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Abstract

The study of object representations in computer vision has primarily focused on
developing representations that are useful for image classification, object detection,
or semantic segmentation as downstream tasks. In this work we aim to learn object
representations that are useful for control and reinforcement learning (RL). To
this end, we introduce Transporter, a neural network architecture for discovering
concise geometric object representations in terms of keypoints or image-space
coordinates. Our method learns from raw video frames in a fully unsupervised
manner, by transporting learnt image features between video frames using a
keypoint bottleneck. The discovered keypoints track objects and object parts across
long time-horizons more accurately than recent similar methods. Furthermore,
consistent long-term tracking enables two notable results in control domains —
(1) using the keypoint co-ordinates and corresponding image features as inputs
enables highly sample-efficient reinforcement learning; (2) learning to explore
by controlling keypoint locations drastically reduces the search space, enabling
deep exploration (leading to states unreachable through random action exploration)
without any extrinsic rewards. Code for the model is available at: https://github.
com/deepmind/deepmind-research/tree/master/transporter.

1 Introduction

End-to-end learning of feature representations has led to advances in image classification [ 18], genera-
tive modeling of images [7] and agents which outperform expert humans at game play [23, 30]. However,
this training procedure induces task-specific representations, especially in the case of reinforcement
learning, making it difficult to re-purpose the learned knowledge for future unseen tasks. On the other
hand, humans explicitly learn notions of objects, relations, geometry and cardinality in a task-agnostic
manner [3 1] and re-purpose this knowledge to future tasks. There has been extensive research inspired
by psychology and cognitive science on explicitly learning object-centric representations from pixels.
Both instance and semantic segmentation has been approached using supervised [22, 25] and unsuper-
vised learning [2, 9, 14, 10, 16, 21, 6] methods. However, the representations learned by these methods
do not explicitly encode fine-grained locations and orientations of object parts, and thus they have not
been extensively used in the control and reinforcement learning literature. We argue that being able
to precisely control objects and object parts is at the root of many complex sensory motor behaviours.

In recent work, object keypoint or landmark discovery methods [39, 15] have been proposed to learn
representations that precisely represent locations of object parts. These methods predict a set of
Cartesian co-ordinates of keypoints denoting the salient locations of objects given image frame(s).
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Figure 1: Transporter. Our model leverages object motion to discover keypoints by learning to
transform a source video frame () into another target frame (x;) by transporting image features at
the discovered object locations. During training, spatial feature maps ® () and keypoints co-ordinates
V() are predicted for both the frames using a ConvNet and the fully-differentiable KeyNer [15]
respectively. The keypoint co-ordinates are transformed into Gaussian heatmaps (same spatial
dimensions as feature maps) Hy (z). We perform two operations in the transport phase: (1) the
features of the source frame are set to zero at both locations Hy () and Hy(4,); (2) the features in
the source image ®(x) at the target positions ¥ (x;) are replaced w1th the features from the target
image Hy(s,) - (). The final refinement ConvNet (which maps from the transported feature map
to an image) then has two tasks: (i) to inpaint the missing features at the source position; and (ii) to
clean up the image around the target positions. During inference, keypoints can be extracted for a
single frame via a feed-forward pass through the KeyNer (V).

However, as we will show, the existing methods struggle to accurately track keypoints under the
variability in number, size, and motion of objects present in common RL domains.

We propose Transporter, a novel architecture to explicitly discover spatially, temporally and geomet-
rically aligned keypoints given only videos. After training, each keypoint represents and tracks the
co-ordinate of an object or object part even as it undergoes deformations (see fig. 1 for illustrations). As
we will show, Transporter learns more accurate and more consistent keypoints on standard RL domains
than existing methods. We will then showcase two ways in which the learned keypoints can be used
for control and reinforcement learning. First, we show that using keypoints as inputs to policies instead
of RGB observations leads to drastically more data efficient reinforcement learning on Atari games.
Second, we show that by learning to control the Cartesian coordinates of the keypoints in the image
plane we are able to learn skills or options [32] grounded in pixel observations, which is an important
problem in reinforcement learning. We evaluate the learned skills by using them for exploration and
show that they lead to much better exploration than primitive actions, especially on sparse reward tasks.
Crucially, the learned skills are task-agnostic because they are learned without access to any rewards.

