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ABSTRACT

We study the most practical problem setup for evaluating adversarial robustness
of a machine learning system with limited access: the hard-label black-box at-
tack setting for generating adversarial examples, where limited model queries
are allowed and only the decision is provided to a queried data input. Several
algorithms have been proposed for this problem but they typically require huge
amount (>20,000) of queries for attacking one example. Among them, one of
the state-of-the-art approaches (Cheng et al., 2019) showed that hard-label attack
can be modeled as an optimization problem where the objective function can be
evaluated by binary search with additional model queries, thereby a zeroth order op-
timization algorithm can be applied. In this paper, we adopt the same optimization
formulation but propose to directly estimate the sign of gradient at any direction
instead of the gradient itself, which enjoys the benefit of single query. Using
this single query oracle for retrieving sign of directional derivative, we develop
a novel query-efficient Sign-OPT approach for hard-label black-box attack. We
provide a convergence analysis of the new algorithm and conduct experiments
on several models on MNIST, CIFAR-10 and ImageNet. We find that Sign-OPT
attack consistently requires 5x to 10x fewer queries when compared to the current
state-of-the-art approaches, and usually converges to an adversarial example with
smaller perturbation.

1 INTRODUCTION

It has been shown that neural networks are vulnerable to adversarial examples (Szegedy et al.,|2016;
Goodfellow et al., 20155 |Carlini & Wagner, 2017} |Athalye et al.| [2018)). Given a victim neural
network model and a correctly classified example, an adversarial attack aims to compute a small
perturbation such that with this perturbation added, the original example will be misclassified. Many
adversarial attacks have been proposed in the literature. Most of them consider the white-box setting,
where the attacker has full knowledge about the victim model, and thus gradient based optimization
can be used for attack. Popular Examples include C&W (Carlini & Wagner, 2017) and PGD (Madry
et al.,|2017) attacks. On the other hand, some more recent attacks have considered the probability
black-box setting where the attacker does not know the victim model’s structure and weights, but can
iteratively query the model and get the corresponding probability output. In this setting, although
gradient (of output probability to the input layer) is not computable, it can still be estimated using
finite differences, and algorithms many attacks are based on this (Chen et al.,[2017;|Ilyas et al.|[2018a;
Tu et al., 2019; Jun et al., 2018)).

In this paper, we consider the most challenging and practical attack setting — hard-label black-box
setting — where the model is hidden to the attacker and the attacker can only make queries and get the
corresponding hard-label decisions (e.g., predicted labels) of the model. A commonly used algorithm
proposed in this setting, also called Boundary attack (Brendel et al.,|2017), is based on random walks
on the decision surface, but it does not have any convergence guarantee. More recently, Cheng et al.
(2019) showed that finding the minimum adversarial perturbation in the hard-label setting can be
reformulated as another optimization problem (we call this Cheng’s formulation in this paper). This
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new formulation enjoys the benefit of having a smooth boundary in most tasks and the function value
is computable using hard-label queries. Therefore, the authors of (Cheng et al.,2019) are able to use
standard zeroth order optimization to solve the new formulation. Although their algorithm converges
quickly, it still requires large number of queries (e.g., 20,000) for attacking a single image since every
function evaluation of Cheng’s formulation has to be computed using binary search requiring tens of
queries.

In this paper, we follow the same optimization formulation of (Cheng et al., 2019) which has
the advantage of smoothness, but instead of using finite differences to estimate the magnitude
of directional derivative, we propose to evaluate its sign using only a single query. With this
single-query sign oracle, we design novel algorithms for solving the Cheng’s formulation, and we
theoretically prove and empirically demonstrate the significant reduction in the number of queries
required for hard-label black box attack.

Our contribution are summarized below:

e Novelty in terms of adversarial attack. We elucidate an efficient approach to compute the
sign of directional derivative of Cheng’s formulation using a single query, and based on
this technique we develop a novel optimization algorithm called Sign-OPT for hard-label
black-box attack.

e Novelty in terms of optimization. Our method can be viewed as a new zeroth order
optimization algorithm that features fast convergence of signSGD. Instead of directly taking
the sign of gradient estimation, our algorithm utilizes the scale of random direction. This
make existing analysis inappropriate to our case, and we provide a new recipe to prove the
convergence of this new optimizer.

e We conduct comprehensive experiments on several datasets and models. We show that the
proposed algorithm consistently reduces the query count by 5—-10 times across different
models and datasets, suggesting a practical and query-efficient robustness evaluation tool.
Furthermore, on most datasets our algorithm can find an adversarial example with smaller
distortion compared with previous approaches.

