
Under review as a conference paper at ICLR 2020

SAMPLE-BASED POINT CLOUD DECODER NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Point clouds are a flexible and ubiquitous way to represent 3D objects with ar-
bitrary resolution and precision. Previous work has shown that adapting encoder
networks to match the semantics of their input point clouds can significantly im-
prove their effectiveness over naive feedforward alternatives. However, the vast
majority of work on point-cloud decoders are still based on fully-connected net-
works that map shape representations to a fixed number of output points. In this
work, we investigate decoder architectures that more closely match the semantics
of variable sized point clouds. Specifically, we study sample-based point-cloud
decoders that map a shape representation to a point feature distribution, allowing
an arbitrary number of sampled features to be transformed into individual output
points. We develop three sample-based decoder architectures and compare their
performance to each other and show their improved effectiveness over feedfor-
ward architectures. In addition, we investigate the learned distributions to gain
insight into the output transformation. Our work is available as an extensible soft-
ware platform to reproduce these results and serve as a baseline for future work.

1 INTRODUCTION

Point clouds are an important data type for deep learning algorithms to support. They are commonly
used to represent point samples of some underlying object. More generally, the points may be
extended beyond 3D space to capture additional information about multi-sets of individual objects
from some class. The key distinction between point clouds and the more typical tensor data types
is that the information content is invariant to the ordering of points. This implies that the spatial
relationships among points is not explicitly captured via the indexing structure of inputs and outputs.
Thus, standard convolutional architectures, which leverage such indexing structure to support spatial
generalization, are not directly applicable.

A common approach to processing point clouds with deep networks is voxelization, where point
clouds are represented by one or more occupancy-grid tensors (Zhou & Tuzel (2018), Wu et al.
(2018)). The grids encode the spatial dimensions of the points in the tensor indexing structure,
which allows for the direct application of convolutional architectures. This voxelization approach,
however, is not appropriate in many use cases. In particular, the size of the voxelized representation
depends on the spatial extent of the point cloud relative to the spatial resolution needed to make
the necessary spatial distinctions (such as distinguishing between different objects in LIDAR data).
In many cases, the required resolution will be unknown or result in enormous tensors, which can
go beyond the practical space and time constraints of an application. This motivates the goal of
developing architectures that support processing point cloud data directly, so that processing scales
with the number of points rather than the required size of an occupancy grid.

One naive approach, which scales linearly in the size of the point cloud, is to ‘flatten’ the point cloud
into an arbitrarily ordered list. The list can then be directly processed by standard convolutional or
fully-connected (MLP) architectures directly. This approach, however, has at least two problems.
First, the indexing order in the list carries no meaningful information, while the networks do not
encode this as a prior. Thus, the networks must learn to generalize in a way that is invariant to
ordering, which can be data inefficient. Second, in some applications, it is useful for point clouds to
consist of varying numbers of points, while still representing the same underlying objects. However,
the number of points that can be consumed by the naive feedforward architecture is fixed.

1



Under review as a conference paper at ICLR 2020

PointNet (Qi et al., 2017) and Deepsets Zaheer et al. (2017) exhibit better performance over the MLP
baseline with a smaller network by independently transforming each point into a high-dimensional
representation with a single shared MLP that is identically applied to each individual point. This set
of derived point features is then mapped to a single, fixed-sized dense shape representation using
a symmetric reduction function. As such the architectures naturally scale to any number of input
points and order invariance is built in as an architectural bias. As a result, these architectures have
been shown to yield significant advantages in applications in which point clouds are used as input,
such as shape classification.

The success of PointNet and DeepSet style architectures in this domain shows that designing a
network architecture to match the semantics of a point cloud results in a more efficient, and better
performing network. Since point clouds are such a useful object representation, it’s natural to ask
how we should design networks to decode point clouds from some provided shape representation.
This would allow for the construction of point cloud auto-encoders, which could serve a number of
applications, such as anomaly detection and noise smoothing. Surprisingly, the dominant approach
to designing such a differentiable point cloud decoder is to feed the dense representation of the
desired object through a single feedforward MLP whose result is then reshaped into the appropriate
size for the desired point cloud. This approach has similar issues as the flat MLP approach to
encoding point clouds; the decoder can only produce a fixed-sized point cloud while point clouds
are capable of representing objects at low or high levels of detail; the decoder only learns a single
deterministic mapping from a shape representation to a point cloud while we know that point clouds
are inherently random samples of the underlying object.

The primary goal and contribution of this paper is to study how to apply the same lessons learned
from the PointNet encoder’s semantic congruence with point clouds to a point cloud decoder design.
As such, we build on PointNet’s principles to present the ‘NoiseLearn’ algorithm– a novel, simple,
and effective point cloud decoding approach. The simplicity of the decoding architectures and the
increase in performance are strong indicators that sample-based decoders should be considered as
a default in future studies and systems. In addition, we investigate the operation of the decoders to
gain insight into how the output point clouds are generated from a latent shape representation.

2 RELATED WORK

Point cloud decoders are a relatively unexplored area of research. Among the works which describe
an algorithm that produces a point cloud, the majority focus their efforts on learning a useful latent
shape representation that is then passed to a MLP decoder.

PU-Net (Yu et al., 2018) is one such example, in which they design a novel point cloud upsampling
network which uses a hierarchical approach to aggregating and expanding point features into a
meaningful latent shape representation. To decode the learned shape representation into a point
cloud, the latent vector is then passed through a feedforward MLP to produce a fixed number of
points. This implies that the network would need to be retrained to allow for a different upsampling
rate, which unlikely to be a desired property of an upsampling algorithm.