In summary, our key contributions are:

o Transporter learns state of the art object keypoints across a variety of commonly used RL envi-
ronments. Our proposed architecture is robust to varying number, size and motion of objects.

e Using learned keypoints as state input leads to policies that perform better than state-of-the-art
model-free and model-based reinforcement learning methods on several Atari environments,
while using only up to 100k environment interactions.

e | earning skills to manipulate the most controllable keypoints provides an efficient action
space for exploration. We demonstrate drastic reductions in the search complexity for
exploring challenging Atari environments. Surprisingly, our action space enables random
agents to play several Atari games without rewards and any task-dependent learning.
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Figure 2: Keypoint visualisation. Visualisations from our and state-of-the-art unsupervised
object keypoint discovery methods: Jakab et al. [15] and Zhang et al. [39] on Atari ALE [!] and
Manipulator [34] domains. Our method learns more spatially aligned keypoints, e.g. frosbite and
stack_4 (see section 4.1). Quantitative evaluations are given in fig. 4 and further visualisations in
the supplementary material.
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2 Related Work

Our work is related to the recently proposed literature on unsupervised object keypoint discovery [39,
I5]. Most notably, Jakab and Gupta et al. [15] proposed an encoder-decoder architecture with a
differentiable keypoint bottleneck. We reuse their bottleneck architecture but add a crucial new inductive
bias — the feature transport mechanism — to constrain the representation to be more spatially aligned
compared to all baselines. The approach in Zhang et al. [39] discovers keypoints using single images and
requires privileged information about temporal transformations between frames in form of optical flow.
This approach also requires multiple loss and regularization terms to converge. In contrast, our approach
does not require access to these transformations and learns keypoints with a simple pixel-wise L2 loss
function. Other works similarly either require known transformations or output dense correspondences
instead of discrete landmarks [35, 29, 33, 37]. Deep generative models with structured bottlenecks
have recently seen a lot of advances [3, | t), 36, 38, 12] but they do not explicitly reason about geometry.

Unsupervised learning of object keypoints has not been widely explored in the control literature, with
the notable exception of [5]. However, this model uses a full-connected layer for reconstruction and
therefore can learn non-spatial latent embeddings similar to a baseline we consider [15]. Moreover,
similar to [39] their auto-encoder reconstructs single frames and hence does not learn to factorize
geometry. Object-centric representations have also been studied in the context of intrinsic motivation,
hierarchical reinforcement learning and exploration. However, existing approaches either require
hand-crafted object representations [20] or have not been shown to capture fine-grained representations
over long temporal horizons [14].
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Figure 3: Temporal consistency of keypoints. Our learned keypoints are temporally consistent
across hundreds of environment steps, as demonstrated in this classical hard exploration game called
montezuma’s revenge [ 1]. Additionally, we also predict the most controllable keypoint denoted by
the triangular markers, without using any environment rewards. This prediction often corresponds
to the avatar in the game and it is consistently tracked across different parts of the state space. See
section 4.2.2 for further discussion.

3 Method

In section 3.1 we first detail our model for unsupervised discovery of object keypoints from videos.
Next, we describe the application of the learned object keypoints to control for — (1) data-efficient
reinforcement learning (section 3.2.1) and (2) learning keypoint based options for efficient exploration
(section 3.2.2).

3.1 Feature Transport for learning Object Keypoints

Given an image x, our objective is to extract K 2-dimensional image locations or keypoints,
U (x) € RE*2 which correspond to locations of objects or object-parts without any manual labels
for locations. We follow the formulation of [15] and assume access to frame pairs x,x; collected
from some trajectories such that the frames differ only in objects’ pose / geometry or appearance.
The learning objective is to reconstruct the second frame x, from the first . This is achieved by
computing ConvNet (CNN) feature maps ® (), ®(x;) € RF *W'*D and extracting K 2D locations
U (x,), ¥ (x;) € RE*2 by marginalising the keypoint-detetor feature-maps along the image dimensions
(as proposed in [15]). A transported feature map @(ms,mt) is generated by suppressing both sets of
keypoint locations in ® () and compositing in the featuremaps around the keypoints from x;:

O(s,20) 2 (1-Hu(w,) (1-Hue,)) ®(@s) +Ho(z,) P(24) (1)

where Hy is a heatmap image containing fixed-variance isotropic Gaussians around each of the K
points specified by W. A final CNN with small-receptive field refines the transported reconstruction
®(x,,2,) to regress the target frame ;. We use pixel-wise squared-¢, reconstruction error | &, — &, ||2
for end-to-end learning. The keypoint network W learns to track moving entities between frames to
enable successful reconstruction.

In words, (i) the features in the source image ® () at the target positions ¥ (x;) are replaced with
the features from the target image Hy (,) - ®(x¢) — this is the transportation; and (ii) the features
at the source position ¥ () are set to zero. The refine net (which maps from the transported feature
map to an image) then has two tasks: (i) to inpaint the missing features at the source position; and (ii) to
clean up the image around the target positions. Refer to fig. | for a concise description of our method.

