
Temporal Convolutional Networks:
A Unified Approach to Action Segmentation

Colin Lea René Vidal Austin Reiter Gregory D. Hager
Johns Hopkins University

{clea1@, rvidal@cis., areiter@cs., hager@cs.}jhu.edu

Abstract

The dominant paradigm for video-based action segmen-
tation is composed of two steps: first, for each frame, com-
pute low-level features using Dense Trajectories or a Con-
volutional Neural Network that encode spatiotemporal in-
formation locally, and second, input these features into a
classifier that captures high-level temporal relationships,
such as a Recurrent Neural Network (RNN). While often
effective, this decoupling requires specifying two separate
models, each with their own complexities, and prevents cap-
turing more nuanced long-range spatiotemporal relation-
ships. We propose a unified approach, as demonstrated
by our Temporal Convolutional Network (TCN), that hi-
erarchically captures relationships at low-, intermediate-
, and high-level time-scales. Our model achieves supe-
rior or competitive performance using video or sensor data
on three public action segmentation datasets and can be
trained in a fraction of the time it takes to train an RNN.

1. Introduction

Action segmentation is crucial for numerous applica-
tions ranging from collaborative robotics to modeling ac-
tivities of daily living. Given a video, the goal is to simul-
taneously segment every action in time and classify each
constituent segment. While recent work has shown strong
improvements on this task, models tend to decouple low-
level feature representations from high-level temporal mod-
els. Within video analysis, these low-level features may be
computed by pooling handcrafted features (e.g. Improved
Dense Trajectories (IDT) [21]) or concatenating learned
features (e.g. Spatiotemporal Convolutional Neural Net-
works (ST-CNN) [8, 12]) over a short period of time. High-
level temporal classifiers capture a local history of these
low-level features. In a Conditional Random Field (CRF),
the action prediction at one time step is are often a function
of the prediction at the previous time step, and in a Recur-
rent Neural Network (RNN), the predictions are a function

Figure 1. Our temporal encoder-decoder network hierarchically
models actions from video or other time-series data.

of a set of latent states at each time step, where the latent
states are connected across time. This two-step paradigm
has been around for decades (e.g., [6]) and typically goes
unquestioned. However, we posit that valuable information
is lost between steps.

In this work, we introduce a unified approach to action
segmentation that uses a single set of computational mech-
anisms – 1D convolutions, pooling, and channel-wise nor-
malization – to hierarchically capture low-, intermediate-,
and high-level temporal information. For each layer, 1D
convolutions capture how features at lower levels change
over time, pooling enables efficient computation of long-
range temporal patterns, and normalization improves ro-
bustness towards various environmental conditions. In con-
trast with RNN-based models, which compute a set of la-
tent activations that are updated sequentially per-frame, we
compute a set of latent activations that are updated hierar-
chically per-layer. As a byproduct, our model takes much

1

less time to train. Our model can be viewed as a generaliza-
tion of the recent ST-CNN [8] and is more similar to recent
models for semantic segmentation than it is to models for
video-analysis. We show this approach is broadly applica-
ble to video and other types of robot sensors.
Prior Work: Due to space limitations, here we will only
briefly describe models for time-series and semantic seg-
mentation. See [8] for related work on action segmentation
or [20] for a broader overview on action recognition.

RNNs and CRFs are popular high-level temporal classi-
fiers. RNN variations, including Long Short Term Mem-
ory (LSTM) and Gated Recurrent Units (GRU), model hid-
den temporal states via internal gating mechanisms. How-
ever, they are hard to introspect and difficult to correctly
train [13]. It has been shown that in practice LSTM only
keeps a memory of about 4 seconds on some video-based
action segmentation datasets [15]. CRFs typically model
pairwise transitions between the labels or latent states
(e.g., [8]), which are easy to interpret, but over-simplify the
temporal dynamics of complex actions. Both of these mod-
els suffer from the same fundamental issue: intermediate
activations are typically a function of the low-level features
at the current time step and the state at the previous time
step. Our temporal convolutional filters are a function of
raw data across a much longer period of time.

Until recently, the dominant paradigm for semantic se-
mantic was similar to that of action segmentation. Ap-
proaches typically combined low-level texture features
(e.g., TextonBoost) with high-level spatial models (e.g.,
grid-based CRFs) that model the relationships between dif-
ferent regions of an image [7]. This is similar to action seg-
mentation where low-level spatiotemporal features are used
in tandem with high-level temporal models. Recently, with
the introduction of Fully Convolutional Networks (FCNs),
the dominant semantic segmentation paradigm has started
to change. Long et al. [11] introduced the first FCN, which
leverages typical classification CNNs like AlexNet, to com-
pute per-pixel object labels. This is done by intelligently
upsampling the intermediate activations in each region of
an image. Our model is more similar to the recent encoder-
decoder network by Badrinarayanan et al. [1]. Their en-
coder step uses the first half of a VGG-like network to cap-
ture patterns in different regions of an image and their de-
coder step takes the activations from the encoder, which are
of a reduced image resolution, and uses convolutional filters
to upsample back to the original image size. In subsequent
sections we describe our temporal variation in detail.