TopNet (Tchapmi et al., 2019) recognizes the data inefficiency of using a single MLP to decode a
point cloud and instead reorganizes their MLP into a hierarchical tree structure in which MLPs at the
same level share the same parameters. Their results show that addressing this inefficiency allows for
better performance with a smaller parameter count. Similarly, in “Learning Localized Generative
Models for 3D Point Clouds via Graph Convolution” Valsesia et al. (2019) augments their decoder
by assuming a graph structure over the decoded point cloud and employing graph convolutions.
However, despite improved performance neither approach addresses the other issues that come with
using MLPs to decode entire point clouds, namely the fixed-size output.

“Point Cloud GAN” (Li et al., 2018) and PointFlow (Yang et al., 2019) take a different approach
to producing a point set in a generative setting. Instead of learning a single mapping from any
latent vector directly to its decoded point cloud, they learn a function parameterized by the latent
vector which transforms low-dimensional Gaussian noise to a 3D point on the surface of the object
described by the latent shape representation. This sampling based approach is more in line with
the semantics of point clouds. First, an arbitrary number of points can be drawn from the Gaussian
noise to produce a point cloud consisting of that number of points without requiring any changes

2



Under review as a conference paper at ICLR 2020

N
 x

 3

Shared

MLP

N x L

max

1 x L

Input 
Point 
Cloud

Shared Point 
Encoder

Pointwise
Features

Latent
Shape Vector

h

Symmetric
Reduction

Function

(a) Point cloud encoder
subnetwork

M
 x

 3

Shared

MLP

S(h)

...

Decoded
Point

Cloud

Shared Point
Feature Decoder

Sampled
Point Features

Sampling
Distribution
Function

Sample
M
Times

(b) Point cloud decoder
subnetwork

Figure 1: Diagrams demonstrating the operation of the PointNet style encoder network shared by all
architectures we evaluate, and the parallel decoder network shared by all the sampling approaches.

to or retraining of the algorithm. Second, every individual point is decoded independently and
identically, which avoids the data inefficiency issues that come with using MLPs to process set data.

While this sampling approach has several desirable properties and appears promising, it’s unclear
whether the algorithm is applicable outside of the GAN settings these two papers inhabit, if they re-
quire specific bespoke loss functions to be trained effectively, or if they are capable of outperforming
the baseline MLP approach according to other metrics.

3 POINT-CLOUD DECODING ARCHITECTURES

A point cloud is a set of n 3D points C = {p1, . . . ,pN}, where each pi ∈ R3. In general, each pi

may have additional auxiliary information associated with it via non-spatial dimensions. While all
of our architectures easily generalize to include such information, in this paper, we focus on point
clouds that exclusively encode shapes without auxiliary information.

A point cloud auto-encoder takes a point cloud C with n points and outputs a point cloud Ĉ with m
points that is intended to represent the shape described by C. While often n = m, we are interested
in the general case when n and m may be different, which corresponds to up-scaling or down-
scaling C. Each auto-encoder will be comprised of an encoder E(C), which takes an input point
cloud and outputs a latent shape representation h in Rl, and a decoder D(h) which maps a latent
representation to an output point cloud of the appropriate size. Thus, given an input point cloud C,
the auto-encoder output is given by Ĉ = D(E(C)).

In this paper, we focus on the Chamfer distance as the measure of auto-encoder quality. Intuitively
this loss function measures how well Ĉ matches C in terms of the nearest neighbor in Ĉ to each
point in C and vice versa. Specifically, if dist(p, Ĉ) gives the distance between point p and the
nearest neighbor in point cloud Ĉ, our loss function is defined by L(C, Ĉ) = 1

n

∑
p∈C dist(p, Ĉ) +

1
m

∑
p∈Ĉ dist(p,C).

Since the focus of this paper is on point-cloud decoders, all of our architectures use the same point-
cloud encoder architecture, while varying the decoder architecture. Below, we first overview the
common PointNet-style encoder used followed by a description of the four decoders considered in
our experimental analysis, which include three sample-based decoders.

3.1 POINTNET ENCODER ARCHITECTURE

PointNet (Qi et al., 2017) handles unordered input by recognizing that a symmetric function g
(such as element-wise max or sum) produces the same result regardless of the order of its in-
puts. PointNet thus learns a single transformation function f that maps individual points to an
l-dimensional representation and then combines those representations via g. That is, the latent
encoding produced by PointNet for a point cloud C = {p1, . . . ,pn} is the l dimensional vector

3



Under review as a conference paper at ICLR 2020

E(C) = g (f(p1), . . . f(pN )). As desired, E(C) is invariant to the ordering of points in C and
applies to any number of points.

We learn an MLP representation of f , with input space R3, encoding points, and output space Rl,
encoding the latent representation or point feature. We use max as the reduction function g to map
the arbitrary number of resulting point features to a single fixed-size latent shape representation.
The hidden layers and size of the latent shape representation for each instantiation of this encoder
architecture can be found in Table 1.

3.2 SAMPLE-BASED DECODERS

Most prior work has used MLP decoders, which we consider here as a baseline approach. An MLP
decoder is a fully connected network that takes the latent shape representation as input and outputs
an m × 3 output vector, which represents the m output points. Accordingly, MLP decoders are
parameterized by the number and size of their fully connected layers. In our experiments, each fully
connected layer consists of parameterized ReLU units with a batch normalization layer.

Our main focus is on sample-based decoders, which allow for an arbitrary number of outputs points
to be produced for a latent shape representation. In particular, given a latent shape representation
h, each of our decoders is defined in terms of a point feature sampling distribution S(h), where the
decoder produces a point-cloud output by sampling m point features from S(h).

