead of only one into SID, testing our framework in other control
domains such as manipulation, combining the successor representation with learned feature repre-
sentations and extending our evaluation onto real robotics systems.
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Figure 6: Ablation study results for FlytrapEscape (left) and Cartpole (right).

A APPENDIX: FURTHER ABLATION STUDIES

We have conducted ablation studies for all the three sets of environments to investigate the influence
of scheduling on our proposed method, whether other reward types can benefit from scheduling too,
and whether environment specific differences exist.

We compare the performance of the following agent configurations:

• Three reward bonus agents M+ICM, M+RND, M+SFC:
The agent receives the intrinsic reward of ICM (Pathak et al., 2017), RND (Burda et al.,
2018b) or our proposed SFC respectively as added bonus to the extrinsic main task reward
and trains a mixture policy on this combined reward signal. We note that the M+ICM and
M+RND agent in this section corresponds to the ICM and RND agent in all other sections
respectively.

• Three SID agents SID (M, ICM), SID (M, RND), SID (M, SFC):
The agent schedules between following the extrinsic main task policy and the intrinsic
policy trained with the ICM, RND or our proposed SFC reward respectively.

We note that the SID (M, SFC) agent in this section corresponds to the Ours agent in all other
sections.

The results on AppleDistractions were shown in in Section 4.4 the main paper. In Fig.6 (left),
we present the ablation study results for FlytrapEscape. The agents with the ICM component per-
form poorly. Only 1 run of M+ICM learned to navigate to the goal, while the scheduling agent
SID(M,ICM) did not solve the task even once. But for the two SFC agents, the scheduling greatly
improves the performance. Although the reward bonus agent M+SFC was not successful in every
run, the SID(M,SFC) agent solved the FlytrapEscape in 5 out of 5 runs. We hypothesize the reason
for the superior performance of SID(M,SFC) compared to M+SFC could be the following: Before
seeing the final goal for the first time, the M+SFC agent is essentially learning purely on the SFC
reward, which is equivalent to the intrinsic policy of the scheduling SID(M,SFC) agent. Since SFC
might preferably go to bottleneck states as the difference between the SF of the two neighboring
states are expected to be relatively larger for those states. Since the extrinsic policy is doing random
exploration before receiving any reward signal, it could be a good candidate to explore the next new
room from the current bottleneck state onwards. Then the SFs of the new room will be learned
when it is being explored, which would then guide the agent to the next bottleneck regions. Thus the
SID(M,SFC) agent could efficiently explore from bottleneck to bottleneck, while the M+SFC agent
could not be able to benefit from the two different behaviors under the extrinsic and intrinsic re-
wards and could oscillate around bottleneck states. On the other hand, scheduling did not help ICM
or RND. A reason could be that ICM or RND is not especially attracted by bottleneck states so it
does not help exploration if the agent spends half of the time acting randomly as the extrinsic policy
had no reward yet to learn from. Also since the FlytrapEscape environment is extremely exploration-
challenging, the temporally extended view of our proposed SFC might of vital importance to guide
efficient exploration.

In Fig.6 (right), we present the ablation study results for Cartpole. We can observe that SID helps
to improve the performance of both ICM and RND. As for SFC, although the reward bonus agent
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Figure 7: Results on ”DoomMyWayHome” for different times of scheduling per episode in SID
with SFC as intrinsic reward.

learns a bit faster than the SID agent, we note that actually all the three SID agent converge to more
stable policies, while the reward bonus agents tend to oscillate around the optimal return.

B APPENDIX: NUMBER OF SWITCHES PER EPISODE

In experiments of the main paper with SID the scheduler chooses 8 times per episode which policy
to follow until a new policy is chosen. We conducted a further experiment to examine how different
numbers of switches per episode affects the performance of the agent. We carried out the experiment
on ”DoomMyWayHome” with an agent using SID with SFC for the intrinsic reward. The results are
show in 7

C APPENDIX: IMPLEMENTATION DETAILS

This section describes implementation details and design choices. The backbone of our algorithm
implementation is presented in Section 3.4 and visualized in Fig. 8.