2. Temporal Convolutional Networks (TCN)
The input to our Temporal Convolutional Network can

be a sensor signal (e.g. accelerometers) or latent encoding
of a spatial CNN applied to each frame. Let Xt 2 RF0 be
the input feature vector of length F0 for time step t for 0 <

t T . Note that the time T may vary for each sequence,
and we denote the number of time steps in each layer as
Tl. The true action label for each frame is given by yt 2
{1, . . . , C}, where C is the number of classes.

Our encoder-decoder framework, as depicted in Fig-
ure 1, is composed of temporal convolutions, 1D pool-
ing/upsampling, and channel-wise normalization layers.

For each of the L convolutional layers in the encoder, we
apply a set of 1D filters that capture how the input signals
evolve over the course of an action. The filters for each layer
are parameterized by tensor W (l) 2 RFl⇥d⇥Fl�1 and biases
b(l) 2 RFl , where l 2 {1, . . . , L} is the layer index and d is
the filter duration. For the l-th layer of the encoder, the i-th
component of the (unnormalized) activation ˆE(l)

t 2 RFl is
a function of the incoming (normalized) activation matrix
E(l�1) 2 RFl�1⇥Tl�1 from the previous layer

ˆE(l)
i,t = f(b(l)i +

dX

t0=1

hW (l)
i,t0,·, E

(l�1)
·,t+d�t0i) (1)

for each time t where f(·) is a Leaky Rectified Linear Unit.
The normalization process is described below.

Max pooling is applied with width 2 across time (in 1D)
such that Tl =

1
2Tl�1.1 Pooling enables us to efficiently

compute activations over a long period of time.
We apply channel-wise normalization after each pooling

step in the encoder. This has been effective in recent CNN
methods including Trajectory-Pooled Deep-Convolutional
Descriptors (TDD) [10]. We normalize the pooled activa-
tion vector ˆE(l)

t by the highest response at that time step,
m = maxi

ˆE(l)
i,t , with some small ✏ = 1E-5 such that

E(l)
t =

1

m+ ✏
ˆE(l)
t . (2)

Our decoder is similar to the encoder, except that upsam-
pling is used instead of pooling, and the order of the oper-
ations is now upsample, convolve, then normalize. Upsam-
pling is performed by simply repeating each entry twice.

The probability that frame t corresponds to one of the
C action classes is predicted by vector ˆYt 2 [0, 1]C using
weight matrix U 2 RC⇥F0 and bias c 2 RC

ˆYt = softmax(UD(1)
t + c). (3)

We explored many other mechanisms, such as adding
skip connections between layers, using different patterns
of convolutional layers, and other normalization schemes.
These helped at times and hurt in others. The aforemen-
tioned solution was superior in aggregate.

1In theory, this implies T must divisible by 2L. In practice, we pad
each sequence to be of an appropriate length, given the pooling operations,
such that the input length of the whole sequence, T , and the length of the
output predictions are the same.

Implementation details: Each of the L = 3 layers has
Fl = {32, 64, 96} filters. Filter duration, d, is set as the
mean segment duration for the shortest class from the train-
ing set. For example, d = 10 seconds for 50 Salads. Param-
eters of our model were learned using the cross entropy loss
with Stochastic Gradient Descent and ADAM step updates.
All models were implemented using Keras and TensorFlow.

For each frame in our video experiments, the input, Xt,
is the first fully connected layer computed in a spatial CNN
trained solely on each dataset. We trained the model of [8],
except instead of using Motion History Images (MHI) as
input to the CNN, we concatenate the following for image
It at frame t: [It, It�d�It, It+d�It, It�2d�It, It+2d�It]
for d = 0.5 seconds. In our experiments, these difference
images – which are a simple type of attention mechanism
– tend to perform better than MHI or optical flow across
these datasets. Furthermore, for each time step, we perform
channel-wise normalization before feeding it into the TCN.
This helps with large environmental fluctuations, such as
changes in lighting.