2 RELATED WORK

White-box attack Since it was firstly found that neural networks are easy to be fooled by adversarial
examples (Goodfellow et al., 2015), a lot of work has been proposed in the white-box attack
setting, where the classifier f is completely exposed to the attacker. For neural networks, under this
assumption, back-propagation can be conducted on the target model because both network structure
and weights are known by the attacker. Algorithms including (Goodfellow et al., 2015} |[Kurakin
et al.| [2016; |Carlini & Wagner, 2017; Chen et al.||2018; Madry et al.|[2017) are then proposed based
on gradient computation. Recently, the BPDA attack introduced by |Athalye et al.|(2018)) bypasses
some models with obfuscated gradients and is shown to successfully circumvent many defenses. In
addition to typical attacks based on small ¢, norm perturbation, non-£,, norm perturbations such as
scaling or shifting have also been considered (Zhang et al.| 2019).

Black-box attack Recently, black-box setting is drawing rapidly increasing attention. In black-box
setting, the attacker can query the model but has no (direct) access to any internal information
inside the model. Although there are some works based on transfer attack (Papernot et al., [2017),
we consider the query-based attack in the paper. Depending on the model’s feedback for a given
query, an attack can be classified as a soft-label or hard-label attack. In the soft-label setting, the
model outputs a probability score for each decision. |Chen et al.| (2017) uses a finite difference
in a coordinate-wise manner to approximately estimate the output probability changes and does a
coordinate descent to conduct the attack. Ilyas et al.|(2018a) uses Neural evolution strategy (NES) to
approximately estimate the gradient directly. Later, some variants (Ilyas et al., 2018b; Tu et al.,[2019)
were proposed to utilize the side information to further speed up the attack procedure. |Alzantot et al.
(2019)) uses a evolutionary algorithm as a black-box optimizer for the soft-label setting. Recently,
Al-Dujaili & O’Reilly|(2019) proposes SignHunter algorithm based on signSGD (Bernstein et al.,
2018)) to achieve faster convergence in the soft-label setting. The recent work (Al-Dujaili & O’Reillyl
2019) proposes SignHunter algorithm to achieve a more query-efficent sign estimate when crafting
black-box adversarial examples through soft-label information.
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In the hard-label case, only the final decision, i.e. the top-1 predicted class, is observed. As a result,
the attacker can only make queries to acquire the corresponding hard-label decision instead of the
probability outputs. Brendel et al.[(2017) first studied this problem and proposed an algorithm based
on random walks near the decision boundary. By selecting a random direction and projecting it
onto a boundary sphere in each iteration, it aims to generate a high-quality adversarial example.
Query-Limited attack (Ilyas et al.| |2018a) tries to estimate the output probability scores with model
query and turn the hard-label into a soft-label problem. |(Cheng et al.|(2019)) instead re-formalizes the
hard-label attack into an optimization problem that finds a direction which could produce the shortest
distance to decision boundary.

The recent arXiv paper (Chen et al.,|2019)) applied the zeroth-order sign oracle to improve Boundary
attack, and also demonstrated significant improvement. The major differences to our algorithm are
that we propose a new zeroth-order gradient descent algorithm, provide its algorithmic convergence
guarantees, and aim to improve the query complexity of the attack formulation proposed in (Cheng
et al| 2019). For completeness, we also compare with this method in Section[A.T} Moreover, (Chen
et al.,[2019)) uses one-point gradient estimate, which is unbiased but may encounter larger variance
compared with the gradient estimate in our paper. Thus, we can observe in Section[A ] that although
they are slightly faster in the initial stage, Sign-OPT will catch up and eventually lead to a slightly
better solution.

3 PROPOSED METHOD

We follow the same formulation in (Cheng et al., 2019) and consider the hard-label attack as the
problem of finding the direction with shortest distance to the decision boundary. Specifically, for a
given example x, true label y and the hard-label black-box function f : R — {1,..., K}, the
objective function g : R? — R (for the untargeted attack) can be written as:
0
wmin g(6) where 9(6) = argmin <f<xo +Aggn) y) M)

It has been shown that this objective function is usually smooth and the objective function g can be
evaluated bg/ a binary search procedure locally. At each binary search step, we query the function
flxo + )‘W) and determine whether the distance to decision boundary in the direction @ is greater

or smaller than A based on the hard-label predictionﬂ

As the objective function is computable, the directional derivative of g can be estimated by finite
differences:

- (7] —g(0

$g(0:u) 9(0 +eu) —g(8) )

€

where v is a random Gaussian vector and ¢ > 0 is a very small smoothing parame-
ter. This is a standard zeroth order oracle for estimating directional derivative and based
on this we can apply many different zeroth order optimization algorithms to minimize g.
For example, |Cheng et al.[(2019) used the Random Deriva-
tive Free algorithm |Nesterov & Spokoiny|(2017) to solve
problem (I). However, each computation of (2)) requires
many hard-label queries due to binary search, so|Cheng immem
et al.|(2019) still requires a huge number of queries despite
having fast convergence.

