
Under review as a conference paper at ICLR 2019

MAKING CONVOLUTIONAL NETWORKS
SHIFT-INVARIANT AGAIN

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern convolutional networks are not shift-invariant, despite their convolutional
nature: small shifts in the input can cause drastic changes in the internal feature
maps and output. In this paper, we isolate the cause – the downsampling operation
in convolutional and pooling layers – and apply the appropriate signal processing
fix – low-pass filtering before downsampling. This simple architectural modifica-
tion boosts the shift-equivariance of the internal representations and consequently,
shift-invariance of the output. Importantly, this is achieved while maintaining
downstream classification performance. In addition, incorporating the inductive
bias of shift-invariance largely removes the need for shift-based data augmenta-
tion. Lastly, we observe that the modification induces spatially-smoother learned
convolutional kernels. Our results suggest that this classical signal processing
technique has a place in modern deep networks.

1 INTRODUCTION

Deep convolutional neural networks (CNNs) are designed to perform high-level tasks and be robust
to low-level nuisance factors. For example, small shifts in the input should simply shift the internal
feature maps (shift-equivariance), and leave the output relatively unaffected (shift-invariance). This
property has been explicitly engineered through convolutional and pooling layers, where the same
function is applied on a local region across the image in a sliding window fashion. However, recent
work (Engstrom et al., 2017; Azulay & Weiss, 2018) has found that small shifts can drastically
change the output of a classification network. Why is this the case?

Shift-invariance is lost when spatial resolution is lost, for example, from pooling layers. Our in-
sight is that conventional strided-pooling, as shown in Fig. 1 (top), is inherently composed of two
operations: (1) evaluating the pooling operator densely (without striding), and (2) downsampling.
Naive downsampling loses shift-equivariance, as high-frequency components of the signal alias into
low-frequencies. This phenomenon is commonly illustrated in movies, where wheels appear to spin
backwards, due to the frame rate not meeting the Nyquist sampling criterion (known as the Strobo-
scopic effect). Separating these operations is important, as it allows us to keep the pooling operation,
while applying the appropriate fix to the downsampling operation.

We propose to add the signal processing tool of low-pass filtering before downsampling, as shown
in Fig. 1 (bottom). By low-pass filtering, the high-frequency components of the signal are reduced,
reducing aliasing and better preserving shift-equivariance. This ultimately cascades into better shift-
invariance in the output. We show example classification instabilities in Fig. 2.

A potential concern is that over-aggressive low-pass filtering can result in heavy loss of informa-
tion. However, we find that with a reasonable selection of low-pass filter weights, we can maintain
classification performance while increasing shift-invariance. Furthermore, we show that without
shift-based data augmentation, incorporating this inductive bias actually improves performance.

We find that the learned filters also naturally become smoother after adding the blurring layer.
These results indicate that incorporating this small modification not only induces shift-invariance,
but causes the network to learn a smoother feature extractor.

In summary, our contributions are as follows:

1

Under review as a conference paper at ICLR 2019

Strided Pooling
Shift-equivariance lost; heavy aliasing

max()

Pooling Layer

(1) Dense Pooling
Preserves shift-equivariance

max()

Pooling Layer (Equivalent Interpretation)

(2) Naïve Downsampling
Shift-eq. lost; heavy aliasing

max()
max()

(1) Dense Pooling (2) Low-Pass Filter
Preserves shift-eq. Preserves shift-eq.

max()

(3) Naïve Downsampling
Shift eq. lost, but with reduced aliasing

conv
�

PoolBlurDownsample (Proposed)

max()

Blur kernel

Figure 1: (Top) Pooling does not preserve shift-equivariance. It is functionally equivalent to densely evaluated
pooling followed by naive downsampling. The latter operation ignores the Nyquist sampling theorem and
loses shift-equivariance. (Bottom) We low-pass filter between the operations. This keeps the original pooling
operation, while antialiasing the appropriate signal. This equivalent analysis and modification can be applied
to any strided layer, such as convolution.

• We isolate the cause for loss of shift-invariance – downsampling. Separating the downsampling
from pooling enables us to keep the desired pooling, while fixing the loss of shift-equivariance.
We propose to low-pass filter before downsampling, a common signal processing technique.

• We validate on a classification task, and demonstrate increased shift-equivariance in the features
and shift-invariance in the output.

• In addition, we observe large improvements in classification performance when training without
shift-augmentation, indicating more efficient usage of data.

2 RELATED WORK

Local connectivity and weight sharing have been a central tenet of neural networks, including the
Neocognitron (Fukushima & Miyake, 1982), LeNet (LeCun et al., 1998) and modern networks such
as Alexnet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman, 2014), ResNet (He et al.,
2016), and DenseNet (Huang et al., 2017). In biological systems, local connectivity was famously
discovered observed in a cat’s visual system by Hubel & Wiesel (1962). Recent work has strived
to build in additional types of invariances, such as rotation, reflection, and scaling (Sifre & Mallat,
2013; Bruna & Mallat, 2013; Esteves et al., 2017; Kanazawa et al., 2014; Worrall et al., 2017; Cohen
& Welling, 2016). Our work focusses on the elusive goal of shift-invariance.

Though properties such as shift-equivariance have been engineered into networks, what factors and
invariances does an emergent representation actually learn? Analysis of deep networks have in-
cluded qualitative approaches, such as showing patches which activate hidden units (Girshick et al.,
2014; Zhou et al., 2014), actively maximizing hidden units (Mordvintsev et al., 2015), and mapping
features back into pixel space (Dosovitskiy & Brox, 2016a;b; Mahendran & Vedaldi, 2015; Zeiler
& Fergus, 2014; Nguyen et al., 2017; Hénaff & Simoncelli, 2015). Our analysis is focused on a
specific, low-level property and is complementary to these qualitative approaches.