3. Evaluation
We evaluate on three public datasets that contain action

segmentation labels, video, and in two cases sensor data.
University of Dundee 50 Salads [18] contains 50

sequences of users making a salad. Each video is 5-
10 minutes in duration and contains around 30 action in-
stances such as cutting a tomato or peeling a

cucumber. This dataset includes video and synchronized
accelerometers attached to ten objects in the scene, such as
the bowl, knife, and plate. We performed cross validation
with 5 splits on the “eval” action granularity which includes
10 action classes. Our sensor results used the features from
[9] which are the absolute values of accelerometer values.
Previous results (e.g., [9, 14]) were evaluated using differ-
ent setups. For example, [9] smoothed out short interstitial
background segments. We reran all results to be consistent
with [14]. We also included an LSTM baseline for compar-
ison which uses 64 hidden states.

JHU-ISI Gesture and Skill Assessment Working Set
(JIGSAWS) [5] was introduced to improve quantitative
evaluation of robotic surgery training tasks. We used Leave
One User Out cross validation on the suturing activity,
which consists of 39 sequences performed by 8 users about
5 times each. The dataset includes video and synchronized
robot kinematics (position, velocity, and gripper angle) for
each robot end effector as well as corresponding action la-
bels with 10 action classes. Sequences are a few minutes
long and typically contain around 20 action instances.

Georgia Tech Egocentric Activities (GTEA) [4] con-
tains 28 videos of 7 kitchen activities including making a
sandwich and making coffee. For each of the four sub-
jects, there is one instance of each activity. The camera is

mounted on the head of the user and is pointing at the area
in front them. On average there are about 30 actions per
video and videos are around a minute long. We used the 11
action classes defined in [3] and evaluated using leave one
user out. We show results for user 2 to be consistent with
[3] and [16].
Metrics: We evaluated using accuracy, which is simply the
percent of correctly labeled frames, and segmental edit dis-
tance [9], which measures the correctness of the predicted
temporal ordering of actions. This edit score is computed
by applying the Levenstein distance to the segmented pre-
dictions (e.g. AAABBA ! ABA). This is normalized to
be in the range 0 to 100 such that higher is better.

4. Experiments and Discussion
Table 1 includes results for all datasets and correspond-

ing sensing modalities. We include results from the spatial
CNN which is input into the TCN, the Spatiotemporal CNN
of Lea et al. [8] applied to the spatial features, and our TCN.

One of the most interesting findings is that some lay-
ers of convolutional filters appear to learn temporal shifts.
There are certain actions in each dataset which are not easy
to distinguish given the sensor data. By visualizing the ac-
tivations for each layer, we found our model surmounts this
issue by learning temporal offsets from activations in the
previous layer. In addition, we find that despite the fact that
we do not use a traditional temporal model, such as an RNN
or CRF, our predictions do not suffer as heavily from issues
like over-segmentation. This is highlighted by the large in-
crease in edit score on most experiments.

Richard et al. [14] evaluated their model on the mid-level
action granularity of 50 Salads which has 17 action classes.
Their model achieved 54.2% accuracy, 44.8% edit, 0.379
mAP IoU overlap with a threshold of 0.1, and 0.229 mAP
with a threshold of 0.5.2 Our model achieves 59.7% accu-
racy, 47.3% edit, 0.579 mAP at 0.1, and 0.378 mAP at 0.5.

On GTEA, Singh et al. [16] reported 64.4% accuracy
by performing cross validation on users 1 through 3. We
achieve 62.5% using this setup. We found performance
of our model has high variance between different trials on
GTEA – even with the same hyper parameters – thus, the
difference in accuracy is not likely to be statistically signif-
icant. Our approach could be used in tandem with features
from Singh et al. to achieve superior performance.

Our model can be trained much faster than an RNN-
LSTM. Using an Nvidia Titan X, it takes on the order of
a minute to train a TCN for each split, whereas it takes on
the order of an hour to train an RNN-LSTM. The speedup
comes from the fact that we compute one set of convolu-
tions for each layer, whereas RNN-LSTM effectively com-
putes one set of convolutions for each time step.

2We computed our metrics using the predictions given by the authors.

50 Salads (“eval” setup)
Sensor-based Edit Acc
[9] LC-SC-CRF 50.2 77.8
LSTM 54.5 73.3
TCN 65.6 82.0
Video-based Edit Acc
[8] VGG 7.6 38.3
[8] IDT 16.8 54.3
[8] Seg-ST-CNN 62.0 72.0
Spatial CNN 28.4 68.6
ST-CNN 55.5 74.2
TCN 61.1 74.4

GTEA
Video-based Edit Acc
[3] Hand-crafted - 47.7
[16] EgoNet - 57.6
[16] TDD - 59.5
[16] EgoNet+TDD - 68.5
Spatial CNN 36.6 56.1
ST-CNN 53.4 64.5
TCN 58.8 66.1