C.1 APE-X DQN

Since our algorithm requires an off-policy learning strategy, and in consideration for faster learning
and less computation overhead, we use the state-of-the-art off-policy algorithm Ape-X DQN Horgan
et al. (2018) with the K-step target (K = 5) for bootstraping without off-policy correction

yt =

k=K∑
k=1

γk−1Rt+k + γK max q(st+K , argmax
a′

q(st+K , a
′; θ−); θ),

where θ− denotes the target network parameters.

We chose the number of actors the be the highest the hardware supported, which was 8. To adapt
the ε settings from the 360 actors in the Ape-X DQN to our setting of N = 8 actors, we set a fixed
εi for each actor i ∈ {1, . . . , 8} as

εi = ε1+
(i−1) 360

N
360−1 α, (5)

where α = 7 and ε = 0.4 are set as in the original work.

C.2 PRIORITIZED EXPERIENCE REPLAY

For computational efficiency, we implement our own version of the prioritized experience replay.
We split the replay buffer into two, with size of 40, 000 and 10, 000. Every transition is pushed to
the first one, while in the second one only transitions are pushed on which a very large TD-error
is computed. We store a running estimate of the mean and the standard deviation of the TD-errors
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Figure 8: Flow diagram of the algorithm implementation (Sec.3.4).

and if for a transition the error is larger than the mean plus two times the standard deviation, the
transition is pushed. In the learner a batch of size 128 consists of 96 transitions drawn from the
normal replay buffer and 32 are drawn from the one that stores transition with high TD-error, which
as a result have relatively seen a higher chance of being picked.

C.3 SUCCESSOR FEATURE LEARNING

We note that previous works for learning the deep SF have included an auxiliary task of reconstruc-
tion on the features φ Kulkarni et al. (2016a); Zhang et al. (2017), while in this work we investigate
learning ψ without this extra reconstruction stream. Instead of adapting the features φwhile learning
the successor features ψ, we fix the randomly initialized φ. This design follows the intuition that
since SF (ψ) estimates the expectation of features (φ) under the transition dynamics and the policy
being followed, more stable learning of the SF could be achieved if the features are kept fixed.

The SF are learned from the same replay buffer as for training the Q-Net. Since our base algorithm is
K-step Ape-X, and we follow the memory efficient implementation of the replay buffer as suggested
in Ape-X, we only have access to K-step experience tuples (K = 5) for learning the SF. Therefore
we calculate the intrinsic reward by applying the canonical extension of the SFC reward formulation
(Eq.4) to K-step transitions

Rsfc
t+K = ‖ψπ,φ(St+K)− ψπ,φ(St)‖22 . (6)
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Figure 9: Model architecture for the SID (M, SFC) agent. Components with color yellow are
randomly intialized and not trained during learning.

The behaviour policy π associated with the SF is not given explicitly, but since the SF are learned
from the replay buffer via TD learning, it is a mixture of current and past behaviour policies from
all actors.

C.4 REWARD NORMALIZATION

Most network parameters are shared for estimating the expected discounted return of the intrinsic
and extrinsic rewards. The scale of the rewards has a big influence on the scale of the gradients
for the network parameters. Hence, it is important that the rewards are roughly on the same scale,
otherwise effectively different learning rates are applied. The loss of the network comes from the
regression on the Q-values, which approximate the expected return. So our normalization method
aims to bring the discounted return of both tasks into the same range. To do so we first normalize
the intrinsic rewards by dividing them by a running estimate of their standard deviation. We also
keep a running estimate of the mean of this normalized reward and denote it r′I . Since every time
step an intrinsic reward is received we estimate the discounted return via the geometric series. We
scale the extrinsic task reward that is always in {0, 1} with η r′I

1−γI , where γI is the discount rate for
the intrinsic reward. Furthermore, η is a hyperparameter which takes into account that for Q-values
from states more distant to the goal the reward is discounted with the discount rate for the extrinsic
reward depending on how far away that state is. In our experiments we set η = 3.