A more quantitative approach for analyzing networks is measuring representation or output changes
(or robustness to changes) in response to manually generated perturbations to the input, such as
image transformations (Goodfellow et al., 2009; Lenc & Vedaldi, 2015; Azulay & Weiss, 2018),

2

Under review as a conference paper at ICLR 2019

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Diagonal shift

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

 o
f c

or
re

ct
 c

la
ss

MaxPool MaxPoolBlurDS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Diagonal shift

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

 o
f c

or
re

ct
 c

la
ss

MaxPool MaxPoolBlurDS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Diagonal shift

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

 o
f c

or
re

ct
 c

la
ss

MaxPool MaxPoolBlurDS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Diagonal shift

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

 o
f c

or
re

ct
 c

la
ss

MaxPool MaxPoolBlurDS

Figure 2: Classification stability for selected images. Predicted probability of the correct class changes when
shifting the image. The baseline (black) exhibits chaotic behavior, which is stabilized by our method (blue).

geometric transforms (Ruderman et al., 2018; Fawzi & Frossard, 2015), and CG renderings with
various shape, poses, and colors (Aubry & Russell, 2015). A related line of work is in adversarial
examples, where directed perturbations in the input can result in large changes in the output. These
perturbations can be directly on pixels (Goodfellow et al., 2014a;b), a single pixel (Su et al., 2017),
small deformations (Xiao et al., 2018), or even affine transformations (Engstrom et al., 2017). We
aim make the network robust to the simplest of these types of attacks and perturbations: shifts.
Both Hénaff & Simoncelli (2015) and Azulay & Weiss (2018) identify that modern deep networks
ignore the Nyquist sampling criterion when downsampling. In our work, we propose and empirically
validate an easily adoptable fix which minimally perturbs the existing network architecture.

Classic hand-engineered computer vision and image processing representations, such as
SIFT (Lowe, 1999), wavelets, and image pyramids (Burt & Adelson, 1987; Adelson et al., 1984)
also extract features in a sliding window manner, often with some subsampling factor. As discussed
in Simoncelli et al. (1992), literal shift-equivariance cannot hold when with subsampling. Shift-
equivariance can be recovered if features are extracted densely, for example textons (Leung & Ma-
lik, 2001), the Stationary Wavelet Transform (Fowler, 2005), and DenseSIFT (Vedaldi & Fulkerson,
2010). Deep networks can also be evaluated densely, by removing striding and making appropriate
changes to subsequent layers by using á trous/dilated convolutions (Chen et al., 2014; 2018; Yu &
Koltun, 2015). This comes at great computation and memory cost. Our work investigates achieving
shift-equivariance with minimal additional computation, by blurring before subsampling.

Blurring before downsampling is fundamental technique in signal processing (Oppenheim et al.,
1999), image processing (Gonzalez & Woods, 1992), computer graphics (Foley et al., 1995), and
vision (Szeliski, 2010). In deep learning, average pooling (LeCun et al., 1990) is a form of blurring.
Scherer et al. (2010) finds max-pooling to more effective than variants of blurred-downsampling,
under the assumption that they are alternatives. Conversely, we show that they are compatible.

3 METHODS

3.1 PRELIMINARIES

Deep convolutional networks as feature extractors Let an image with resolution H × W be
represented by X ∈ RH×W×3. An L-layer CNN can be expressed as a feature extractor Fl(X) ∈
RHl×W×Cl , with layer l ∈ [0, L], spatial resolution Hl ×Wl and Cl channels. Each feature map
can also be upsampled to original resolution, F̃l(X) ∈ RHl×Wl×Cl .

Shift-equivariance and shift-invariance A representation F̃ is shift-equivariant if shifting the input
produces a shifted feature map, meaning that shifting and feature extraction are commutable. We
more rigorously define the Shift function in Eqn. 4.

Shift∆h,∆w(F̃(X)) = F̃(Shift∆h,∆w(X)) ∀ (∆h,∆w) (1)

3

Under review as a conference paper at ICLR 2019

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

Si
gn

al
 (S

pa
tia

l D
om

ai
n) original signal Max-Pooling (shift-0)

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

Si
gn

al
 (S

pa
tia

l D
om

ai
n) original signal (shift-1) Max-Pooling (shift-1)

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

Si
gn

al
 (S

pa
tia

l D
om

ai
n) original signal

Max-Pooling Densely
Max-Pooling (shift-0)
Max-Pooling (shift-1)

4 3 2 1 0 1 2 3 4

0

2

4

6

8

M
ag

ni
tu

de
 (F

ou
rie

r D
om

ai
n)

Max-Pooling Densley
Max-Pooling (shift-0)
Max-Pooling (shift-1)

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

Si
gn

al
 (S

pa
tia

l D
om

ai
n) Max-Pooling Densely

MPD + LPF
MaxPool-Blur-DS (shift-0)
MaxPool-Blur-DS (shift-1)

4 3 2 1 0 1 2 3 4

0

2

4

6

8

M
ag

ni
tu

de
 (F

ou
rie

r D
om

ai
n)

Max-Pooling Densley
MPD + LPF
MaxPool-Blur-DS (shift-0)
MaxPool-Blur-DS (shift-1)

Figure 3: Toy example of sensitivity to shifts. We illustrate how downsampling affects shift-equivariance
with a toy example. (Top-Left) An input toy signal is in light gray; max-pooled (k = 2, s = 2) toy signal is
in blue. (Top-Right) Simply shifting the input and then max-pooling provides a completely different answer
(red). (Bot-Left) The blue and red points are inherently sampled from densely max-pooled (k = 2, s = 1)
intermediate signal (thick black). (Bot-Right) We instead sample from the low-passed intermediate signal,
shown in green and magenta, better preserving shift-equivariance.

A representation is shift-invariant if shifting the input results in an identical representation.

F̃(X) = F̃(Shift∆h,∆w(X)) ∀ (∆h,∆w) (2)

For modern classifiers, layer l = 0 is the raw pixels, and final layer L is a probability distribution
over D classes, FL ∈ ∆1×1×D. The net typically progressively reduces spatial resolution, until all
resolution is lost and features are of shape R1×1×Cl . A common technique, such as used in (Lin
et al., 2013; He et al., 2016; Huang et al., 2017), is to average across the entire convolutional feature
map spatially, and use fully-connected layers in all subsequent layers, which can be expressed as
1 × 1 convolutions (Long et al., 2015). In such a setting, as proven by Azulay & Weiss (2018),
shift-invariance on the output will necessarily emerge from shift-equivariance in the convolutional
features.