Class Y,

In this work, we introduce an algorithm that hugely im-
proves the query complexity over|Cheng et al.|(2019). Our

algorithm is based on the following key ideas: (i) one does o) lfrew q(0)
S RS (16 + eull

not need very accurate values of directional derivative in

order to make the algorithm converge, and (ii) there exists Original Image Xo

an imperfect but informative estimation of directional

derivative of g that can be computed by a single query. Figure 1: Illustration

'Note that binary search only works in a small local region; in more general case g(8) has to be computed
by a fine-grained search plus binary search, as discussed in|Cheng et al.|(2019).
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Algorithm 1: Sign-OPT attack
Input: Hard-label model f, original image x, initial 6 ;
fort=1,2,...,Tdo
Randomly sample w1, ..., ug from a Gaussian or Uniform distribution;
Compute § + & 222:1 sign(g(0; + euy) — g(6y)) - uy ;
Update 6,1 <+ 0, — g ;
Evaluate g(0;) using the same search algorithm in|Cheng et al.| (2019) ;
end

3.1 A SINGLE QUERY ORACLE

As mentioned before, the previous approach requires com-

puting g(0 + eu) — g(@) which consumes a lot of queries. However, based on the definition of g(-),
we can compute the sign of this value sign(g(0 + eu) — g(8)) using a single query. Considering the
untargeted attack case, the sign can be computed by

. +1, 20 + g(0) 8wy — 40
slgn(9(9+6u)—g(6)):{_1 é(thzrwsé ) Teeaf]) = Yo 3

This is illustrated in Figure|I| Essentially, for a new direction 8 + eu, we test whether a point at the
original distance g(@) from z in this direction lies inside or outside the decision boundary, i.e. if the
produced perturbation will result in a wrong prediction by classifier. If the produced perturbation

is outside the boundary i.e. f(zo + g(0) ﬁﬁiﬁﬂ ) # yo, the new direction has a smaller distance to

decision boundary, and thus giving a smaller value of g. It indicates that u is a descent direction to
minimize g.

3.2 SIGN-OPT ATTACK

By sampling random Gaussian vector () times, we can estimate the imperfect gradient by

. Q
Vg(0) =g = sign(9(0 +euy) - g(0))u,, @)

which only requires () queries. We then use this imperfect gradient estimate to update our search
direction 0 as 8 <+ 6 — ng with a step size n and use the same search procedure to compute g(6) up
to a certain accuracy. The detailed procedure is shown in Algorithm

We note that|Liu et al.| (2019) designed a Zeroth Order SignSGD algorithm for soft-label black box
attack (not hard-label setting). They use Vg(8) ~ g := ZqQ:1 sign(g(0 + euy) — g(0)uy) and
shows that it could achieve a comparable or even better convergence rate than zeroth order stochastic
gradient descent by using only sign information of gradient estimation. Although it is possible to
combine ZO-SignSGD with our proposed single query oracle for solving hard-label attack, their

estimator will take sign of the whole vector and thus ignore the direction of u,, which leads to slower
convergence in practice (please refer to Section 4.4 and Figure 5(b) for more details).

To the best of our knowledge, no previous analysis can be used to prove convergence of Algorithm T}
In the following, we show that Algorithm (1| can in fact converge and furthermore, with similar
convergence rate compared with (Liu et al.,2019) despite using a different gradient estimator.

Assumption 1. Function g(0) is L-smooth with a finite value of L.

Assumption 2. Ar any iteration step t, the gradient of the function g is upper bounded by
[Vg(0)]l2 < 0.

Theorem 3.1. Suppose that the conditions in the assumptions hold, and the distribution of gradient
noise is unimodal and symmetric. Then, Sign-OPT attack with learning rate n; = O(=——) and

QVdT
e = O(75) will give following bound on E[||Vg(8)||2]:

vd d
NaACA

E[[Vg(0)ll2] = O(
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The proof can be found in[subsection A.2] The main difference with the original analysis provided
by |Liu et al.| (2019) is that they only only deal with sign of each element, while our analysis also
takes the magnitudes of each element of u, into account.

3.3 OTHER GRADIENT ESTIMATIONS

Note that the value sign(g(0 + eu) — g(0)) computed by our single query oracle is actually the sign
of the directional derivative:

9(0 +eu) — g(9)

sign((Vg(0),u)) = sign(eliglo ) = sign(g(0 + eu) — g(0)) for a small e.

Therefore, we can use this information to estimate the original gradient. The Sign-OPT approach
in the previous section uses ) _sign({Vg(€),uy))u, as an estimation of gradient. Let y, :=
sign({Vg(0),u,)), a more accurate gradient estimation can be cast as the following constraint
optimization problem:

Find a vector z such that sign({z, u,)) =y, Yg=1,...,Q.

