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Abstract—Optical Music Recognition has been under investiga-
tion for over 60 years but remains an unsolved problem, because
research happens distributedly, often without reusability in mind.
As scientists, it should be one of the goals to share knowledge
in a way, that it becomes accessible and useful for someone else
to build on top. Without that, one’s effort is often doomed to
rot in a drawer. To oppose this development, not only the paper,
but also the source code, datasets, and executables should be
made publicly available for the community to finally advance
beyond the state, where the wheel is reinvented every time a new
researcher joins the field.
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I. INTRODUCTION

Optical Music Recognition (OMR) has seen decades of
research with many questions remaining unsolved [1]. So-
lutions, algorithms, and systems were frequently developed
independently, trying to solve particular (sub-)problems [2]–
[7]. However, without the perspective of what happens to a
project after the scientific publication has been accepted, the
advances we have achieved remain scattered across the world.
It would be great to share datasets, algorithms, results, and
knowledge alike. This is slowly becoming the scientific norm,
but to leverage the work of someone else, the author has to do
more than just providing a link to the source-code: properly
documenting the code base, providing automatic tests that can
be executed on a continuous integration platform and ideally
one-click solutions for running the application are necessary.
These things are part of the standard repertoire used in industry
projects and should be equally relevant in scientific projects
from the field of computer science.

II. PUBLISH REPRODUCIBLE RESULTS

There are three kinds of artifacts that researchers commonly
share with the community: knowledge, primarily in the form
of scientific articles, datasets, and source code. Papers usually
undergo a scientific peer-review to ensure a certain quality
level and are published in journals, or presented at conferences.
Many of these publications now come with links to the source
code that is hosted on Github or similar platforms [8]–[12].
Sharing access to the repository allows not only to see the
final result, but also the steps that led to that result. However,
the other two artifacts often lack a rigorous review or are not
review at all. When reviewing another peer’s work, demand

the code as supplementary material to verify reproducibility. If
understanding their code turns out to be too hard for another
expert working in the same field, it is unlikely that anyone will
use the reviewed work. If so, let the authors know by adding
an appropriate remark in the review.

A. Source Code

When publishing source code, it should contain at least
a README file, which summarizes the purpose of this
repository as well as how to build and run the application.
Keep in mind, that good names for methods, variables, and
packages are preferred to extensive commenting in the code
[13]. Sensible documentation that is generated directly from
the source code1 can help other users to quickly get started,
ideally with a few examples on how to use your project.
http://muscima.readthedocs.io/en/latest/Tutorial.html is an ex-
ample of a good tutorial. To further promote free reuse,
an appropriate license should be attached to the repository,
e.g., the MIT license. https://tldrlegal.com/ contains a concise
summary of many popular licenses. Note, that if no license is
specified, default copyright applies that restricts the allowed
usage heavily.

B. Executables

Use a continuous integration platform, such as Travis2, to
prevent unexpected regressions in the code. Many of these
services are freely available for open-source projects. Some of
them can also be used as a platform to provide executables for
potential users. If an application has a complex environment
and requires specific dependencies, consider using container-
ization, e.g., with Docker3. The additional benefit of setting
up an application as a ready-to-use container is a possible
integration with environments like the DIVAServices [14],
that provide interactive demos as part of their website4. Such
an interactive demo lets other researchers explore your work
without the huge upfront effort, that is sometimes required to
get an application to run locally.

1https://readthedocs.org/
2https://travis-ci.org/
3https://www.docker.com/
4http://divaservices.unifr.ch/spotlight
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C. Datasets

A delicate matter concerns the creation of datasets. This
sore point is still a major issue within the OMR community.
Although there are a few large datasets that have recently
been published or that will be published in the near future,
these datasets are often not compatible with each other due
to different notation formats, encodings, and granularity of
the underlying information. WoRMS offers a great possibility
to address this issue as a community. From a practical point
of view, datasets will probably always be encoded somewhat
differently, but if the authors claim, that their dataset can
(in theory) be exported into a particular format, it is their
responsibility to provide a respective converter. As a gen-
eral guideline, prefer a simple, plain format (e.g., comma-
separated-values) that can easily be converted into other
data formats. It is also beneficial, if additional visualization
functions are provided, that can help to inspect intermediate
and display final results. Finally, to gain visibility, a dataset
can be listed on the website of the OMR datasets project
(http://apacha.github.io/OMR-Datasets/) by simply creating a
pull-request or adding an issue.

D. Showcases

Two projects demonstrate the implementation of above-
mentioned guidelines: The OMR datasets project5 and the
Music Object Detector6 [15]. Their source code is freely
available under an MIT license, and detailed README files
explain how to use the source code, how to reproduce the
results and how to test the final system with pre-trained models
and demo-scripts. The Music Object Detector is also available
via the DIVAServices Spotlight, where arbitrary music scores
can be uploaded to test the object detection capabilities easily.

III. DO NOT REINVENT THE WHEEL

OMR has seen many attempts to “solve it” but it is still
considered an unsolved problem for many scenarios. Often,
users are disappointed when they try OMR on their dataset
and see themselves confronted with its insufficiencies. This is
caused by applications not being designed to handle arbitrary
scores: hard-coded variables, assumptions on the layout or
the limitation to a particular music notation system lead to
programs that only work well for the dataset for which they
were developed. This pitfall can be avoided by letting actual
users test your system and give you honest feedback. When
reflecting on the achievements as a community, many things
were attempted but failed so far. Agreeing on an output format
or a standard vocabulary are good examples. Another one is
how to evaluate entire OMR systems. Despite many proposed
metrics, you simply cannot compare two systems that were
designed with entirely different purposes in mind. Scientific
competitions can help to mitigate this problem because the
task needs to be well defined, an appropriate dataset has
to be provided, and all participants must follow the same

5http://apacha.github.io/OMR-Datasets/
6http://github.com/apacha/MusicObjectDetector-TF

evaluation protocol. The 2012 Music Scores Competition [16]
is an example that led to a range of robust and generalizable
solutions for staff removal. And even many years after the
competition, the dataset is still being used intensively for a
wide range of tasks, thanks to its liberal license. Finally, it has
to be said, that we should avoid reinventing the wheel over
and over again and not only make sure that our research is
usable by other researchers, but also that we actively leverage
the work of others and build on top of their work, instead of
always starting over from scratch.
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