Modulo-N shift-equivariance/invariance In some cases, the definitions in Equations 1, 2 may
hold only when shifts (∆h,∆w) are integer multiples of N. We refer to these scenarios as modulo-
N shift-equivariance or invariance. For example, modulo-2 shift-invariance means that even-pixel
shifts of the input result in an identical representation, but odd-pixel shifts may not.

3.2 CONVENTIONAL POOLING VS PROPOSED POOL-BLUR-DOWNSAMPLE

Conventional strided pooling breaks shift-equivariance In Fig. 3, we show an example 1-D signal
[0, 0, 1, 1, 0, 0, 1, 1]. Max-pooling (kernel k = 2, stride s = 2) will result in [0, 1, 0, 1]. Simply shift-
ing the input by one index results a dramatically different answer of [1, 1, 1, 1]. Shift-equivariance
is lost. As seen in the bottom-left, both of these results are inherently downsampling from an in-
termediate signal – the input signal densely max-pooled (k = 2, s = 1). We can write a max-
pooling layer as a composition of two functions, max-pooling densely evaluated, followed by naive
downsampling: MaxPoolk,s(X) = Downsamples(MaxPoolk,1(X)). Max-pooling preserves shift-
equivariance (when evaluated densely), but naive downsampling does not.

Blurring before downsampling better preserves shift-equivariance We propose to low-pass filter
the intermediate signal before downsampling, as shown in Fig. 3(bot-right). We define our MaxPool-
BlurDownsample operator below.

MaxPoolBlurDSk,s(X) = Downsamples(Blurkblur
(MaxPoolk,1(X))) (3)

Sampling from the low-pass filtered signal gives [.5, 1, .5, 1] and [.75, .75, .75, .75] (Fig. 3 bot-right).
These are closer to each other and better representations of the intermediate signal.

The method allows for a choice of blur kernel. In image processing, small kernels are often used
across applications such as edge detection (Canny, 1986) and image pyramids (Adelson et al., 1984).
We try a number of kernels, ranging from size 2 × 2 to 7 × 7. As the blur kernels are separable, it

4

Under review as a conference paper at ICLR 2019

pixels [32] conv1_2 [32] pool1 (dense) [32] pool1 (ds) [16] conv2_2 [16] pool2 (dense) [16] pool2 (ds) [8] conv3_2 [8] pool3 (dense) [8]

pool3 (ds) [4] conv4_2 [4] pool4 (dense) [4] pool4 (ds) [2] conv5_2 [2] pool5 (dense) [2] pool5 (ds) [1] classifier [1] softmax [1]

(a) MaxPool (Baseline)
pixels [32] conv1_2 [32] pool1 (dense) [32] pool1 (ds) [16] conv2_2 [16] pool2 (dense) [16] pool2 (ds) [8] conv3_2 [8] pool3 (dense) [8]

pool3 (ds) [4] conv4_2 [4] pool4 (dense) [4] pool4 (ds) [2] conv5_2 [2] pool5 (dense) [2] pool5 (ds) [1] classifier [1] softmax [1]

(b) MaxPoolBlurDownsample (Proposed) with 5 × 5 Triangle Low-Pass Filter

Figure 4: Shift-equivariance throughout the network. We compute feature distance between left and right-
hand sides of the shift-equivariance condition in Equation 1. Each point in each heatmap is a shift (∆h,∆w).
Layer resolution is in [brackets]; in the last three, shift-equivariance is equivalent to shift-invariance. Layers
pix-pool1(dense) have perfect equivariance (distance 0 at all shifts, shown by blue). Red is half mean
distance between two random different images, and is adjusted depending on the layer. (a) On the baseline,
shift-equivariance is reduced each time downsampling takes place. Modulo-N shift-equivariance holds, with N
doubling with each downsampling. (b) With our proposed change, shift-equivariance is better maintained, and
the resulting classfication (softmax) layer is more shift-invariant.

can be implemented as a series of two convolutions (vertical blur followed by horizontal), and added
computation scales linearly with kblur, rather than quadratically.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Data, architecture, training schedule We test on CIFAR10 classification (Krizhevsky & Hinton,
2009), which consists of 50k training and 10k testing images at resolution 32 × 32. We use the
VGG13 architecture (Simonyan & Zisserman, 2014) from the PyTorch framework (Paszke et al.,
2017)1 and will make code available.

Each block consists of 2 Conv-BatchNorm-ReLU chunks, followed by MaxPool, doubling
feature channels and halving spatial resolution until all resolution is lost. A final softmax predicts
a probability vector. We use stochastic gradient descent (SGD) with momentum 0.9 and batch size
128. We train for 100 epochs at initial learning rate 0.1 and 50 additional epochs at 0.01 and 0.01.

Low-pass filter kernels We try a number of standard low-pass filters, shown in Table 1, ranging
from size 2 × 2 to 7 × 7. All filters allow the DC signal pass and suppress (or completely kill)
the highest frequency. Variations in filters correspond to tradeoffs between location of the cutoff
frequency, slope of the cutoff, and variation of lobes in the passband and stopband. These properties
are well-studied in the context of finite impulse response (FIR) filter design. However, it is unclear
which types of filters are best suited for deep networks, so we empirically investigate their effects.

Circular convolution and shifting Edge artifacts are an important consideration. When an image
is shifted, information is necessarily lost on one side, and has to be filled in on the other. In all our
experiments, we use circular shifting and convolution. When the convolutional kernel hits the edge,
it wraps to the other side. When shifting, pixels are “rolled” off the edge to the other side.