Once we have a set of M independently sampled point features from our sampling distribution S(h)
we need to transform each one into a triple representing that point’s location. Note that we are now
in an identical but opposite situation as the point cloud encoder. Whereas the encoder had to trans-
form independent point samples of some underlying object into corresponding high-dimensional
representations, our decoder now has to transform independently sampled high-dimensional point
representations into a point in space on the surface of the target object. Therefore, we can simply
apply the same style of PointNet encoding mechanism with different input and output tensor sizes to
implement an effective point feature decoder. The sizes of the hidden layers in our decoder network
can be seen in Table 1. By applying the shared MLP point decoder to each sampled point feature,
we can directly decode point clouds of arbitrary size.

Below we describe three architectures for S, which are compared to each other and the baseline
MLP decoder in our experiments.

NoiseAppend Decoder. NoiseAppend is similar to the sampling approach described in “Point Cloud
GAN” by Li et al. (2018). They sample point features by simply sampling from a multivariate
Gaussian distribution with zero mean and unit variance before appending the sampled noise to the
latent shape vector. That is, S(h) = concat (h,N (0, I)).

However, this requires us to decide how many elements of noise should be appended to the latent
shape representation. Li et al. (2018) state that the size of the appended noise vector should be
‘much smaller than’ the size of the latent shape representation, but it’s not clear how much noise is
necessary to allow the decoder to fully represent the shape. Ultimately this is an additional hyper-
parameter that needs to be investigated and tuned.

NoiseAdd Decoder. NoiseAdd builds on the concept of adding unit Gaussian noise to the latent
shape vector with the goal of avoiding the additional hyperparameter that NoiseAppend introduces.
This can be easily accomplished by treating the entire latent vector as the mean of a Gaussian
distribution with unit variance. That is, S(h) = N (h, I).

However, this violates the claim by Li et al. (2018) that the amount of noise introduced to the re-
sulting point feature samples should be much smaller than the size of the latent shape representation
itself. Therefore, it may be the case that uniformly adding noise to every element of the latent vector
obscures the crucial information it represents.

NoiseLearn Decoder. NoiseLearn attempts to instead learn a small separate function V (h)
which predicts the log-variance of the desired point feature distribution. Specifically, S(h) =
N
(
h, eV (h)/2I

)
. We define V (h) as a small MLP, the size of which can be seen in Table 1.

By allowing the network to choose the amount and location of noise to be added to the latent shape
vector, we hope that it will learn both to add an appropriate amount of noise for the target shape while

4



Under review as a conference paper at ICLR 2020

S(h)

h Noise

concat

(a) NoiseAppend

S(h)

h

Noise

+

(b) NoiseAdd

S(h)

h

Noise

+

Variance Prediction

x

V(h)

(c) NoiseLearn

Figure 2: Diagrams of the different approaches to deriving a distribution from the latent shape
representation h.

Table 1: Detailed description of architectures evaluated. MLP is not present in the 10k family as it
is cannot be reduced to that parameter count while still producing 1024 points.

Network Architecture Encoder Hidden Latent
Vector

Appended
Noise

V (h)
Hidden

Decoder Hidden Parameter Count

4M

MLP 64, 64, 256, 256, 512 1024 1024, 512, 512, 512 4433600
NoiseAppend 64, 64, 256, 256, 512 1024 32 2048, 512, 512, 256, 256, 128 4468291

NoiseAdd 64, 64, 256, 256, 512 1024 2048, 512, 512, 256, 256, 128 4402756
NoiseLearn 64, 64, 256, 256, 512 1024 128, 32 2048, 512, 512, 256, 256, 128 4573059

2M

MLP 64, 64, 256, 256, 512 256 256, 512, 512, 256 1739456
NoiseAppend 64, 64, 256, 256, 512 256 32 256, 512, 512, 256 1675843

NoiseAdd 64, 64, 256, 256, 512 256 256, 512, 512, 256 1643076
NoiseLearn 64, 64, 256, 256, 512 256 128, 32 256, 512, 512, 256 1688963

500k

MLP 64, 128, 128 64 256, 256, 128 548032
NoiseAppend 64, 128, 128 64 16 512, 512, 256, 128 507459

NoiseAdd 64, 128, 128 64 512, 512, 256, 128 499268
NoiseLearn 64, 128, 128 64 32 512, 512, 256, 128 503555

100k

MLP 64, 256 64 32 138048
NoiseAppend 64, 256 64 16 256, 128, 64 97923

NoiseAdd 64, 256 64 256, 128, 64 93828
NoiseLearn 64, 256 64 32 256, 128, 64 98115

10k
NoiseAppend 64, 32 32 16 64, 64, 16 12595

NoiseAdd 64, 32 32 64, 64, 16 11572
NoiseLearn 64, 32 32 (none) 64, 64, 16 12659

conserving the information necessary to accurately reconstruct it without introducing any additional
hyperparameters.

4 EVALUATION

We evaluated each decoding architecture by training several instantiations of each architecture on
a point cloud auto-encoding problem derived from the ModelNet40 dataset, which consists of over
12,000 3D models of 40 different common object classes. The dataset has a prescribed train/test
split, with approximately 9800 models in the training dataset and 2500 in the test dataset. We
randomly select 10% of the training data to use for validation during training.