We did the same search for hyperparameters and normalization technique for all algorithms that
include an intrinsic reward and found out that the procedure above works best for all of them. The
algorithms were evaluated on the FlytrapEscape. For η we tried the values in {0.3, 1, 3, 10}. We
also tried to not normalize the rewards and just scale the intrinsic reward. To scale the intrinsic
reward we tried the values {0.001, 0.01, 0.1, 1}. However, we found that as the scale of the intrinsic
rewards is not the same over the whole training process this approach does not work well. We also
tried to normalize the intrinsic rewards by dividing it by a running estimate of its standard deviation
and then scale this quantity with a value in {0.01, 0.1, 1}.

C.5 MODEL ARCHITECTURE

We use the same model architecture as depicted in Fig. 9 across all 3 sets of experiments.

ReLU activations are added after every layer except for the last layers of each dashed blocks in the
above figure. For the experiments with the ICM (Pathak et al., 2017), we added BatchNorm (Ioffe &
Szegedy, 2015) before activation for the embedding of the ICM module following the original code
released by the authors. Code is implemented in pytorch (Paszke et al., 2017).
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(a) Entry.
(b) Top-down view

(c) Goal.

Figure 10: Top-down view and exemplary first-person view observations captured in the AppleDis-
tractions environment.

D APPENDIX: TRAINING DETAILS

We use a batch size of 128 for all experiments the Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 1e− 4.

For all experiments we used a stack of 4 consecutive, preprocessed observations as states.

For the first-person view experiments in VizDoom and DeepMind Lab, we use an action repetition
of 4, while for the classic control experiment we did not apply action repetition. In the text, we only
refer to the actual environment steps (e.g. before divided by 4).

D.1 ENVIRONMENT SETTINGS: VIZDOOM

The VizDoom environment produces 320 × 240 RGB images as observations. In a preprocessing
step, we downscaled the images to 84× 84 pixels and converted them to grayscale.

For FlytrapEscape, we adopted the action space settings from the MyWayHome task. The ac-
tion space was given by the following 5 actions: TURN LEFT, TURN RIGHT, MOVE FORWARD,
MOVE LEFT, MOVE RIGHT

D.2 ENVIRONMENT SETTINGS: DEEPMIND LAB

We setup the DmLab environment to produce 84 × 84 RGB images as observations. In Fig.10 we
show examplary observations of AppleDistractions. We preprocessed the images by converting the
observations to grayscale.

For a given enviroment seed, textures for each segment of the maze are generated at random.

We used the predefined DmLab actions from Espeholt et al. (2018). The action space was given by
the following 8 actions (no shooting setting): Forward, Backward, Strafe Left, Strafe Right, Look
Left, Look Right, Forward+Look Left, Forward+Look Right.

D.3 ENVIRONMENT SETTINGS: DEEPMIND CONTROL SUITE

We conducted the experiments for the classic control task on the ’Cart-pole’ domain with the
’swingup sparse’ task provided by the DeepMind Control Suite. Since our agents needs a discrete
action space and the control suite only provides continuous action spaces, we discretized the single
action dimension. The set of actions was {-0.5, -0.25, 0, 0.25, 0.5}. We configured the environment
to produce 84×84 RGB pixel-only observations from the 1st camera, which is the only predefined
camera that shows the full cart and pole at all times. We further convert the images to grey-scale
and stack four consecutive frames as input to our network. The episode length was 200 environment
steps.
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(a) Start (b) Swingup (c) Goal

Figure 11: Exemplary observations captured in the Cartpole environment.