Therefore, this is equivalent to a hard constraint SVM problem where each u, is a training sample
and y, is the corresponding label. The gradient can then be recovered by solving the following
quadratic programming problem:

min z7z st zTuq >y YVg=1,...,Q. )

z

By solving this problem, we can get a good estimation of the gradient. As explained earlier, each y,
can be determined with a single query. Therefore, we propose a variant of Sign-OPT, which is called
SVM-OPT attack. The detailed procedure is shown in Algorithm 2} We will present an empirical

comparison of our two algorithms insubsection 4.1

Algorithm 2: SVM-OPT attack
Input: Hard-label model f, original image «x, initial 6y ;
fort=1,2,...,T do
Sample w1, ..., ug from Gaussian or orthogonal basis ;
Solve z defined by () ;
Update 0,11 < 60, —nz;
Evaluate ¢(60;) using search algorithm in (Cheng et al., 2019) ;
end

4 EXPERIMENTAL RESULTS

We evaluate the SIGN-OPT algorithm for attacking black-box models in a hard-label setting on
three different standard datasets - MNIST (LeCun et al., [1998), CIFAR-10 (Krizhevsky et al.)
and ImageNet-1000 (Deng et al., 2009) and compare it with existing methods. For fair and easy
comparison, we use the CNN networks provided by (Carlini & Wagner}, 2017)), which have also been
used by other previous hard-label attacks as well. Specifically, for both MNIST and CIFAR-10, the
model consists of nine layers in total - four convolutional layers, two max-pooling layers and two
fully-connected layers. Further details about implementation, training and parameters are available
on (Carlini & Wagner, |2017). As reported in (Carlini & Wagner, |2017)) and (Cheng et al., [2019)),
we were able to achieve an accuracy of 99.5% on MNIST and 82.5% on CIFAR-10. We use the
pretrained Resnet-50 (He et al.} 2016)) network provided by torchvision (Marcel & Rodriguez, [2010)
for ImageNet-1000, which achieves a Top-1 accuracy of 76.15%.

In our experiments, we found that Sign-OPT and SVM-OPT perform quite similarly in terms of
query efficiency. Hence we compare only Sign-OPT attack with previous approaches and provide a
comparison between Sign-OPT and SVM-OPT in We compare the following attacks:

e Sign-OPT attack (black box): The approach presented in this paper.

e Opt-based attack (black box): The method proposed in|Cheng et al|(2019) where they use
Randomized Gradient-Free method to optimize the same objective function. We use the
implementation provided at https://github.com/LeMinhThong/blackbox—attack.
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Figure 2: Example of Sign-OPT targeted attack. Lo distortions and queries used are shown above
and below the images. First two rows: Example comparison of Sign-OPT attack and OPT attack.
Third and fourth rows: Examples of Sign-OPT attack on CIFAR-10 and ImageNet

e Boundary attack (black box): The method proposed in [Brendel et al.[| (2017). This is
compared only in Lo setting as it is designed for the same. We use the implementation
provided in Foolbox (https://github.com/bethgelab/foolbox).

e Guessing Smart Attack (black box): The method proposed in (Brunner et al., 2018)). This
attack enhances boundary attack by biasing sampling towards three priors. Note that one of
the priors assumes access to a similar model as the target model and for a fair comparison
we do not incorporate this bias in our experiments. We use the implementation provided at
https://github.com/ttbrunner/biased_boundary_attack.

e C&W attack (white box): One of the most popular methods in the white-box setting
proposed in|Carlini & Wagner| (2017)). We use C&W L, norm attack as a baseline for the
white-box attack performance.

For each attack, we randomly sample 100 examples from validation set and generate adversarial
perturbations for them. For untargeted attack, we only consider examples that are correctly predicted
by model and for targeted attack, we consider examples that are already not predicted as target
label by the model. To compare different methods, we mainly use median distortion as the metric.
Median distortion for = queries is the median adversarial perturbation of all examples achieved by
a method using less than = queries. Since all the hard-label attack algorithms will start from an
adversarial exmample and keep reduce the distortion, if we stop at any time they will always give
an adversarial example and medium distortion will be the most suitable metric to compare their
performance. Besides, we also show success rate (SR) for x queries for a given threshold (¢), which
is the percentage of number of examples that have achieved an adversarial perturbation below e with
less than x queries. We evaluate success rate on different thresholds which depend on the dataset
being used. For comparison of different algorithms in each setting, we chose the same set of examples
across all attacks.

Implementation details: To optimize we estimate the step size 7 using the same line
search procedure implemented in (Cheng et al.| (2019). At the cost of a relatively small number of
queries, this provides significant speedup in the optimization. Similar to|Cheng et al{(2019), g(#) in

last step of falgorithm T]is approximated via binary search. The initial 6, in is calculated
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Figure 3: Median Lo distortion vs Queries. First two: Comparison of Sign-OPT and SVM-OPT
attack for MNIST and CIFAR-10. Third: Performance of Sign-OPT for different values of Q.

by eval;liazllting g(#) on 100 random directions and taking the best one. We provide our implementation
publicl

4.1

In our experiments, we found that the performance in terms of queries of both these attacks is
remarkably similar in all settings (both Lo/L, & Targeted/Untargeted) and datasets. We present a
comparison for MNIST and CIFAR-10 (L5 norm-based) for both targeted and untargeted attacks in
We see that the median distortion achieved for a given number of queries is quite on part
for both Sign-OPT and SVM-OPT.