Before training, each object model in the ModelNet40 dataset is used to generate a uniformly-
sampled point cloud with 4096 points which is then scaled to fit within the unit sphere. For all auto-
encoder network models, at each iteration of training, the point clouds are randomly downsampled to
1024 points before being used to update the network parameters. The helps reduce the computational
cost of training and also encouraging better generalization. During training, each decoded point
cloud consists of 1024 points.

We use the Chamfer distance as the loss function due to its relative speed and capability to directly
compare point clouds of unequal sizes without modification. Each network is trained for 100 epochs
using the ADAM optimizer with an initial learning rate of 10−3, where each epoch performs a
parameter update on each training example. The learning rate is decreased by a factor of 10 at epoch
50 and epoch 80. We trained five instantiations of each of the four network architectures with each
instantiation varying the number of parameters as shown in Table 1 (note that we were not able to
scale down the MLP for the smallest parameter setting). For each instantiation we ran the entire
training process 15 times and all results show average performance across the 15 runs.

5



Under review as a conference paper at ICLR 2020

0 20 40 60 80 100
Epoch

4

6

8

10

12

14

16

18

20

Lo
ss

MLP
NoiseAppend
NoiseAdd
NoiseLearn

Figure 3: Average validation losses of each
architecture in the 2M family during training.

104 105 106

Parameter count

5

6

7

8

9

10

11

Av
er

ag
e 

Te
st

 L
os

s

MLP
NoiseAppend
NoiseAdd
NoiseLearn

Figure 4: Test performance of each archi-
tecture at different parameter counts. Error
bars show the 95% confidence interval of the
mean.

All code and infrastructure for “push-button” replication of our experiments open-source
(Github/Gitlab location removed for anonymous review - code will be privately made available to
reviewers through a comment approximately a week after submission).

4.1 PERFORMANCE COMPARISON

Quantitative Results. Figure 3 shows the validation loss along the learning curves for the 2M
parameter instantiation of each architecture. The relative ordering of the architectures is consistent
after the initial phase of training, with all curves flattening out by 100 epochs.

First, the large jumps in the MLP training (due to unstable training runs) show that it was much
less stable to training compared to the sample-based architectures. While effort was spent trying to
specialize the training configuration for the MLP, stability remained an issue.1 In contrast the runs
for each sample based architecture were stable and similar. Ignoring the MLP stability, it performs
similarly to worst performing sample-based architectureby the end of the learning curve.

The three sample based architectures show rapid progress early in learning and then settle into a con-
sistent ordering with NoiseLearn performing best, followed by NoiseAppend, and then NoiseAdd.
This suggests that NoiseAdd’s approach of adding uniform noise to the latent representation may be
obscuring information needed for accurate reconstruction, compared to NoiseAppend, which sep-
arates noise from the shape representation. On the other hand, we see that while NoiseLearn also
adds noise to the latent representation, it is able to outperform NoiseAppend. This indicates the
importance of being able to intelligently select how much noise to add to different components of
the representation. Apparently, this allows NoiseLearn to avoid obscuring critical information in the
latent representation needed for accurate reconstruction.

Figure 4 shows the average test set performance after 100 epochs of training of each size instantiation
of the four architectures (note the log scale). The appendix also shows more detailed results broken
down for each of 5 selected object classes. The three sample based architectures show relatively
consistent improvement in performance as the sizes grow by orders of magnitude. Rather, the MLP
shows initial improvement, but then performance decreases significantly past 100K parameters. We
looked further into the behavior of the MLP architecture for the larger parameter sets. We observed
that the larger MLPs showed a similar decrease in performance on even the training data, indicating
that the problem is not necessarily overfitting but also difficulty of the optimization. It is possible
that with substantially more epochs the MLP performance would improve, but at great cost.

This indicates that the MLP architecture is much less efficient at exploiting larger network sizes
than the more structured sample-based architectures. It is possible that the architecture and training
hyperparameters could be tweaked to improve the large MLP networks’ performance, such as by
adding additional regularization via weight decay or other mechanisms. However, we consider this
tweaking to be outside the scope of this work, and note that none of the sampling based architectures
required any such tweaking to achieve competitive performance at all parameter counts.

1We attempted to rectify this by adding batch normalization to layers in the MLP decoder to make it more
similar to the architecture of the sampling approaches. While this stabilizied training, it also prevented the MLP
architecture from achieving competitive performance, as its loss more than doubled the next best architectures’.

6



Under review as a conference paper at ICLR 2020

Input MLP-2m NoiseParam-2m NoiseAdd-2m NoiseAppend-2m

Figure 5: Examples of networks’ auto-encoding results on several previously unseen objects.

Overall the results give strong evidence that the sample-based architectures encode a bias that is
much better matched to decoding the class of shapes in ModelNet40 compared to MLPs. The struc-
tured sample-based architectures, compared to the MLP, result in more stable learning and the ability
to continually improve as the architectures grow in size. Further, we see that the NoiseLearn archi-
tecture, which avoids the need to specify hyperparameters to control the amount of noise performs
the best, or near best, across all network sizes and number of epochs.

Illustrative Qualitative Results. Figure 5 shows each network’s performance three test objects not
seen in the training data. The point cloud decoded by the MLP network appears to be more evenly
distributed spatially, while the sampling-based approaches are better able to capture finer detail in
the target shape, such as the stool’s thin legs and crossbars. Among the sample-based approaches,
no single approach is clearly dominant in terms of visual quality across the objects. It is interesting
that all of the sample-based architectures tend to miss the same type of object details, e.g. the jets
on the plane or the leg cross bars on the chair, which may be due to limitations of the PointNet
encoders sized and/or architecture. Nevertheless, it is quite interesting that a single relatively small
latent vector representation is able to encode the level of detail exibited in these results.