[Shift∆h,∆w(X)]h,w,c = X(h−∆h)%H,(w−∆w)%W,c , where % is the modulus function (4)

1https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

5

Under review as a conference paper at ICLR 2019

Train without Data Augmentation Train with Data Augmentation

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

Baseline (trn w/o data aug)
Baseline (trn w/ data aug)

Filt size [2]
Filt size [3]

Filt size [4]
Filt size [5]

Filt size [6]
Filt size [7]

Filt type [Rectangle]
Filt type [Triangle]

Filt type [Pascal]
Filt type [Window]

Filt type [Least-Sq]

0.910 0.915 0.920 0.925 0.930 0.935
Classification Accuracy

0.88

0.90

0.92

0.94

0.96

0.98
Cl

as
sif

ica
tio

n
Co

ns
ist

en
cy

0.905 0.910 0.915 0.920 0.925 0.930 0.935 0.940
Classification Accuracy

0.965

0.970

0.975

0.980

0.985

0.990

Figure 5: Classification consistency vs. classification. Networks trained (left) without and (right) with shift-
based data augmentation, using various filters. Up (more consistent) and to the right (more accurate) is better.
Number of sides corresponds to number of filter taps used (e.g., diamond for 4-tap filter); colors correspond
to different methods for generating FIR filters. We highlight filters Rectangle (4), Triangle (5), and Binomial
(5-7), which perform consistently well in both metrics and settings.

Filter shape # Taps Weights
Train with no augmentation Train with augmentation

Test accuracy Classification Test accuracy Classification
None Rand Consistency None Rand Consistency

Delta (baseline) 1 [1] 91.6 87.4 88.1 93.4 93.7 96.6

Rectangle 2 [1, 1] 92.8 89.3 90.5 93.9 93.8 97.6
Rectangle 3 [1, 1, 1] 93.4 91.8 94.5 93.6 93.7 97.9
Rectangle 4 [1, 1, 1, 1] 93.2 92.9 97.7 93.4 93.4 98.5
Rectangle 5 [1, 1, 1, 1, 1] 92.2 92.1 98.3 92.4 92.5 98.7
Rectangle 6 [1, 1, 1, 1, 1, 1] 91.4 91.2 97.3 91.4 91.5 98.9
Rectangle 7 [1, 1, 1, 1, 1, 1, 1] 90.8 90.7 98.8 90.5 90.5 99.0

Triangle 3 [1, 2, 1] 93.1 91.4 93.9 93.6 93.5 98.0
Triangle 5 [1, 2, 3, 2, 1] 93.3 93.0 98.2 93.3 93.2 98.6
Triangle 7 [1, 2, 3, 4, 3, 2, 1] 92.3 92.3 98.8 92.4 92.3 99.0

Binomial 4 [1, 3, 3, 1] 93.0 91.1 93.2 93.4 93.3 98.1
Binomial 5 [1, 4, 6, 4, 1] 93.2 92.6 96.3 93.1 93.2 98.4
Binomial 6 [1, 5, 10, 10, 5, 1] 93.0 92.4 96.9 93.4 93.3 98.6
Binomial 7 [1, 6, 15, 20, 15, 6, 1] 93.0 93.0 98.1 93.2 93.2 98.8

Window 3 [1, 1.57, 1] 93.3 91.5 94.2 93.5 93.5 98.0
Window 6 [-1, 1.67, 5, 5, 1.67, -1] 92.9 90.2 91.0 93.4 93.5 98.1
Window 7 [-1, 0, 3, 4.71, 3, 0, -1] 92.4 91.1 94.0 93.4 93.5 97.8

Least Squares 3 [1, 1,63, 1] 93.1 91.4 93.8 93.7 93.8 98.0
Least Squares 7 [-1, 0, 3.80, 6.13, 3.80, 0, -1] 92.7 91.0 93.9 93.4 93.5 97.9

Table 1: Classification consistency and classification. Results across blurring filters and training scenarios
(without and with data augmentation). We evaluate classification accuracy without shifts (Test accuracy –
None) and on random shifts (Test accuracy – Random), as well as classification consistency. Highlighted
filters perform consistently well in both metrics and settings, as more easily seen in Fig. 5.

This modification minorly decreases classification performance, 93.8% vs 93.4% with data aug-
mentation. This could potentially be mitigated by additional padding, at the expense of memory
and computation. But more importantly, this methodology affords us a clean testbed. Any loss in
shift-equivariance or invariance is purely due to characteristics of the feature extractor.

4.2 ANALYSIS

We measure shift-equivariance/invariance in three ways, targeting different aspects. We first focus
on the shift-equivariance of the internal layers. We then check on the agreement of the hard output
classification. Finally, we measure how much the soft predicted probability itself varies.

1. Feature distance (lower is better). We test how close shift-equivariance and invari-
ance are to being fulfilled by computing d(Shift∆h,∆w(F̃(X)), F̃(Shift∆h,∆w(X))) and
d(F̃(X), F̃(Shift∆h,∆w(X)) (left & right-hand sides of Eq. 1, 2), respectively. We use cosine
distance, which is commonly used for deep features (Kiros et al., 2015; Zhang et al., 2018).

6

Under review as a conference paper at ICLR 2019

10 5 10 4 10 3 10 2 10 1 100

Variation in probability of correct classification

0

200

400

600

800

1000

1200

1400

1600

Co
un

t i
n

CI
FA

R1
0

Te
st

 S
et

Train without data augmentation
Max-Pooling [1] Delta (Baseline)
MaxPoolBlurDS [1 1] Rect-2
MaxPoolBlurDS [1 2 1] Tri-3
MaxPoolBlurDS [1 3 3 1] Binomial-4
MaxPoolBlurDS [1 4 6 4 1] Binomial-5
MaxPoolBlurDS [1 5 10 10 5 1] Binomial-6
MaxPoolBlurDS [1 6 15 20 15 6 1] Binomial-7

10 5 10 4 10 3 10 2 10 1 100

Variation in probability of correct classification

0

200

400

600

800

1000

Co
un

t i
n

CI
FA

R1
0

Te
st

 S
et

Train with data augmentation

Figure 6: Distribution of per-image classification variation. We show the distribution of classification
variation in the test set, (left) without and (right) with data augmentation at training. Lower variation means
more consistent classifications (and increased shift-invariance). Training with data augmentation drastically
reduces variation in classification. Adding filtering further decreases variation.

2. Classification consistency (higher is better). Perhaps of greatest interest is the actual de-
cisions the classifier makes. We can measure its consistency by checking how often the
network outputs the same classification, given the same image with two different shifts:
E(X,h1,w1,h2,w2)1{arg maxP (Shifth1,w1(X)) = arg maxP (Shifth2,w2(X))}.