COMPARISON BETWEEN SIGN-OPT AND SVM-OPT

Number of queries per gradient estimate: In |Figure 3| we show the comparison of Sign-OPT
attack with different values of ). Our experiments suggest that () does not have an impact on the
convergence point reached by the algorithm. Although, small values of () provide a noisy gradient
estimate and hence delayed convergence to an adversarial perturbation. Large values of (), on the
other hand, require large amount of time per gradient estimate. After fine tuning on a small set of
examples, we found that @) = 200 provides a good balance between the two. Hence, we set the value
of @ = 200 for all our experiments in this section.

4.2 UNTARGETED ATTACK

In this attack, the objective is to generate an adversary from an original image for which the prediction
by model is different from that of original image. provides an elaborate comparison of
different attacks for Ly case for the three datasets. Sign-OPT attack consistently outperforms the
current approaches in terms of queries. Not only is Sign-OPT more efficient in terms of queries,
in most cases it converges to a lower distortion than what is possible by other hard-label attacks.
Furthermore, we observe Sign-OPT converges to a solution comparable with C&W white-box attack
(better on CIFAR-10, worse on MNIST, comparable on ImageNet). This is significant for a hard-label
attack algorithm since we are given very limited information.

We highlight some of the comparisons of Boundary attack, OPT-based attack and Sign-OPT attack
(L2 norm-based) in Particularly for ImageNet dataset on ResNet-50 model, Sign-OPT attack
reaches a median distortion below 3.0 in less than 30k queries while other attacks need more than
200k queries for the same.

4.3 TARGETED ATTACK

In targeted attack, the goal is to generate an adversarial perturbation for an image so that the prediction
of resulting image is the same as a specified target. For each example, we randomly specify the
target label, keeping it consistent across different attacks. We calculate the initial 6y in
using 100 samples in target label class from training dataset and this 6 is the same across different
attacks. shows some examples of adversarial examples generated by Sign-OPT attack and
the Opt-based attack. The first two rows show comparison of Sign-OPT and Opt attack respectively
on an example from MNIST dataset. The figures show adversarial examples generated at almost

Zhttps://github.com/cmhcbb/attackbox



Published as a conference paper at ICLR 2020

5 MNIST 15 CIFAR-10 0 ImageNet
. = Sign-OPT

calli\ OPT
Ke] \ -+ Boundary
g 3 L —— Guessing Smart
2 N ow
22 S,
=~ N —mea

IR S vepmepepyapesepeypepesepepayepeepepmrepeym

Ok 10k 20k 30k 40k Ok 10k 20k 30k 40k Ok 20k 40k 60k 80k

Queries Queries Queries
Figure 4: Untargeted attack: Median distortion vs Queries for different datasets.
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Figure 5: (a) Targeted Attack: Median distortion vs Queries of different attacks on MNIST and
CIFAR-10. (b) Comparing Sign-OPT and ZO-SignSGD with and without single query oracle (SQO).

same number of queries for both attacks. Sign-OPT method generates an Lo adversarial perturbation
of 0.94 in ~ 6k queries for this particular example while Opt-based attack requires ~ 35k for the
same. displays a comparison among different attacks in targeted setting. In our experiments,
average distortion achieved by white box attack C&W for MNIST dataset is 1.51, for which Sign-OPT
requires ~ 12k queries while others need > 120k queries. We present a comparison of success rate
of different attacks for CIFAR-10 dataset in [Figure 6|for both targeted and untargeted cases.

4.4 THE POWER OF SINGLE QUERY ORACLE

In this subsection, we conduct several experiments to prove the effectiveness of our proposed single
query oracle in hard-label adversarial attack setting. ZO-SignSGD algorithm (Liu et al., [2019) is
proposed for soft-label black box attack and we extend it into hard-label setting. A straightforward
way is simply applying ZO-SignSGD to solve the hard-label objective proposed in |Cheng et al.
(2019), estimate the gradient using binary search as (Cheng et al., 2019) and take its sign. In Figure
5(b), we clearly observe that simply combining ZO-SignSGD and (Cheng et al.|(2019) is not efficient.
With the proposed single query sign oracle, we can also reduce the query count of this method,
as demonstrated in Figure 5(b). This verifies the effectiveness of single query oracle, which can
universally improve many different optimization methods in the hard-label attack setting. To be noted,
there is still improvement on Sign-OPT over ZO-SignSGD with single query oracle because instead

10 10 =03 10 £=0.6 10 £=03
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© © © * ©
o o o o
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Figure 6: Success Rate vs Queries for CIFAR-10 (L5 norm-based attack). First two and last two
depict untargeted and targeted attacks respectively. Success rate threshold is at the top of each plot.
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Table 1: Ly Untargeted attack - Comparison of average Lo distortion achieved using a given number
of queries for different attacks. SR stands for success rate.