JIGSAWS
Sensor-based Edit Acc
[2] LSTM 75.3 80.5
[9] LC-SC-CRF 76.8 83.4
[2] Bidir LSTM 81.1 83.3
[17] SD-SDL 83.3 78.6
TCN 85.8 79.6
Vision-based Edit Acc
[19] MsM-CRF - 71.7
[8] IDT 8.5 53.9
[8] VGG 24.3 45.9
[8] Seg-ST-CNN 66.6 74.7
Spatial CNN 37.7 74.0
ST-CNN 68.0 77.7
TCN 83.1 81.4

Table 1. Results on 50 Salads, Georgia Tech Egocentric Activities, and JHU-ISI Gesture and Skill Assessment Working Set. Notes:
(1) Results using VGG and Improved Dense Trajectories (IDT) were intentionally computed without a temporal component for ablative
analysis, hence their low edit scores. (2) We re-computed [9] using the author’s public code to be consistent with the setup of [14].

Conclusion: We introduced a model for action segmenta-
tion that learns a hierarchy of intermediate feature repre-
sentations, which contrasts with the traditional low- versus
high-level paradigm. This model achieves competitive or
superior performance on several datasets and can be trained
much more quickly than other models. A future version of
this manuscript will include more comparisons and insights
on the TCN.

References
[1] V. Badrinarayanan, A. Handa, and R. Cipolla. Seg-

net: A deep convolutional encoder-decoder architecture
for robust semantic pixel-wise labelling. arXiv preprint
arXiv:1505.07293, 2015. 2

[2] R. DiPietro, C. Lea, A. Malpani, N. Ahmidi, S. S. Vedula,
G. I. Lee, M. R. Lee, and G. D. Hager. Recognizing surgical
activities with recurrent neural networks. In MICCAI, 2016.
4

[3] A. Fathi, A. Farhadi, and J. M. Rehg. Understanding ego-
centric activities. In ICCV, 2011. 3, 4

[4] A. Fathi, R. Xiaofeng, and J. M. Rehg. Learning to recognize
objects in egocentric activities. In CVPR, 2011. 3

[5] Y. Gao, S. S. Vedula, C. E. Reiley, N. Ahmidi, B. Varadara-
jan, H. C. Lin, L. Tao, L. Zappella, B. Béjar, D. D. Yuh,
et al. JHU-ISI Gesture and Skill Assessment Working Set
(JIGSAWS): A surgical activity dataset for human motion
modeling. In MICCAI Workshop: M2CAI, 2014. 3

[6] F. G. Hofmann, P. Heyer, and G. Hommel. Velocity profile
based recognition of dynamic gestures with discrete hidden
markov models. In International Workshop on Gesture and
Sign Language in Human-Computer Interaction, 1998. 1

[7] P. Krähenbühl and V. Koltun. Efficient inference in fully con-
nected CRFs with gaussian edge potentials. In NIPS, 2011.
2

[8] C. Lea, A. Reiter, R. Vidal, and G. D. Hager. Segmental
spatio-temporal CNNs for fine-grained action segmentation.
ECCV, 2016. 1, 2, 3, 4

[9] C. Lea, R. Vidal, and G. D. Hager. Learning convolu-
tional action primitives for fine-grained action recognition.
In ICRA, 2016. 3, 4

[10] Y. Q. Limin Wang and X. Tang. Action recognition with
trajectory-pooled deep-convolutional descriptors. In CVPR,
2015. 2

[11] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. CVPR, 2015. 2

[12] J. Y. Ng, M. J. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici. Beyond short snippets: Deep
networks for video classification. In CVPR, 2015. 1

[13] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of
training recurrent neural networks. In ICML, 2013. 2

[14] A. Richard and J. Gall. Temporal action detection using a
statistical language model. In CVPR, 2016. 3, 4

[15] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao. A
multi-stream bi-directional recurrent neural network for fine-
grained action detection. In CVPR, 2016. 2

[16] S. Singh, C. Arora, and C. V. Jawahar. First person action
recognition using deep learned descriptors. In CVPR, June
2016. 3, 4

[17] S. Stefati, N. Cowan, and R. Vidal. Learning shared, discrim-
inative dictionaries for surgical gesture segmentation and
classification. In MICCAI Workshop: M2CAI, 2015. 4

[18] S. Stein and S. J. McKenna. Combining embedded ac-
celerometers with computer vision for recognizing food
preparation activities. In UbiComp, 2013. 3

[19] L. Tao, L. Zappella, G. D. Hager, and R. Vidal. Surgical
gesture segmentation and recognition. In MICCAI, 2013. 4

[20] M. Vrigkas, C. Nikou, and I. Kakadiaris. A review of human
activity recognition methods. Frontiers in Robotics and AI,
2015. 2

[21] H. Wang and C. Schmid. Action recognition with improved
trajectories. In ICCV, 2013. 1