Note, unlike [15] who regress the target frame from stacked target keypoint heatmaps Hy () and
source image features ® (), we enforce explicit spatial transport for stronger correlation with image
locations leading to more robust long-term tracking (section 4.1).



3.2 Object Keypoints for Control

Given learned keypoints, we want to use them within the context of control and exploration. Consider a
Markov Decision Process (MDP) with visual observations « € X’ as states, actions a € A and a transition
function T": (x¢,a) — (x+41,r+). Weuse a Transporter model { ¥, @} which is pre-trained in an unsuper-
vised fashion without extrinsic rewards. The agents output actions a; and receive rewards r; as normal.

3.2.1 Data-efficient reinforcement learning

Our first hypothesis is that task-agnostic learning of object keypoints can enable fast learning of
goal-directed policies. This is because once we learn keypoints, the control policy can be much simpler
and does not have to relearn all visual features using temporal difference learning. In order to test
this hypothesis, we use a variant of the neural fitted Q-learning framework [27] with learned keypoints
as input and a recurrent neural network Q function to output behaviors. The agent observes U (x+)
and @ () only at the corresponding masked keypoint locations. We encode one hot vectors to denote
positions of keypoints and their corresponding (keypoint mask averaged) feature vectors at that location.
To get these averaged features, The (Gaussian) heat-map (Hy ) is multiplied with the feature tensor
(®) and then spatially averaged to obtained this feature vector. Transporter is trained by collecting
data using a random policy and without any reward functions (see supplementary material for details).
The Transporter network weights are fixed during behavior learning given environment rewards.

3.2.2 Keypoint-based options for efficient exploration

Our second hypothesis is that learned keypoints can enable significantly better task-independent
exploration. Typically, raw actions are randomly sampled to bootstrap goal-directed policy learning.
This exploration strategy is notoriously inefficient. We leverage the Transporter representation to learn
anew action space. The actions are now skills grounded in the control of co-ordinate values of each
keypoint. This idea has been explored in the reinforcement learning community [20, 14] but it has
been hard to learn spatial features with long temporal consistency. Here we show that Transporter is
particularly amenable to this task. We show that randomly exploring in this space leads to significantly
more rewards compared to raw actions. Our learned action space is agnostic to the control algorithm
and hence other exploration algorithms [24, 4, 26] can also benefit from using it.

To do this, we define K x 4 intrinsic reward functions using the keypoint locations, similar to
[14]. Each reward function corresponds to how much each keypoint moves in the 4 cardinal
directions (up, down, left, right) between consecutive observations. We learn a set of K x 4
Q function {Q; ;|i € {1,..., K}, 5 € {1,2,3,4}}, to maximise each of the following reward
functions: i1 = \Ili;(wt—i-l) - ‘I/;(:ct), ri2 = \I/;(il:t) - \I/;(:vtﬂ), T3 = ‘I’;(CL'H_1) - ‘l/;(ar:t),
Tia4 = \I/; (xy) — \Ij;(wt+1). These functions correspond to increasing/decreasing the x and y
coordinates respectively. The () functions are trained using n-step Q(\).

During training, we randomly sample a particular Q function to act with and commit to this choice
for T timesteps before resampling. All Q functions are trained using experiences generated from all
policies via a shared replay buffer. Randomly exploring in this Q space can already reduce the search
space as compared to raw actions. We further reduce this search space by learning to predict the most
controllable keypoint. For instance, in many Atari games there is an avatar that is directly controllable
on the screen. We infer this abstraction via a fixed controllability policy to select the single “most

controllable” keypoint: mggqp(s) =argmax; 5 Z?ZlmaXan (s;a) —min,Q; ;(s;a).

This procedure picks keypoints where one action leads to more prospective change in all spatial
directions than all other keypoints. Given this keypoint, we randomly sample a j with a fixed temporal
commitment 7" as the random exploration policy. Consider a sequence of 100 actions with 18 choices
before receiving rewards, which is typically the case in hard exploration Atari games (e.g. montezuma’s
revenge). A random action agent would need to search in the space of 18'%° raw actions. However,
observing 5 keypoints and 7' = 20 only has (5 x 4)10%/29  giving a search space reduction of 100
The search space reduces further when we explore with the most controllable keypoints. Since our
learned action space is agnostic to the control mechanism, we evaluate them by randomly searching
in this space versus raw actions. We measure extrinsically defined game score as the metric to evaluate
the effectiveness of both search procedures.
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Figure 4: Long-term tracking evaluation. We compare long-term tracking ability of our keypoint
detector against Jakab ef al. [15] and Zhang et al. [39] (visualisations in fig. 2 and supplementary
material). We report precision and recall for trajectories of varying lengths (lengths =1 — 200 frames;
each frame corresponds to 4 action repeats) against ground-truth keypoints on Atari ALE [!] and
Manipulator [34] domains. Our method significantly outperforms the baselines on all games (100%
on pong), except for ms_pacman where we perform similarly especially for long trajectories (length
=200). See section 4.1 for further discussion.