4.2 NOISE EXAMINATION

Each sampling architecture defines a function from the latent shape representation to a point feature
distribution. The underlying latent representation inherently defines the manifold of the encoded
shape. Rather, the injected noise (either via appending or addition) can be viewed as playing the role
of indexing locations on the manifold for the generated point. Effectively, the primary difference
between the sample-based architectures is how they use the noise to index locations and traverse the
manifolds. Below we aim to better understand this relationship between noise and spatial indexing
and how the architectures differ in that respect.

In Figure 6 we demonstrate how each architecture uses noise by controlling the variance introduced
to a trained network in two different ways. To examine how the decoder’s output is influenced
by individual elements of noise we show the output of these networks when all but one of the
noise elements is held at a constant near-zero value. In the lower plots, we show the decoder’s
behavior when it only receives the union of the noise elements above. This demonstrates both how
the network learns to exploit individual elements of noise and how the decoder combines those
elements to produce a point cloud that spans the entire shape.

For NoiseAppend all of the noise is of equal magnitude, so we just examine the first five elements
of noise in its noise vector. NoiseLearn predicts individual variances for each element in the dense
shape encoding, enabling us to select the five elements of noise with the highest variance, and
therefore presumably the biggest contribution to the decoded point cloud. The appendix contains
additional examples of noise manipulation.

The plots shown in Figure 6 give us some insight into how the networks use noise to complete the
decoded shape. Each individual element of noise appears to correspond to a learned path along the

7



Under review as a conference paper at ICLR 2020

(a) NoiseAppend (b) NoiseLearn

Figure 6: Behavior of NoiseAppend and NoiseLearn when the noise is manipulated. The ith figure
in the top row shows the decoded point clouds when all but the ith variance is set to zero. The same
figure in the bottom row shows the decoded point clouds when all but the first i variances are set to
zero. The faint red points show the network’s input.

(a) N = 1 (b) N = 2 (c) N = 3

Figure 8: Contribution of individual channels of noise when the NoiseAppend architecture is modi-
fied to only append N elements of noise to the shape representation.

surface of the learned shape. The final point cloud then seems to be produced by ‘extruding’ along
those paths.

100 101 102 103

Elements of noise appended

8

10

12

Av
er

ag
e 

Ch
am

fe
r D

ist
an

ce
 L

os
s

Figure 7: Average final
validation loss achieved
by NoiseAppend networks
when varying the number of
elements of noise appended.

NoiseLearn’s use of only four significant elements of noise suggests
that in this domain only three or four elements of noise is sufficient
to achieve good coverage of the target shape. Figure 8 shows how
individual noise channels change when the NoiseAppend architec-
ture is modified to only append one, two, and three noise elements.

With only one element of noise, we can see that the network ef-
fectively has to learn a single path that spans as much of the target
shape as possible. With two elements of noise, the network instead
seems to learn individual ‘loops’ around the object which are trans-
formed and rotated as necessary. Once the network has access to
three elements of noise, we see the same behavior as the functional
networks of learning small paths on the object’s surface.

If too little noise can seriously hurt NoiseLearn’s performance, does
adding too much noise do the same? Figure 7 shows the NoiseAppend architecture trained with
different amounts of added noise to see if the same performance dropoff is present at both extremes.
It appears that even when the noise vector is much larger than the dense shape representation, the
decoder’s overall performance is not impacted. However, note that adding large amounts of noise
does significantly increase the parameter count, so there is a nontrivial cost to doing this.

5 CONCLUSION

In this work, we evaluated and compared several realizations of a sample-based point cloud decoder
architecture. We show that these sampling approaches are competitive with or outperform the MLP
approach while using fewer parameters and providing better functionality. These advantages over
the baseline suggest that sample based point cloud decoders should be the default approach when
a network needs to produce independent point samples of some underlying function or object. To
further this this area of research, we provide a complete open-source implementation of our tools
used to train and evaluate these networks.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object recon-
struction from a single image. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 605–613, 2017.

Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poczos, and Ruslan Salakhutdinov. Point
cloud gan. arXiv preprint arXiv:1810.05795, 2018.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 652–660, 2017.

Lyne P. Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian Reid, and Silvio Savarese. Topnet: Struc-
tural point cloud decoder. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learning localized generative models for 3d
point clouds via graph convolution. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=SJeXSo09FQ.

Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeezeseg: Convolutional neural nets
with recurrent crf for real-time road-object segmentation from 3d lidar point cloud. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1887–1893. IEEE, 2018.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
Pointflow: 3d point cloud generation with continuous normalizing flows. In ICCV, 2019.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-net: Point
cloud upsampling network. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in neural information processing systems, pp.
3391–3401, 2017.

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

A APPENDIX

A.1 FULL PERFORMANCE TABLES

The tables below show each architecture’s average loss on each individual class in the ModelNet40
dataset. The best-performing network is bolded for each object class.