3. Classification variation (lower is better). The metric above looks at the hard classification,
discounting classifier confidence. Similar to Azulay & Weiss (2018), we trace the variation in
probability of correct classification, given different shifts. We can capture the variation across all
possible shifts:

√
V arh,w({Pcorrect class(Shifth,w(X))}}).

Table 1 shows results across a number of different low-pass filters, training with and without data
augmentation. We dissect the results below.

How shift-equivariant are deep features? In Fig. 4 (top), we compute distance from shift-
equivariance, as a function of all possible shift-offsets (∆h,∆w) and layers. MaxPool layers are
broken into two components – before and after downsampling. Pixels are trivially shift-equivariant,
as are all layers before the first downsampling. Once downsampling occurs in pool1(ds), shift-
equivariance is lost. However, modulo-N shift-equivariance still holds, and each subsequent down-
sampling doubles the factor.

Additionally, we observe that before the downsampling operation, the pooling layer first increases
shift-equivariance (e.g., conv3 2 to pool3(dense)). This is consistent with the long-held intu-
ition that pooling build invariances inside the network (LeCun et al., 1990) and isolates the down-
sampling operation as the culprit behind loss of shift-equivariance.

Does blurring before downsampling achieve better shift-equivariance? In Fig. 4 (bottom),
we add a blurring filter to the MaxPool layers, as proposed in Section 3, and again plot shift-
equivariance maps for each layer. Shift-equivariance is clearly better preserved. In particular, the
severe drop-offs in downsampling layers do not occur. Improved shift-equivariance throughout the
network cascades into more consistent classifications in the final softmax layer.

Some selected examples are in Fig. 2. Our method stabilizes the classifications. In Fig. 6, we show
the distribution of classification variations, before and after adding in the low-pass filter. Even a
small 2 × 2 filter, immediately variation. As the filter size is increased, the output classification
variation decreases. This has a larger effect when training without data augmentation, but is still
observable when training with data augmentation.

Does shift-invariance degrade performance? Our method produces more shift-equivariant feature
maps and consequently, more shift-invariant outputs. However, does this come at a cost?

We study the output classification consistency versus classification accuracy. In Fig. 5 (left), we
show results, trained without shift-based data augmentation. Training with the baseline MaxPooling
gives accuracy 91.6% and consistency 88.1%. Our proposed change – with a 5 × 5 triangle filter
improves accuracy to 93.3% and consistency to 98.2%. This indicates that low-pass filtering does

7

Under review as a conference paper at ICLR 2019

not destroy the signal, or make learning harder. On the contrary, preserving shift-equivariance serves
as “built-in” augmentation, indicating more efficient data usage.

conv1_1
conv1_2

conv2_1
conv2_2

conv3_1
conv3_2

conv4_1
conv4_2

conv5_1
conv5_2

Layer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
er

ag
e

Fi
lte

r T
V

MaxPool [1] Delta
MaxPoolBlurDS [1 1] Rect-2
MaxPoolBlurDS [1 2 1] Tri-3
MaxPoolBlurDS [1 3 3 1] Binomial-4
MaxPoolBlurDS [1 4 6 4 1] Binomial-5
MaxPoolBlurDS [1 5 10 10 5 1] Binomial-6
MaxPoolBlurDS [1 6 15 20 15 6 1] Binomial-7

Figure 7: Total Variation (TV) by layer.
We compute average smoothness of learned
conv filters per layer (lower is smoother).
Baseline MaxPool is in black, and adding
additional blurring is shown in colors. Note
that the learned convolutional layers be-
come smoother, indicating that a smoother
feature extractor is induced. The Binomial-
7 filter produces consistently strong results,
in both consistency and accuracy.

In principle, networks can learn to be shift-invariant from
data. Does adding shift-based data augmentation remove
the benefit from method? Shift-based data augmenta-
tion with the baseline network results in consistency of
96.6%, lower than our method trained without data aug-
mentation. In addition, as seen in Fig. 5 (right), applying
out method with data augmentation provides an immedi-
ate jump in classification consistency, while maintaining
accuracy. From there, a clear tradeoff appears – higher
amounts of shift-invariance can be achieved at the cost of
decreased accuracy. For example, very large rectangular
filters over-aggressively smooth the signal. Downstream
applications may favor one factor over another, and the
choice of filter allows one to explore this space.

Fig. 6 investigates the distribution of classification varia-
tions. Training with data augmentation with the baseline
network reduces variation (black lines on both plots). Our
method reduces variation in both scenarios. More aggres-
sive filtering further decreases variation.

How do the learned convolutional filters change with the proposed modification? We measure
spatial smoothness using the normalized Total Variation (TV) metric proposed in Ruderman et al.
(2018). Our proposed change smooths the internal feature maps for purposes of downsampling.
As shown in Fig. 7, this induces smoother learned filters throughout the network. Adding in more
aggressive blur kernels further decreases the TV (increasing smoothness). This indicates that our
modification actually induces a smoother feature extractor overall.

Model Timing [ms] % added
Baseline 10.19 +0.00%
+ dense pool 10.50 +3.04%
+ dense pool + 3× 3 filter 11.06 +8.52%
+ dense pool + 5× 5 filter 11.27 +10.6%
+ dense pool + 7× 7 filter 11.45 +12.3%

Table 2: Timing analysis We test the aver-
age speed of a forward pass on a GTX1080Ti
Nvidia GPU for a batch size of 100 of 32×32
image with the VGG13 network.

How does the proposed method affect timing? In
Tab. 2, we show the added time each element of the pro-
posed method takes: evaluating the MaxPool layer at
stride 1 instead of stride 2, and running a blurring filter.
Since the blurring filters are separable, time increases
linearly with filter size. The largest filter adds 12.3% per
forward pass. This is significantly cheaper than evaluat-
ing multiple forward passes in an ensembling approach
(1024× computation to evaluate every shift), or evaluat-
ing each layer more densely by exchanging striding for
dilation (4×, 16×, 64×, 256× computation for conv2-conv5, respectively). These timings are on
our VGG13 network setup. With deeper networks, the relative added computation decreases.