MNIST CIFARI10 ImageNet (ResNet-50)
#Queries Avg Lo SR(e = 1.5) ‘ #Queries Avg L SR(e = 0.5) \ #Queries Avg Lo SR(e = 3.0)
4,000 4.24 1.0% 4,000 3.12 2.3% 4,000 209.63 0%
Boundary attack 8,000 4.24 1.0% 8,000 2.84 7.6% 30,000 17.40 16.6%
14,000 2.13 16.3% 12,000 0.78 29.2% 160,000 4.62 41.6%
OPT attack 4,000 3.65 3.0% 4,000 0.77 37.0% 4,000 83.85 2.0%
8,000 2.41 18.0% 8,000 0.43 53.0% 30,000 16.77 14.0%
14,000 1.76 36.0% 12,000 0.33 61.0% 160,000 4.27 34.0%
Guessing Smart 4,000 1.74 41.0% 4,000 0.29 75.0% 4,000 16.69 12.0%
8,000 1.69 42.0% 8,000 0.25 80.0% 30,000 13.27 12.0%
14,000 1.68 43.0% 12,000 0.24 80.0% 160,000 12.88 12.0%
Sign-OPT attack 4,000 1.54 46.0% 4,000 0.26 73.0% 4,000 23.19 8.0%
8,000 1.18 84.0% 8,000 0.16 90.0% 30,000 2.99 50.0%
14,000 1.09 94.0% 12,000 0.13 95.0% 160,000 1.21 90.0%
C&W (white-box) - 0.88 99.0% - 0.25 85.0% - 1.51 80.0%

of directly taking the sign of gradient estimation, our algorithm utilizes the scale of random direction
u as well. In other words, signSGD’s gradient norm is always 1 while our gradient norm takes
into account the magnitude of u. Therefore, our signOPT optimization algorithm is fundamentally
different (Liu et al.,|2019) or any other proposed signSGD varieties. Our method can be viewed as a
new zeroth order optimization algorithm that features fast convergence in signSGD.

5 CONCLUSION

We developed a new and ultra query-efficient algorithm for adversarial attack in the hard-label
black-box setting. Using the same smooth reformulation in |Cheng et al.|(2019)), we design a novel
zeroth order oracle that can compute the sign of directional derivative of the attack objective using
single query. Equipped with this single-query oracle, we design a new optimization algorithm
that can dramatically reduce number of queries compared with |(Cheng et al.[(2019). We prove the
convergence of the proposed algorithm and show our new algorithm is overwhelmingly better than
current hard-label black-box attacks.
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A APPENDIX

A.1 COMPARISON WITH HOPSKIPJUMPATTACK

There is a recent paper (Chen et al.| [2019) that applied the zeroth-order sign oracle to improve
Boundary attack, and also demonstrated significant improvement. The major differences to our
algorithm are that we propose a new zeroth-order gradient descent algorithm, provide its algorithmic
convergence guarantees, and aim to improve the query complexity of the attack formulation proposed
in (Cheng et al., 2019). To be noted, HopSkipJumpAttack only provides the bias and variance analysis
(Theorem 2 and 3) without convergence rate analysis.

Also, HopSkipJumpAttack uses one-point gradient estimate compared to the 2-point gradient estimate
used by SignOPT. Therefore, although the estimation is unbiased, it has large variance, which achieves
successful attack faster but generates a worse adversarial example with larger distortion than ours.
For completeness, we also compare with this method (and mention the results) as follows.

Figure 7| shows a comparison of Sign-OPT and HopSkipJumpAttack for CIFAR-10 and MNIST
datasets for the case of Lo norm based attack. We find in our experiments that performance of both
attacks is comparable in terms of queries consumed. In some cases, Sign-OPT converges to a better
solution.

25 MNIST (U) 55 MNIST (T) 15 CIFAR-10 (U) 15 | CIFAR-10 (T)
|| = Sign-OPT 1
= = HopSkipJumpAttack 1
2.0{\|-—- cw 2.0 I
1 1.0 :
! \

1.5

L, Distortion

P

0.5
1.0

T ———
Pp——

P

ok 20k 40?<'50k 20k 40% 0k 20k 409'00k 20k 40k

Queries Queries Queries Queries

Figure 7: Comparison with HopSkipJumpAttack for CIFAR and MNIST: Median distortion vs
Queries. (U) represents untargeted attack and (T) represents targeted attack.