9

https://openreview.net/forum?id=SJeXSo09FQ


Under review as a conference paper at ICLR 2020

Table 2: Average loss of 2M family architectures (± stddev) on test dataset

airplane bathtub bed bench bookshelf
MLP-2m 3.39 ± 1.89 5.67 ± 1.78 5.67 ± 1.41 5.05 ± 2.73 6.42 ± 2.40

NoiseAppend-2m 3.72 ± 0.88 6.10 ± 1.37 5.84 ± 1.35 5.10 ± 1.54 6.74 ± 1.62
NoiseAdd-2m 4.08 ± 1.10 6.23 ± 1.50 6.05 ± 1.42 5.36 ± 1.72 6.90 ± 1.78

NoiseLearn-2m 2.97 ± 0.73 5.31 ± 1.30 5.15 ± 1.28 3.87 ± 1.27 5.95 ± 1.51
bottle bowl car chair cone

MLP-2m 2.69 ± 1.49 6.95 ± 3.26 5.96 ± 1.28 7.04 ± 2.34 7.02 ± 49.08
NoiseAppend-2m 4.13 ± 1.40 10.10 ± 4.46 6.34 ± 1.08 6.78 ± 2.25 5.22 ± 2.62

NoiseAdd-2m 4.03 ± 1.70 9.43 ± 4.23 6.46 ± 1.15 7.29 ± 2.42 5.21 ± 2.86
NoiseLearn-2m 3.35 ± 1.24 7.46 ± 3.27 5.83 ± 1.04 5.15 ± 1.85 4.32 ± 2.09

cup curtain desk door dresser
MLP-2m 7.77 ± 2.84 2.90 ± 1.55 10.78 ± 4.04 2.64 ± 1.88 5.95 ± 4.77

NoiseAppend-2m 8.67 ± 2.83 3.68 ± 1.04 7.53 ± 1.97 3.18 ± 0.82 7.13 ± 1.74
NoiseAdd-2m 9.08 ± 2.83 3.53 ± 1.24 8.14 ± 2.20 3.13 ± 1.05 7.24 ± 1.77

NoiseLearn-2m 7.63 ± 2.70 2.85 ± 0.88 6.00 ± 1.70 2.52 ± 0.61 6.32 ± 1.48
flower pot glass box guitar keyboard lamp

MLP-2m 9.15 ± 4.87 5.81 ± 1.70 2.65 ± 0.89 2.18 ± 0.49 13.41 ± 31.22
NoiseAppend-2m 9.83 ± 3.96 7.16 ± 1.79 2.17 ± 0.72 2.75 ± 0.68 8.87 ± 11.19

NoiseAdd-2m 10.02 ± 3.95 7.39 ± 1.94 2.05 ± 0.74 2.69 ± 0.66 8.41 ± 7.15
NoiseLearn-2m 8.07 ± 3.35 6.59 ± 1.63 1.45 ± 0.53 2.26 ± 0.50 6.49 ± 7.05

laptop mantel monitor night stand person
MLP-2m 3.79 ± 0.65 7.29 ± 2.16 6.51 ± 3.35 7.26 ± 2.43 5.55 ± 2.85

NoiseAppend-2m 4.57 ± 0.85 6.65 ± 1.41 6.36 ± 1.97 7.53 ± 1.96 5.21 ± 1.68
NoiseAdd-2m 4.73 ± 0.98 6.78 ± 1.38 6.53 ± 2.08 7.67 ± 1.94 5.08 ± 2.00

NoiseLearn-2m 3.25 ± 0.50 5.59 ± 1.18 5.33 ± 1.75 6.35 ± 1.80 3.87 ± 1.38
piano plant radio range hood sink

MLP-2m 10.70 ± 2.85 10.06 ± 5.18 5.73 ± 1.57 7.37 ± 2.84 9.16 ± 4.50
NoiseAppend-2m 8.67 ± 2.10 9.87 ± 4.82 5.94 ± 1.90 6.83 ± 1.53 6.85 ± 2.09

NoiseAdd-2m 8.82 ± 2.15 10.45 ± 5.21 6.06 ± 1.87 7.03 ± 1.53 7.05 ± 2.18
NoiseLearn-2m 7.22 ± 1.77 8.38 ± 4.20 5.12 ± 1.83 5.76 ± 1.25 5.77 ± 1.77

sofa stairs stool table tent
MLP-2m 6.47 ± 1.73 11.44 ± 6.03 7.00 ± 3.15 4.56 ± 1.90 7.42 ± 2.47

NoiseAppend-2m 6.60 ± 1.62 8.16 ± 3.29 6.08 ± 2.35 4.19 ± 1.32 7.17 ± 1.74
NoiseAdd-2m 6.79 ± 1.68 8.37 ± 3.52 6.78 ± 2.85 4.48 ± 1.59 7.16 ± 1.84

NoiseLearn-2m 5.84 ± 1.39 6.18 ± 2.46 4.75 ± 1.71 3.15 ± 1.08 6.05 ± 1.72
toilet tv stand vase wardrobe xbox

MLP-2m 7.92 ± 2.57 6.92 ± 2.36 5.92 ± 3.49 5.53 ± 2.49 6.12 ± 3.03
NoiseAppend-2m 8.21 ± 1.81 6.79 ± 1.78 7.60 ± 3.75 6.24 ± 1.24 6.59 ± 1.46

NoiseAdd-2m 8.51 ± 1.89 7.01 ± 1.84 7.73 ± 4.62 6.42 ± 1.38 6.67 ± 1.47
NoiseLearn-2m 6.83 ± 1.54 6.01 ± 1.66 6.25 ± 2.97 5.54 ± 1.13 5.75 ± 0.92

Table 3: Average loss of 100k family architectures (± stddev) on test dataset

airplane bathtub bed bench bookshelf
MLP-100k 4.53 ± 1.27 5.88 ± 1.59 5.76 ± 1.20 5.52 ± 1.57 6.37 ± 2.06

NoiseAppend-100k 4.76 ± 1.10 6.16 ± 1.50 6.07 ± 1.37 5.35 ± 1.78 7.00 ± 2.01
NoiseAdd-100k 5.98 ± 1.48 7.49 ± 1.61 7.07 ± 1.40 6.66 ± 2.20 8.06 ± 2.33