D.4 ENVIRONMENT SETTINGS: FOUR-ROOM

In the four-room domain, the agent can transition to directly connected states using the four actions
’up’, ’down’, ’left’ and ’right’. For Fig.1 a),b) the successor features were calculated analytically
via the formula Ψ = (I−γP )−1, where P denotes the one-step transition matrix. The SF discount
factor was set to γ = 0.95.
For Fig.1 c),d) the agents performed 10000 episodes with 30 steps each. These short episodes ensure
that exploration remains challenging, even in a relatively small environment. In d), the learning rate
for the SF as well as the Q-table was set to 0.05. To prevent optimistic initialization effects the
Q-table was initialized to 0.

D.5 INFRASTRUCTURE

To generate our results we used two machines that run Ubuntu 16.04. Each machine has 4 GeForce
Titan X (Pascal) GPUs. On one machine we run 4 experiments in parallel, each experiment on a
separate GPU.

E APPENDIX: SUCCESSOR DISTANCE VISUALIZATION

Figure 12: Projection of the SFs. For the purpose of visualization we discretized the map into
85×330 grids and position the trained agent SID(M,SFC) at each grid, then computed the successor
features ψ for that location for each of the 4 orientations (0°, 90°, 180°, 270°), which resulted in a
4× 512 matrix. We then calculated the l2-difference of this matrix with a 4× 512 vector containing
the successor features of the starting position with the 4 different orientations. Shown in log-scale.

As an additional evaluation, we visualize the SF of an Ours agent (i.e. trained with SID which
schedules between the extrinsic policy and the SFC policy) at the end of the training (Fig.12). That
means the SF are trained with the experiences from the behaviour policy of our agent. We can see
that the SD from each coordinate to the starting position tends to grow as the geometric distance
increases, especially for those that locate on the pathways leading to later rooms. This shows that
the learned SD and the geometric distance are in good agreement and that the SF are learned as
expected. Furthermore, we observe big intensity changes around the bottlenecks (the room entries)
in the heatmap, which also supports the hypothesis that SFC leads the agent to bottleneck states.
We believe this is the first time that SF are shown to behave in a first-person view environment
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as one would expect from its definition. The evolution of the SF over time is shown in the video
https://gofile.io/?c=HpEwTd.

F APPENDIX: MORE DETAILS ON THE SCHEDULER

When learning optimal value functions or optimal policies via TD or policy gradient with deep
function approximators, optimizing with algorithms such as gradient descent means that the policy
would only evolve incrementally: It is necessary that the TD-target values do not change drastically
over a short period of time in order for the gradient updates to be meaningful. The common practice
of utilizing a target network in off-policy DRL (Mnih et al., 2015) stabilizes the update but in the
meanwhile making the policy adapt even more incrementally over each step.

But intrinsically motivated exploration, or exploration in general, might benefit from an opposite
treatment of the policy update. This is because the intrinsic reward is non-stationary by nature, as
well as the fact that the exploration policy should reflect the optimal strategy corresponding to the
current stage of learning, and thus is also non-stationary.

With the commonly adopted way of using intrinsic reward as a bonus to the extrinsic reward and train
a mixture policy on top, exploration would be a balancing act between the incrementally updated
target values for stable learning and the dynamically adapted intrinsic signals for efficient explo-
ration. Moreover, neither the extrinsic nor the intrinsic signal is followed for an extended amout of
time.

Therefore, we propose to address this issue with a hierarchical approach that by design has slowly
changing target values while still allowing drastic behavior changes. The idea is to learn not a single,
but multiple policies, with each one optimizing on a different reward function. To be more specific,
we assume to have N tasks T ∈ T (e.g. N = 2 and T = {TE,TI} where TE denotes the extrinsic
task and TI the intrinsic task) defined byN reward functions (e.g. RE andRI) that share the state and
action space. The optimal policy for each of these N different MDPs can be learned with arbitrary
off-policy DRL algorithms. During each episode, a high-level scheduler periodically selects a policy
for the agent to follow to gather experiences, and each policy is trained with all experiences collected
following those N different policies. The overall learning objective is to maximize the extrinsic
reward Eω(T|St)EπT(At|St) [qTE

(St, At|At ∼ πT(·|St))] (ω: the macro-policy of the scheduler).