4 Experiments

In section 4.1 we first evaluate the long-term tracking ability of our object keypoint detector. Next,
in section 4.2 we evaluate the application of the keypoint detector on two control tasks — comparison
against state-of-the-art model-based and model-free methods for data-efficient learning on Atari ALE
games [ 1] in section 4.2.1, and in section 4.2.2 examine efficient exploration by learning to control
the discovered keypoints; we demonstrate reaching states otherwise unreachable through random
explorations on raw-actions, and also recover the agent self as the most-controllable keypoint. For
implementation details, please refer to the supplementary material.

Datasets. We evaluate our method on Atari ALE [1] and Manipulator [34] domains. We chose
representative levels with large variations in the type and number of objects. (1) For evaluating
long-term tracking of object keypoints section 4.1 we use — pong, frostbite, ms_pacman, and
stack_4 (manipulator with blocks). (2) For data-efficient reinforcement learning (section 4.2.1)
we train on diverse data collected using random exploration on the Atari games indicated in fig. 6.
(3) For keypoints based efficient-exploration (section 4.2.2) we evaluate on one of the most difficult
exploration game — montezuma revenge, along with ms_pacman and seaquest.

A random policy executes actions and we collect a trajectory of images before the environment resets;
details for data generation are presented in the supplementary material. We sample the source and
target frames x,,x; randomly within a temporal offset of 1 to 20 frames, corresponding to small
or significant changes in the the configuration between these two frames respectively. For Atari
ground-truth object locations are extracted from the emulated RAM using hand crafted per-game rules
and for Manipulator it is extracted from the simulator geoms. The number of keypoints K is set to
the maximum number of moving entities in each environment.

4.1 Evaluating Object Keypoint Predictions

Baselines. We compare our method against state-of-the-art methods for unsupervised discovery
of object landmarks — (1) Jakab et al. [15] and (2) Zhang et al. [39]. For (1) we use exactly the same
architecture for ® and ¥ as ours; for (2) we use the implementation released online by the authors
where the image-size is set to 80 x 80 pixels. We train all the methods for 10° optimization steps and
pick the best model checkpoint based on a validation set.
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Figure 5: Agent architecture for data-efficient reinforcement learning. Transporter is trained
off-line with data collected using a random policy. A recurrent variant of the neural-fitted Q-learning
algorithm [27] rapidly learns control policies using keypoint co-ordinates and features at the
corresponding locations given game rewards.

Game \ KeyQN (ours) SimPLe Rainbow PPO (100k) Human Random

breakout 193 (4.5) 12.7 (3.8) 3.3 (0.1) 59 (3.3) 31.8 1.7
frostbite  |388.3 (142.1) 254.7 (4.9)  140.1 (2.7) 174.0 (40.7) 43347 65.2
ms_pacman |999.4 (145.4) 762.8 (331.5) 3643 (20.4) 496.0 (379.8) 15693.0  307.3
pong 10.8 (5.7) 52 (9.7) -19.5 (0.2) -20.5 (0.6) 93 207
seaquest  |236.7 (22.2) 370.9 (128.2) 2063 (17.1) 370.0 (103.3) 20182.0  -20.7

Figure 6: Atari Mean Scores. Mean scores (and std-dev in parentheses) obtained by our method
(three random seeds) in comparison with Rainbow [1 1], SimPLe [17] and PPO [28] trained on 100K
steps (400K frames). See section 4.2.1 for details. Numbers (except for KeyQN) taken from [17].

Metrics. We measure the precision and recall of the detected keypoint trajectories, varying their
lengths from 1 to 200 frames (200 frames ~ 13 seconds @ 15-fps with action-repeat of 4) to evaluate
long-term consistency of the keypoint detections crucial for control. The average Euclidean distance
between each detected and ground-truth trajectory is computed. The time-steps where a ground-truth
object is absent are ignored in the distance computation. Distances above a threshold (e) are excluded
as potential matches.! One-to-one assignments between the trajectories are then computed using
min-cost linear sum assignment, and the matches are used for reporting precision and recall.