NoiseLearn-100k 4.16 ± 1.06 5.77 ± 1.49 5.75 ± 1.36 4.91 ± 1.76 6.62 ± 1.94
bottle bowl car chair cone

MLP-100k 2.79 ± 1.45 8.17 ± 3.40 5.61 ± 1.02 6.97 ± 2.12 4.74 ± 2.92
NoiseAppend-100k 3.70 ± 1.57 8.95 ± 4.15 6.39 ± 1.14 7.07 ± 2.22 5.40 ± 3.13

NoiseAdd-100k 4.81 ± 2.12 11.56 ± 4.63 7.47 ± 1.41 8.27 ± 2.43 7.11 ± 4.11
NoiseLearn-100k 3.35 ± 1.44 8.32 ± 3.80 6.11 ± 1.08 6.70 ± 2.20 4.89 ± 2.87

cup curtain desk door dresser
MLP-100k 7.48 ± 2.60 2.99 ± 1.06 9.58 ± 2.86 2.82 ± 1.38 5.75 ± 1.52

NoiseAppend-100k 9.03 ± 2.91 3.33 ± 1.11 8.74 ± 2.47 2.96 ± 0.81 7.19 ± 1.63
NoiseAdd-100k 10.80 ± 2.82 4.02 ± 1.30 9.77 ± 2.54 3.82 ± 1.16 9.18 ± 1.92

NoiseLearn-100k 8.46 ± 2.87 3.12 ± 1.14 8.20 ± 2.45 2.67 ± 0.71 6.71 ± 1.62
flower pot glass box guitar keyboard lamp

MLP-100k 9.10 ± 4.44 6.30 ± 1.53 2.05 ± 0.78 2.55 ± 0.55 15.12 ± 27.38
NoiseAppend-100k 9.65 ± 3.99 7.43 ± 1.87 1.85 ± 0.70 2.57 ± 0.62 10.69 ± 13.88

NoiseAdd-100k 11.61 ± 4.72 9.37 ± 2.54 2.36 ± 0.92 3.23 ± 0.84 12.89 ± 13.45
NoiseLearn-100k 9.27 ± 4.07 6.99 ± 1.75 1.72 ± 0.68 2.41 ± 0.56 10.14 ± 14.71

laptop mantel monitor night stand person
MLP-100k 5.10 ± 0.83 7.29 ± 1.86 5.87 ± 1.92 6.86 ± 2.13 4.98 ± 2.16

NoiseAppend-100k 4.16 ± 0.51 7.00 ± 1.39 6.48 ± 2.06 7.68 ± 2.03 5.12 ± 2.02
NoiseAdd-100k 5.02 ± 0.67 8.54 ± 1.84 7.61 ± 2.43 9.37 ± 2.37 6.14 ± 2.40

NoiseLearn-100k 3.74 ± 0.51 6.45 ± 1.40 6.09 ± 1.98 7.20 ± 1.92 4.79 ± 1.95
piano plant radio range hood sink

MLP-100k 8.79 ± 2.19 10.79 ± 5.86 5.14 ± 1.50 6.99 ± 1.82 9.18 ± 4.13
NoiseAppend-100k 9.47 ± 2.36 10.25 ± 5.30 5.91 ± 2.11 7.24 ± 1.52 8.06 ± 2.58

NoiseAdd-100k 11.04 ± 2.81 11.46 ± 5.99 7.70 ± 2.85 8.71 ± 1.82 10.02 ± 3.21
NoiseLearn-100k 8.91 ± 2.25 9.98 ± 5.21 5.52 ± 1.90 6.87 ± 1.48 7.45 ± 2.44

sofa stairs stool table tent
MLP-100k 6.17 ± 1.34 9.22 ± 4.20 7.25 ± 2.92 5.51 ± 2.01 6.25 ± 1.58

NoiseAppend-100k 6.72 ± 1.59 8.74 ± 3.71 6.78 ± 2.69 4.90 ± 1.80 7.19 ± 1.92
NoiseAdd-100k 7.68 ± 1.96 10.57 ± 4.33 8.56 ± 3.57 6.10 ± 1.96 8.93 ± 2.61

NoiseLearn-100k 6.43 ± 1.51 8.08 ± 3.40 6.30 ± 2.45 4.31 ± 1.66 6.76 ± 1.83
toilet tv stand vase wardrobe xbox

MLP-100k 8.50 ± 1.59 6.84 ± 2.02 5.99 ± 3.33 5.43 ± 1.77 5.59 ± 1.52
NoiseAppend-100k 8.89 ± 1.73 7.14 ± 1.96 7.39 ± 3.55 6.54 ± 1.33 6.81 ± 1.33

NoiseAdd-100k 10.84 ± 2.23 8.31 ± 2.26 9.40 ± 4.26 8.43 ± 1.61 8.66 ± 1.82
NoiseLearn-100k 8.34 ± 1.71 6.82 ± 1.87 6.82 ± 3.41 6.04 ± 1.30 6.32 ± 1.24

10



Under review as a conference paper at ICLR 2020

Table 4: Average loss of 4M family architectures (± stddev) on test dataset

airplane bathtub bed bench bookshelf
MLP-4m 8.45 ± 2.38 10.04 ± 2.81 9.42 ± 2.72 10.31 ± 4.79 9.19 ± 3.94

NoiseAppend-4m 3.68 ± 0.90 6.06 ± 1.42 5.84 ± 1.37 5.14 ± 1.45 6.63 ± 1.59
NoiseAdd-4m 4.07 ± 1.11 6.27 ± 1.53 6.11 ± 1.43 5.58 ± 1.79 6.89 ± 1.79