A.2 PROOF

Define following notations:
Vg(0s;ug) = sign(g(0; + euy) — g(6:))ug
V(00 ) = (9(80 + cug) — 9(6)ug

V(05 uy) = sign(~(g(8: + cuy) — g(6:))sg)

€

Thus we could write the corresponding estimate of gradients as follow:

1 & 1.

g ==Y _sign(g(6; + euy) — g(6:)ug = = > Vg(Oi;uy)
QL Q=
1.1 1 &

gt *Z*(g(atJFeuq) —9(61))uq = *ZVg(ofvuq)
@ q=1 @ q=1
1 & 1

ge == > sign(=(9(0; + euq) — 9(60))ug) = = > Vg(0s;uy)
Q= Q=

Clearly, we have Vg(8;;u,) = sign(Vg(8:;u,)) and we could relate Vg(8;;u,) and Vg(8;;u,)
by writing Vg(0;;u,) = G, ® Vg(0;; u,) where where G, € R? is absolute value of vector u, (i.e.
Gq = (|uq,1|7 |uq,2|7 T |’u’q,d|)T)'
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Note that Zeroth-order gradient estimate Vg(@t; u,) is a biased approximation to the true gradient
of g. Instead, it becomes unbiased to the gradient of the randomized smoothing function g.(0) =
E.[g(0 + eu)] Duchi et al.|(2012).

Our analysis is based on the following two assumptions:
Assumption 1 function g is L-smooth with a finite value of L.

Assumption 2 At any iteration step t, the gradient of the function g is upper bounded by
IVg(0:)ll2 < o

To prove the convergence of proposed method, we need the information on variance of the update
Vg(6s; ug). Here, we introduce a lemma from previous works.

Lemma 1 The variance of Zeroth-Order gradient estimate Vg(@t; u,) is upper bounded by

B[[9(00su,) — V003 < Lo+ Zota o),

where C(d, €) := 2do? + €2 L%d? /2
Proof of Lemma 1 This lemma could be proved by using proposition 2 in|Liu et al.|(2019) with b

=1 and q = Q. When b = 1 there is no difference between with/without replacement, and we opt for
with replacement case to obtain above bound. [

By talking Q = 1, we know that E[[|Vg(0;;u,) — Vge(8;) H;] is upper bounded. And by Jensen’s
inequality, we also know that the

E[|(Vg(0::uy) — Vg.(0))]] < VE[(Vo(81i ) — Vae(6))7] = b1, 6)

where §; denotes the upper bound of /th coordinate of E [|Vg(0t; uq) — Vg (6y)
since E[[|Vg(8;;uq) — Vge(Gt)Hz] is upper bounded.

], and 9, is finite

Next, we want to show the Prob[sign((g:);) # sign((Vg.(6:)):)] by following lemma.
Lemma2 [(Vge(6,)):|Problsign((g.):) # sign((Vge(6:)1)] < J5

Proof of Lemma 2  Similar to Bernstein et al.[(2018), we first relax Prob[sign((Vg(0:;u,));) #
sign(Vg.(6;));] by Markov inequality:

Problsign((Vg(0s;uy)):) # sign((Vge(6:)):)] < Prob[|[Vg(8s;uq)i)| = [Vge(6y):]
_ E[[(Vg(8r;1q) — Vge(6:))1]
B ‘v.gs(gt)”
< 0
o |v96(0t)l|7

where the last inequality comes from eq @) Recall that (Vg(8y;u,));) is an unbiased estimation
to (Vgc(0:));. Under the assumption that the noise distribution is unimodal and symmetric, from
Bernstein et al.| (2018) Lemma D1, we will have

. 21 g > 2 1

. ] . — < )95 = V3 —

Problsign((Vg(6,:14,))1) # sign(Ve(0))1] = M < {% s e <3
where S == |Vg.(6:)]/6;.
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Note that this probability bound applies uniformly to all ¢ € @) regardless of the magnitude |(u,);|.
That is,

Q
Prob[sign Z| (wg)1|sign((Vg(8s;uy))i) # sign(Vge(6:))] =
q=1

Q
Problsign(() _ sign(Vg(0s;uy)):) # sign(Vge(6:))1]. (7)

q=1

This is true as when all |(ug)i| =1, Prob[mgn((ZQ L sign(Vg(8:;u,)))) # sign(Vge(8:))] is equiv-
alent to majority voting of each estimate q yleldmg correct sign. This is the same as sum of Q bernoulli
trials (i.e. binomial distribution) with error rate M. And since error probability M is independent
of sampling of |(ug);|, calculating Prob[sign(fo:1 |(uq)i|sign((Vg(0s;uq))i) # sign(Vge(0:))]
could be thought as taking Q bernoulli experiments and then independently draw a weight from
unit length for each of Q experiment. Since the weight is uniform, we will have expecta-
tion of weights on correct counts and incorrect counts are the same and equal to 1/2. There-
fore, the probability of Prob[sign(Z?zl |(ug)1|sign((Vg(8s;uy));) # sign(Vge(:))] is still the
same as original non-weighted blnomlal dlstnbution Notice that by our notation, we will have
sign(Vg(0:;u,)1) = Vg(0:;u,); thus L Yol Z ’_ sign(Vg(0s;u,)); = (g¢)1- Let Z counts the num-

ber of estimates Vg(8y; u,); yielding correct sign of Vg, (8;);. Probability in eq (7) could be written
as:

Probfsign(sign((g:):) # sign(Vg.(6:))] = P[Z < ).

| O

Following the derivation of theorem 2b in |Bernstein et al.[(2018), we could get

Q 1
EREIRRCE

= [(Vge(0:)):|Problsign((g:):) # sign((Vge(6:)):)] < ®)

al=

O

We also need few more lemmas on properties of function g.