Results. Figure 2 visualises the detections while fig. 4 presents precision and recall for varying
trajectory lengths. Transporter consistently tracks the salient object keypoints over long time horizons
and outperforms the baseline methods on all environments, with the notable exception of [15] on
pacman where our method is slightly worse but achieves similar performance for long-trajectories.

4.2 Using Keypoints for Control
4.2.1 Data-efficient Reinforcement Learning on Atari

We demonstrate that using the learned keypoints and corresponding features within a reinforcement
learning context can lead to data-efficient learning in Atari games. Following [17], we trained our
Keypoint Q-Network (KeyQN) architecture for 100,000 interactions, which corresponds to 400,000
frames. As shown in fig. 6, our approach is better than the state-of-the-art model-based SimPLe
architecture [ | 7] and model-free Rainbow architecture [ 1 1] on four out of five games. Applying this
approach to all Atari games will require training Transporter inside the reinforcement learning loop
because pre-training keypoints on data from a random policy is insufficient for games where new objects
or screens can appear. However, these experiments provide evidence that the right visual abstractions
and simple control algorithms can produce highly data efficient reinforcement learning algorithms.

!The threshold value (e) for evaluation is set to the average ground-truth spatial extent of entities for each
environment.
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Figure 7: Exploration using random actions versus random (most controllable) keypoint option
/ skills: (first row) We perform random actions in the environment for all methods (without reward)
and record the mean and standard deviation of episodic returns across 4 billion frames. With the same
frame budget, we simultaneously learn the most controllable keypoint and randomly explore in the
space of its co-ordinates (to move it left, right, top, down). The options model becomes better with
training (using only intrinsic rewards) and this leads to higher extrinsically defined episodic returns.
Surprisingly, our learned options model is able to play several Atari games via random sampling of
options. This is possible by learning skills to move the discovered game avatar as far as possible without
dying. (second row) We measure the percentile episodic return reached for all methods. Our approach
outperforms the baseline, both in terms of efficient and robust exploration of rare and rewarding states.

4.2.2 Efficient Exploration with Keypoints

How do we learn skills using object keypoints for efficient exploration? We use a distributed off-policy
learner similar to [13] using 128 actors and 4 GPUs. The agent network is a standard [23] with an
LSTM with 256 hidden units which feeds into a linear layer with /' X 4 X a units where a is the number
of actions. Our transporter model and all control policies simultaneously. The data is generated by
randomly sampling keypoints and coordinates, and then following the resulting policy for 7' = 20
timesteps before resampling. We use a log-scale epsilon distribution for all policies (.4 to 1e-4). During
evaluation we use the g4y to select the keypoint to control and then randomly sample a coordinate
every T timesteps. The quantitative results are shown in fig. 7. We also show qualitative results of
the most controllable keypoint in fig. 3 and the supplementary material.

Our experiments clearly validate our hypothesis that using keypoints enables temporally extended
exploration. As shown in fig. 7, our learned keypoint options consistently outperform the random
actions baseline by a large margin. Encouragingly, our random options policy is able to play some
Atari games by moving around the avatar (most controllable keypoint) in different parts of the state
space without dying. For instance, the agent explores multiple rooms in Montezuma’s Revenge,
a classical hard exploration environment in the reinforcement learning community. Similarly, our
keypoint exploration learns to consistently move around the submarine in Seaquest and the avatar in Ms.
Pacman. Most notably, this is achieved without rewards or (extrinsic) task-directed learning. Therefore
our learned keypoints are stable enough to learn complex object-oriented skills in the Atari domain.

5 Conclusion

We demonstrate that it is possible to learn stable object keypoints across thousands of environment
steps, without having access to task-specific reward functions. Therefore, object keypoints could
provide a flexible and re-purposable representation for efficient control and reinforcement learning.
Scaling keypoints to work reliably on richer datasets and environments is an important future area of
research. Further, tracking objects over long temporal sequences can enable learning object dynamics



and affordances which could be used to inform learning policies. A limitation of our model is that
we do not currently handle moving backgrounds. Recent work [8] that explicitly reasons about camera
/ ego motion could be integrated to globally transport features between source and target frames. In
summary, our experiments provide clear evidence that it is possible to learn visual abstractions and
use simple algorithms to produce highly data efficient control policies and exploration procedures.

Acknowledgements. We thank Loic Matthey and Relja Arandjelovi¢ for valuable discussions and
comments.
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