5 CONCLUSIONS AND DISCUSSION

In summary, we show that shift-invariance is lost through a deep network, as downsampling in
pooling layers do not meet the Nyquist criteria. We propose a simple architectural modification, fol-
lowing signal processing principles, to improve shift-equivariance. This change allows the network
architecture designer to keep their pooling layer of choice untouched.

We achieve higher consistency while maintaining classification performance. In addition, we show
large improvements in both performance and consistency when training without data augmentation.
This is potentially applicable to online learning scenarios, where the data distribution is chang-
ing. Future directions include exploring the potential benefit to downstream applications, such as
nearest-neighbor retrieval, improving temporal consistency in video models, robustness to adver-
sarial examples, and high-level vision tasks such as detection. Another possible future direction
is learning the downsampling kernels. Overall, our experiments indicate that this classical signal
processing technique has a place in modern deep networks.

8

Under review as a conference paper at ICLR 2019

APPENDIX

A DENSENET ARCHITECTURE

Blurring before downsampling can be applied to any strided layer in any network. We provide an
additional experiment using the DenseNet architecture (Huang et al., 2017). In Fig. 8, we show
classification consistency vs. accuracy, similar to Fig. 5 for VGG13 in the main paper.

Train without Data Augmentation Train with Data Augmentation

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

Filt size [2], Baseline (w/o data aug)
Filt size [2], Baseline (w/ data aug)

Filt size [1]
Filt size [3]

Filt size [5]
Filt size [7]

Filt type [Delta]
Filt type [Rectangle]

Filt type [Triangle]
Filt type [Binomial]

0.920 0.925 0.930 0.935 0.940 0.945
Classification Accuracy

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Cl
as

sif
ica

tio
n

Co
ns

ist
en

cy

0.939 0.940 0.941 0.942 0.943 0.944 0.945
Classification Accuracy

0.9725

0.9750

0.9775

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

Figure 8: Classification consistency vs. classification for DenseNet Same test in as in Fig. 5, but with
DenseNet (Huang et al., 2017) instead of VGG13 (Simonyan & Zisserman, 2014). We show networks trained
(left) without and (right) with shift-based data augmentation, using various blurring filters. Consistency is
computed by computing classification of an image with two random shifts, and checking for agreement. Up
(more consistent) and to the right (more accurate) is better. Number of sides corresponds to number of filter
taps used (e.g., triangle for 3-tap filter); colors correspond to different methods for generating FIR filters.

Comparison to VGG13 for Baseline Network We use the DenseNet-40-12 architecture, from
a publicly available implementation.2 Relative to VGG13, DenseNet achieves higher performance
(94.4% vs 93.8%), despite using fewer parameters (1M vs 9M). DenseNet also starts with higher
shift-invariance (97.7% vs. 96.6%) for two reasons: (a) fewer downsampling layers (2 vs 5) and (b)
already using blurring before downsampling, in the form of AveragePool layers, equivalent to
using a Rectangle (2) filter. We investigate the effects of replacing this 2× 2 filter.

Results on DenseNet Our method improves the DenseNet results, and confirms the findings in the
main paper. In some cases, results are actually stronger. The primary findings are:

• As seen in Fig. 8 (left), using a stronger low-pass filter, such as Binomial (5, 7) without data
augmentation, provides competitive performance compared to the baseline trained with data aug-
mentation. For Binomial (7), performance is actually better in both consistency and accuracy.

• As seen in Fig. 8 (right), when training with data augmentation, using filters such as Rect (3),
Triangle (3,5), and Binomial (5,7) not only increase consistency, as expected, but also slightly
increases accuracy, surprisingly.

The observations for DenseNet corroborate the results from VGG13 in the main paper, further
demonstrating the effectiveness of blurring before downsampling.

B ROBUSTNESS TO SHIFT-BASED ADVERSARY

In the main paper, we show that using the proposed PoolBlurDownsample method increases the
classification consistency, while maintaining accuracy. A logical consequence is increased accuracy
in presence of a shift-based adversary. We empirically confirm this in Fig. 9 for VGG13 on CI-
FAR10. We compute classification accuracy as a function of maximum adversarial shift. A max

2https://github.com/andreasveit/densenet-pytorch

9

Under review as a conference paper at ICLR 2019

shift of 2 means the adversary can choose any of the 25 positions within a 5 × 5 window. For the
classifier to “win”, it must correctly classify all of them correctly. Max shift of 0 means that there
is no adversary. Conversely, a max shift of 16 means the image must be correctly classified at all
32× 32 = 1024 positions.

Our primary observations are as follows:

• As seen in Fig. 9 (left), the baseline network (gray) is very sensitive to the adversary.
• Adding larger Binomial filters (from red to purple) increases robustness to the adversary. In

fact, Binomial (7) filter (purple) without augmentation outperforms the baseline (black) with
augmentation.

• As seen in Fig. 9 (right), adding larger Binomial filters also increases adversarial robustness,
even when training with augmentation.

These results corroborate the findings in the main paper, and demonstrate a use case: increased
robustness to shift-based adversarial attack.

Train without Data Augmentation Train with Data Augmentation

0 2 4 6 8 10 12 14 16
Max adversarial shift [pix]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

MaxPool [1] Delta
MaxPool [1] Delta (+data aug)
MaxPoolBlurDS [1 1] Rect-2
MaxPoolBlurDS [1 2 1] Triangle-3
MaxPoolBlurDS [1 3 3 1] Binomial-4
MaxPoolBlurDS [1 4 6 4 1] Binomial-5
MaxPoolBlurDS [1 5 10 10 5 1] Binomial-6
MaxPoolBlurDS [1 6 15 20 15 6 1] Binomial-7

0 2 4 6 8 10 12 14 16
Max adversarial shift [pix]

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

MaxPool [1] Delta
MaxPoolBlurDS [1 1] Rect-2
MaxPoolBlurDS [1 2 1] Triangle-3
MaxPoolBlurDS [1 3 3 1] Binomial-4
MaxPoolBlurDS [1 4 6 4 1] Binomial-5
MaxPoolBlurDS [1 5 10 10 5 1] Binomial-6
MaxPoolBlurDS [1 6 15 20 15 6 1] Binomial-7

Figure 9: Robustness to shift-based adversarial attack. Classification accuracy as a function of the number
of pixels an adversary is allowed to shift the image. Applying our proposed filtering increases robustness, both
without (left) and with right data augmentation.