Lemma3 g¢.(01) — g.(0r) < gc(61) — g* + €L

OJ

Proof of Lemma 3 The proof can be found in|Liu et al.| (2018) Lemma C.

Lemmad E[|[Vg(0)[l2] < v2E[|[Vge(8)]2] + <4, where g* = ming g(6).

Proof of Lemma 4 The proof can be found in|Liu et al.|(2019). [

Theorem 1 Suppose that the conditions in the assumptions hold, and the distribution of gradient
noise is unimodal and symmetric. Then, Sign-OPT attack with learning rate n; = O( Q\}ﬁ) and

e = O(55) will give following bound on E[|[Vg(8)||2]

Vvd d

E[[Vg(6)ll2] = O(ﬁ o

)

Proof of Theorem 1 From L-smoothness assumption we could have
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L
9e(0r11) < 9e(0r) + (Vge(0:), 0111 — 0;) + §||9t+1 — 6,3
. L .
= ge(at) - nk(vye(et)agt> + 577?”.915”%

_ dL _
= gc(0:) — 1 © Ge||Vge(04) |1 + 7773 © Gt2

d

+20, © Gy Y |(Ve(8,))1[Problsign((g.):) # sign((Vge(6:))1)],
=1

where G is defined as (G;); = 25:1 (Gy)iVg(0i;uy), = Z(?:l |(wq)11Vg(0¢;uy),. Continue the
inequality,

~ dL 5 -2
9e(6t) =t © Gel|Vge(8)ll1 + -7 © G

d

+21, © Gy Y [(Vge(8,))i|Problsign((g.):) # sign((Vg.(6:)))]
=1

d
~ dL 2 - )
< 9e(0:) — e © Ge[[Vge(6)]l1 + 7773 O G +2n,0Gy Z T by eq

||5z||1
V@
f\/Héz I3

dL 4
< 9e(0:) — e © G| Vge(04) |1 +7Th © G + 200G,

dL
< 9e(0:) — e © Gi||Vge (8,1 + 7% © G + 2 0 G T2

Vi wE[«Vg(et;uq) Vg (60))}
Va

dL
= 9c(6:) — e © Gi||Vge(0,)]]1 + *m © G + 200G, by eq (6).

Thus we will have,

\[\/E Vg (0s;uqy) — vge(et)))]

dL
9e(Brs1) — ge(0:) < —1p © G| Vge(8) |1 + 77% ©G" +2m 0 G,

V@
5 VA JE[(Vg(01;u,) — Vg (6,
=1 © Gil|Vge(0)[l1 < ge(0r) — ge(0r11) + dQLm © G +2m 0 Gy \/ : VaQ el
VE[(Vg(8::u,) — Vgc(6.)))7

dL
) 01 < g.(6,) — g (0 1,2+ 29
= NeIVge(0:)ll1 < 9e(0¢) — ge(0141) + 5 Mt ihVd NGe) ;

where we define 7j; := 1; ® G;. Sum up all inequalities for all ts and take expectation on both side,
we will have

T
> HEIVge(0.)]1] < Elge(61) — ge(61)] +

T

Ep3 +Z2mf\/1a [((Vg(B1:29) = Vc(6:)))3]

E[ge(01) — ge(01)] + d; ZﬁtQ + Z Zﬁt\/g\/ZI(QC;_l)ﬁ + %C(d, €) by Lemma 1.
t=1 t=1

Substitute Lemma 3 into above inequality, we get

T T
ZﬁtE[HVge(et)lh]sQe(el)—g*+e2L+d7LZﬁ me HOHD 2L 2 0(4,0),
t=1

Q Q
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Since || - |2 < || - ||1 and we could divide Zthl 7 on both side to get
T . 2
9e(01) —g* + €L dL n

O e Sk N S
t=1 Zt 170t D1 it Et I/
Define a new random variable R with probability P(R = t) = =& o we will have

t=1"It

T

E[| Voe(0n)l12) = BR[|V o (0n) 2] = E[ 3" P(R = )|V ac(60)]2].

t=1

Substitute all the quantities into Lemma 4, we will get

VAQ + )02 +2C(d, €).

gt e T eLd T
E[Vg(0)]y] < Y2We0) —g" + L) AL Tyt 1 szf

T ~ T ~
Zt=1 un V2 Zt=1 u

By choosing ¢ = O(4=) and n, = O( Q\}ﬁ), then the convergence rate as shown in above is

O(f +5). O
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