By allowing the agent to follow one motivation at a time, it is possible to have a pool of N different
behavior policies without creating unstable targets for off-policy learning. By scheduling M times
even during an episode, we implicitly increase the behavior policy space by exponential to NM for
a single episode. Moreover, disentangling the extrinsic and intrinsic policy strictly separates station-
ary and non-stationary behaviors, and the different sub-objectives would each be allocated with its
own interaction time, such that extrinsic reward maximization and exploration do not distract each
other. We investigated several types of high-level schedulers, however, none of them consistently
outperforms a random one. We suspect the reason why a random scheduler already performs very
well under the SID framework, is that a highly stochastic schedule can be beneficial to make full use
of the big behavior policy space.

We investigated three types of high-level schedulers:

• Random scheduler: Sample a task from uniform distribution every task steps.
• Switching scheduler: Sequentially switches between extrinsic and intrinsic task.
• Macro-Q Scheduler: Learn a scheduler that learns with macro actions and from sub-

sampled experience tuples. In each actor, we keep an additional local buffer that stores
N + 1 subsampled experiences: {st−Nm, . . . , st−2m, st−m, st}. Then at each environ-
ment step, Besides the K-step experience tuple mentioned above, we also store an addi-
tional macro-transition {st−Nm, st} along with its sum of discounted rewards to the shared
replay buffer. This macro-transition is paired with the current task as its macro-action. The
Macro-Q Scheduler is then learned with an additional output head attached to θϕ (we also
tried θφ).

• Threshold-Q Scheduler: Selects task according to the Q-value output of the extrinsic task
head. For this scheduler no additional learning is needed. It just selects a task based on the
current Q-value of the extrinsic head θe. We tried the following selection strategies:
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– Running mean: select intrinsic when the current Q-value of the extrinsic head is below
its running mean, extrinsic otherwise

– Heuristic median: observing that the running mean of the Q-values might not be a
good statistics for selecting tasks due to the very unevenly distributed Q-values across
the map, we choose a fixed value that is around the median of the Q-values (0.007),
and choose intrinsic when below, extrinsic otherwise

As we report in the paper, none of the above scheduler choices consistently performs better across
all environments than a random scheduler. We leave this part to future work.

G APPENDIX: SINGLE RUNS

Figure 13: Learning curves for each run for each agent trained on the flytrap environment.

Figure 14: Learning curves for each run for each agent trained on the MyWayHome environment.

Figure 15: Learning curves for each run for each agent trained on the AppleDistraction environment.
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Figure 16: Learning curves for each run for each agent trained on the Cartpole environment.

20


	Introduction
	Related Work
	Methods
	Successor Distance Metric
	Successor Feature Control
	Scheduled Intrinsic Drive
	Algorithm Implementation

	Experiments
	VizDoom: Sparse Navigation
	DeepMind Lab: Exploration under Distraction
	DeepMind Control Suite: Classic Control from Pixels
	Ablation Study

	Conclusion
	Appendix: Further Ablation Studies
	Appendix: Number of Switches per Episode
	Appendix: Implementation Details
	Ape-X DQN
	Prioritized Experience Replay
	Successor Feature Learning
	Reward Normalization
	Model Architecture

	Appendix: Training Details
	Environment Settings: VizDoom
	Environment Settings: DeepMind Lab
	Environment Settings: DeepMind Control Suite
	Environment Settings: Four-Room
	Infrastructure

	Appendix: Successor Distance Visualization
	Appendix: More Details on the Scheduler
	Appendix: Single Runs