NoiseLearn-4m 2.95 ± 0.72 5.30 ± 1.29 5.11 ± 1.26 3.81 ± 1.26 5.82 ± 1.54
bottle bowl car chair cone

MLP-4m 4.59 ± 2.58 14.06 ± 4.90 9.01 ± 2.77 13.51 ± 5.09 9.45 ± 6.15
NoiseAppend-4m 3.93 ± 1.40 9.61 ± 3.89 6.39 ± 1.12 6.62 ± 2.18 5.32 ± 2.70

NoiseAdd-4m 4.03 ± 1.62 9.49 ± 4.40 6.44 ± 1.17 7.39 ± 2.46 5.21 ± 2.56
NoiseLearn-4m 3.22 ± 1.19 7.39 ± 3.09 5.86 ± 1.04 5.08 ± 1.82 4.28 ± 2.02

cup curtain desk door dresser
MLP-4m 12.07 ± 3.68 5.65 ± 5.26 15.68 ± 6.05 5.09 ± 4.61 10.15 ± 3.54

NoiseAppend-4m 8.58 ± 2.93 3.72 ± 1.01 7.64 ± 2.00 3.18 ± 0.81 6.96 ± 1.68
NoiseAdd-4m 9.21 ± 2.85 3.64 ± 1.26 8.35 ± 2.27 3.06 ± 0.82 7.21 ± 1.80

NoiseLearn-4m 7.50 ± 2.68 2.81 ± 0.89 5.90 ± 1.64 2.49 ± 0.63 6.27 ± 1.48
flower pot glass box guitar keyboard lamp

MLP-4m 12.45 ± 5.96 10.98 ± 3.73 5.44 ± 2.36 4.24 ± 1.74 24.83 ± 42.31
NoiseAppend-4m 9.38 ± 3.53 7.07 ± 1.79 2.19 ± 0.69 2.74 ± 0.62 9.36 ± 12.32

NoiseAdd-4m 10.15 ± 3.88 7.56 ± 2.10 2.11 ± 0.77 2.69 ± 0.63 8.15 ± 5.93
NoiseLearn-4m 7.87 ± 3.23 6.53 ± 1.61 1.45 ± 0.51 2.21 ± 0.48 6.28 ± 6.67

laptop mantel monitor night stand person
MLP-4m 13.72 ± 5.49 13.97 ± 5.53 11.00 ± 6.65 12.64 ± 4.27 7.30 ± 3.16

NoiseAppend-4m 4.62 ± 0.96 6.64 ± 1.40 6.29 ± 2.00 7.36 ± 1.93 5.06 ± 1.50
NoiseAdd-4m 5.20 ± 1.26 6.83 ± 1.44 6.64 ± 2.12 7.65 ± 2.02 5.37 ± 1.96

NoiseLearn-4m 3.27 ± 0.53 5.57 ± 1.18 5.19 ± 1.72 6.24 ± 1.77 3.74 ± 1.31
piano plant radio range hood sink

MLP-4m 14.19 ± 4.32 13.97 ± 7.85 10.28 ± 3.85 13.17 ± 4.07 14.79 ± 5.38
NoiseAppend-4m 8.49 ± 2.00 9.77 ± 4.76 5.85 ± 1.81 6.68 ± 1.43 6.70 ± 2.11

NoiseAdd-4m 8.93 ± 2.18 10.68 ± 5.26 6.09 ± 1.99 7.01 ± 1.57 7.03 ± 2.17
NoiseLearn-4m 7.09 ± 1.74 8.17 ± 4.09 5.06 ± 1.83 5.75 ± 1.23 5.67 ± 1.84

sofa stairs stool table tent
MLP-4m 10.07 ± 3.23 19.81 ± 8.58 12.93 ± 4.80 10.41 ± 4.93 11.56 ± 3.88

NoiseAppend-4m 6.56 ± 1.59 8.11 ± 3.08 6.00 ± 2.33 4.22 ± 1.35 7.03 ± 1.74
NoiseAdd-4m 6.81 ± 1.72 8.60 ± 3.54 6.94 ± 3.35 4.71 ± 1.64 7.24 ± 1.99

NoiseLearn-4m 5.77 ± 1.37 6.20 ± 2.42 4.46 ± 1.37 3.16 ± 1.08 5.97 ± 1.58
toilet tv stand vase wardrobe xbox

MLP-4m 16.68 ± 5.08 10.99 ± 4.61 10.03 ± 6.06 9.21 ± 4.15 9.51 ± 5.13
NoiseAppend-4m 7.97 ± 1.73 6.79 ± 1.74 7.28 ± 3.46 6.19 ± 1.21 6.35 ± 1.34

NoiseAdd-4m 8.62 ± 1.88 7.08 ± 1.94 8.33 ± 21.51 6.42 ± 1.37 6.58 ± 1.50
NoiseLearn-4m 6.68 ± 1.49 5.94 ± 1.63 6.15 ± 2.90 5.45 ± 1.16 5.64 ± 0.88

11



Under review as a conference paper at ICLR 2020

A.2 NOISE MANIPULATIONS

Below are more examples of noise manipulation in an autoencoder setting in the style of Figure 6.

12


	Introduction
	Related Work
	Point-Cloud Decoding Architectures
	PointNet Encoder Architecture
	Sample-Based Decoders

	Evaluation
	Performance Comparison
	Noise examination

	Conclusion
	Appendix
	Full performance tables
	Noise Manipulations