C EFFECT OF BLURRING BEFORE POOLING

In our proposed method, we break the strided-pooling operation into two, and blur in between. This
allows us to directly blur before downsampling, which has solid theoretical backing in sampling
theory (Oppenheim et al., 1999), and is commonly used in image processing (Gonzalez & Woods,
1992), graphics (Foley et al., 1995), and computer vision (Szeliski, 2010). Here, we empirically
investigate blurring before pooling instead.

Fig. 10 shows the results by applying blurring first (shown in the gray points), in comparison our
proposed method (colored polygons, as shown before in Fig. 5). We make the following observa-
tions:

• In Fig. 10 (right), when training with augmentation, blurring before pooling reduces perfor-
mance for all filters. For almost all filters (with few exceptions), both classification accuracy and
consistency are significantly reduced.

• In Fig. 10 (left), when training without augmentation, the lower performing filters actually per-
form better when blurring before filtering. For the better filters, however, blurring before pooling
lowers performance (similar shift-invariance, but lower accuracy).

The signal pre-pooling is undoubtedly related to the signal post-pooling. Thus, blurring before
pooling provides “second-hand” anti-aliasing, and still increases shift-invariance over the baseline.
Though it does empirically help in certain circumstances (the lower-performing filters, without aug-
mentation), the best performing filters use the proposed PoolBlurDownsample ordering.

10

Under review as a conference paper at ICLR 2019

Train without Data Augmentation Train with Data Augmentation

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.02

0.04

0.06

0.08

0.10

Baseline (trn w/o data aug)
Baseline (trn w/ data aug)

Filt size [2]
Filt size [3]

Filt size [4]
Filt size [5]

Filt size [6]
Filt size [7]

Filt type [Rectangle]
Filt type [Triangle]

Filt type [Binomial]
Filt type [Window]

Filt type [Least-Sq]
Blur before pooling

0.895 0.900 0.905 0.910 0.915 0.920 0.925 0.930 0.935
Accuracy

0.88

0.90

0.92

0.94

0.96

0.98
Co

ns
ist

en
cy

0.90 0.91 0.92 0.93 0.94
Accuracy

0.965

0.970

0.975

0.980

0.985

0.990

Figure 10: Blurring before pooling. Blurring before the max-pooling (gray points) for different filters, as
compared to their PoolBlurDownsample counterparts (colored polygons). The poorer performing filters, when
training without data augmentation, observe an increase in performance. For almost all filters when training
with data augmentation, and for the higher-performing filters training without data augmentation, performance
is significantly reduced, often in both accuracy and consistency. Directly blurring the downsampled signal
(after the pooling layer), as proposed in the main paper, is more effective.

D AVERAGE ACCURACY ACROSS SPATIAL POSITIONS

In Figure 11, we show how accuracy systematically degrades as a function of spatial shift, when
training without augmentation. We observe the following:

• On the left, the baseline heatmap shows that classification accuracy when testing with no shift,
but quickly degrades when shifting.

• The proposed filtering decreases the degradation. Binomial-7 is largely consistent across all
spatial positions.

• On the right, we plot the accuracy when making diagonal shifts. As increased filtering is added,
classification accuracy becomes consistent in all positions.

Delta (Baseline) Rect-2 Triangle-3 Binomial-4

Binomial-5 Binomial-6 Binomial-7

0 5 10 15 20 25 30

0

5

10

15

20

25

30
0.84

0.86

0.88

0.90

0.92

0.94

16 12 8 4 0 4 8 12
Diagonal Shift [pix]

0.84

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

Delta (Baseline)
Rect-2

Triangle-3
Binomial-4

Binomial-5
Binomial-6

Binomial-7

Figure 11: Average accuracy as a function of shift. (Left) We show classification accuracy across the test
set as a function of shift, given different filters. (Right) We plot accuracy vs diagonal shift in the input image,
across different filters. Note that accuracy degrades quickly with the baseline, but as increased filtering is added,
classifications become consistent across spatial positions.

E FILTER DISCUSSION

E.1 FILTER SELECTION

We use select standard low-pass filters to empirically test. The filter weights are shown in Tab. 1 in
the main paper. Note that weights are normalized to sum to 1. Rectangle, Triangle, and Binomial
filters are discussed in textbooks such as (Szeliski, 2010). Window and Least Squares are more
advanced FIR filter design techniques.

11

Under review as a conference paper at ICLR 2019

• Rectangle: a moving average, often referred to as a box filter. The filter is a vector of length
ones. For example, Rect-2, is [1, 1]. This filter, followed by subsampling, is equivalent to the
AveragePooling layer.

• Triangle: linearly decreases weight of neighboring values. This is equivalent of applying box
filtering twice. For example, Triangle-3 is [1, 2, 1], is two Rect-2 [1, 1] filters convolved together,
and Triangle-5 is [1, 2, 3, 2, 1], is two Rect-3 [1, 1, 1] filters convolved together.

• Binomial: Filter used in Laplacian Pyramids (Burt & Adelson, 1987); [1, 1] filter convolved
with itself repeatedly. Note that Binomial-2,3 is equivalent to Rectangle-2 and Triangle-3,
respectively.

• Window: filter produced using the window method (firwin), as described in “7.4 Optimum
Approximations for FIR Filters” in Oppenheim et al. (1999).

• Least Squares: least squares error minimization (firls), from Python scipy.signal tool-
box, as described in Selesnick (2005).

E.2 FILTER SEPARABILITY

As discussed in Section 3.2, our filters are separable. Consider a G ∈ R. If G is rank-1, it can be
decomposed (or separated) into GyGx, where Gy ∈ RK×1 and Gx ∈ R1×K . This is an important
consideration when convolving G with signal X ∈ RH×W .

G ∗X = (Gy ∗Gx) ∗X = Gy ∗ (Gx ∗X),where ∗ is convolution (5)

The left-hand side, evaluating the blur with 2-D convolution takes H ×W ×K ×K multiply-adds,
with runtime scaling quadratically with K2. Meanwhile, evaluating a horizontal and vertical blur
sequentially takes H ×W ×K multiply-adds each, scaling linearly by K.

REFERENCES

Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt, and Joan M Ogden. Pyramid
methods in image processing. RCA engineer, 29(6):33–41, 1984.

Mathieu Aubry and Bryan C Russell. Understanding deep features with computer-generated im-
agery. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2875–2883,
2015.

Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly to small
image transformations? arXiv preprint arXiv:1805.12177, 2018.

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE transactions on
pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image code. In Readings
in Computer Vision, pp. 671–679. Elsevier, 1987.

John Canny. A computational approach to edge detection. IEEE Transactions on pattern analysis
and machine intelligence, (6):679–698, 1986.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Se-
mantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint
arXiv:1412.7062, 2014.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):
834–848, 2018.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International confer-
ence on machine learning, pp. 2990–2999, 2016.

12

Under review as a conference paper at ICLR 2019

Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity metrics based
on deep networks. In Advances in Neural Information Processing Systems, pp. 658–666, 2016a.

Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4829–
4837, 2016b.

Logan Engstrom, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rotation and a
translation suffice: Fooling cnns with simple transformations. arXiv preprint arXiv:1712.02779,
2017.

Carlos Esteves, Christine Allen-Blanchette, Xiaowei Zhou, and Kostas Daniilidis. Polar transformer
networks. arXiv preprint arXiv:1709.01889, 2017.

Alhussein Fawzi and Pascal Frossard. Manitest: Are classifiers really invariant? arXiv preprint
arXiv:1507.06535, 2015.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics:
Principles and Practice. Addison-Wesley, 2nd edition, 1995.

James E Fowler. The redundant discrete wavelet transform and additive noise. IEEE Signal Pro-
cessing Letters, 12(9):629–632, 2005.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model for
a mechanism of visual pattern recognition. In Competition and cooperation in neural nets, pp.
267–285. Springer, 1982.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 580–587, 2014.

Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Pearson, 2nd edition, 1992.

Ian Goodfellow, Honglak Lee, Quoc V Le, Andrew Saxe, and Andrew Y Ng. Measuring invariances
in deep networks. In Advances in neural information processing systems, pp. 646–654, 2009.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing systems, 2014a.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Computer Vision and Pattern Recognition (CVPR), June 2016.

Olivier J Hénaff and Eero P Simoncelli. Geodesics of learned representations. arXiv preprint
arXiv:1511.06394, 2015.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, volume 1, pp. 3, 2017.

David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional archi-
tecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–154, 1962.

Angjoo Kanazawa, Abhishek Sharma, and David Jacobs. Locally scale-invariant convolutional
neural networks. arXiv preprint arXiv:1412.5104, 2014.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. Skip-thought vectors. In Advances in neural information processing
systems, pp. 3294–3302, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, Citeseer, 2009.

13

Under review as a conference paper at ICLR 2019

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne E
Hubbard, and Lawrence D Jackel. Handwritten digit recognition with a back-propagation net-
work. In Advances in neural information processing systems, pp. 396–404, 1990.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equiv-
ariance and equivalence. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 991–999, 2015.

Thomas Leung and Jitendra Malik. Representing and recognizing the visual appearance of materials
using three-dimensional textons. International journal of computer vision, 43(1):29–44, 2001.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Computer Vision and Pattern Recognition (CVPR), 2015.

David G Lowe. Object recognition from local scale-invariant features. In Computer vision, 1999.
The proceedings of the seventh IEEE international conference on, volume 2, pp. 1150–1157. Ieee,
1999.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5188–5196, 2015.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Deepdream-a code example for visual-
izing neural networks. Google Research, 2:5, 2015.

Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug & play gen-
erative networks: Conditional iterative generation of images in latent space. In CVPR, volume 2,
pp. 7, 2017.

Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Pear-
son, 2nd edition, 1999.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Avraham Ruderman, Neil C Rabinowitz, Ari S Morcos, and Daniel Zoran. Pooling is neither neces-
sary nor sufficient for appropriate deformation stability in cnns. arXiv preprint arXiv:1804.04438,
2018.

Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling operations in con-
volutional architectures for object recognition. In Artificial Neural Networks–ICANN 2010, pp.
92–101. Springer, 2010.

Ivan Selesnick. Linear-phase fir filter design by least squares, 2005. URL http:
//web.archive.org/web/20080207010024/http://www.808multimedia.
com/winnt/kernel.htm.

Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scattering for texture
discrimination. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 1233–1240, 2013.

Eero P Simoncelli, William T Freeman, Edward H Adelson, and David J Heeger. Shiftable multi-
scale transforms. IEEE transactions on Information Theory, 38(2):587–607, 1992.

14

http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm

Under review as a conference paper at ICLR 2019

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jiawei Su, Danilo Vasconcellos Vargas, and Sakurai Kouichi. One pixel attack for fooling deep
neural networks. arXiv preprint arXiv:1710.08864, 2017.

Richard Szeliski. Computer vision: algorithms and applications. Springer Science & Business
Media, 2010.

Andrea Vedaldi and Brian Fulkerson. Vlfeat: An open and portable library of computer vision
algorithms. In Proceedings of the 18th ACM international conference on Multimedia, pp. 1469–
1472. ACM, 2010.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Harmonic
networks: Deep translation and rotation equivariance. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), volume 2, 2017.

Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially trans-
formed adversarial examples. arXiv preprint arXiv:1801.02612, 2018.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122, 2015.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object detectors
emerge in deep scene cnns. arXiv preprint arXiv:1412.6856, 2014.

15

	Introduction
	Related Work
	Methods
	Preliminaries
	Conventional Pooling vs Proposed Pool-Blur-Downsample

	Experiments
	Experimental Setup
	Analysis

	Conclusions and Discussion
	Appendices
	DenseNet architecture
	Robustness to shift-based adversary
	Effect of blurring before pooling
	Average accuracy across spatial positions
	Filter discussion
	Filter selection
	Filter separability

