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The description of neural computations in the field of neuroscience relies on two competing views:
(i) a classical single-cell view that relates the activity of individual neurons to sensory or behavioural
variables, and focuses on how different cell classes map onto computations; (ii) a more recent population
view that instead characterises computations in terms of collective neural trajectories, and focuses on
the dimensionality of these trajectories as animals perform tasks. How the two key concepts of cell
classes and low-dimensional trajectories interact to shape neural computations is however currently not
understood. Here we address this question by combining machine-learning tools for training RNNs
with reverse-engineering and theoretical analyses of network dynamics. We introduce a novel class of
theoretically tractable recurrent networks: low-rank, mixture of Gaussian RNNs. In these networks, the
rank of the connectivity controls the dimensionality of the dynamics, while the number of components in
the Gaussian mixture corresponds to the number of cell classes. Using back-propagation, we determine
the minimum rank and number of cell classes needed to implement neuroscience tasks of increasing
complexity. We then exploit mean-field theory to reverse-engineer the obtained solutions and identify
the respective roles of dimensionality and cell classes. We show that the rank determines the phase-space
available for dynamics that implement input-output mappings, while having multiple cell classes allows
networks to flexibly switch between different types of dynamics in the available phase-space. Our results
have implications for the analysis of neuroscience experiments and the development of explainable AI.

1 Introduction

With recent advances in deep-learning, the novel approach of training and reverse-engineering RNNs on
neuroscience tasks has led to insights on the implementation of cognitive processes (see [1] for a review).
Reverse-engineering methods have however provided only partial understanding so far, by either focusing
on the characterization of neural dynamics and leaving aside the description of learnt connectivity [2],
or the converse [3]. Taking advantage of recent theoretical results on low-rank networks [4], we present
a reverse-engineering approach that leads to analytically tractable classes of RNNs performing various
tasks. Crucially, these classes of models exhibit well defined dimensionality and number of cell classes
allowing us to identify the roles of these two properties on neural computation.

2 Methods

2.1 Theoretical framework: low-rank recurrent networks
We consider recurrent networks of N tanh rate units with dynamics defined by:

d~x

dt
= −~x+Wrec

~φ(~x) +Win~u(t)

z(t) = ~W T
out
~φ(~x) (1)

where ~u(t) represents inputs to the network and z is a scalar readout modeling the network’s output.

The directions of the network’s inputs and output are defined by the column vectors of Win and ~Wout,
while the recurrent connectivity is given by the rank-K matrix Wrec =

∑K
k=1 ~mk~n

T
k . For such networks,

recurrently generated activity lies in a space of dimension K, and is well described by the dynamics of
a set of K internal (latent) variables. In the case where connectivity and input vectors are drawn from
a joint Gaussian distribution (with entry-independent covariances σab between entries of vectors ~a and
~b), a previous study developed a mean-field theory for the dynamics of the internal variables [1]. As an
example, for K = 2 and a single input u(t), the dynamics can be described by two internal variables κ1
and κ2:

κ̇1 = −κ1 + σ̃n1m1κ1 + σ̃n1m2κ2 + σ̃n1Win
u(t)

κ̇2 = −κ2 + σ̃n2m1κ1 + σ̃n2m2κ2 + σ̃n2Win
u(t) (2)
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where the functional connectivities

σ̃ab(κ1, κ2, u(t)) = σab〈φ′〉(κ1, κ2, u(t)) (3)

are the product of a structural component σab and an activity dependent term, namely the population-
averaged gain of neurons 〈φ′〉.

2.2 Theoretical framework: multi-population low-rank recurrent networks
In the present work we extend this framework to describe networks with neurons assigned to P pop-
ulations, which can be described with connectivity vectors drawn from P -mixtures of Gaussians: each
neuron i belongs to one of the P populations, and entries of the structure vectors ai and bi are drawn

from a joint Gaussian distribution with covariance σ
k
ab , k = 1, ..., P . Thus cell classes are defined in

terms of connectivity profiles. In the mean-field theory, the functional connectivities become

σ̃ab =
P∑

k=1

σ
k
ab 〈φ

′〉k (4)

where 〈〉k is an average over the entries assigned to the population k of the mixture.

2.3 Training and reverse-engineering low-rank RNNs
We consider a series of classical neuroscience tasks and for each we determine a mixture of Gaussians
network model, with minimal-rank connectivity and a minimal number of cell classes. Our first step
is to train a RNN, in a supervised manner using BPTT and the ADAM algorithm, by optimizing on
entries of ~Win, ~Wout, {~mk}k, {~nk}k. We thus look for solutions in the restricted space of networks whose
connectivity matrix is rank K, without imposing well defined Gaussian statistics. We train networks
with various values of K and identify the minimal value Kmin for which a solution can be found. After
training, we exploit mean-field theory for low-rank RNNs to reverse-engineer the trained networks. We
first relate the internal variables to the task being performed, which allows us to obtain a dynamical
system description of the cognitive components at hand. We then extract relevant statistical features
of the trained vectors to relate this dynamical system description to the learnt connectivity structure.
Guided by this analysis we are able to reconstruct rank-Kmin RNNs whose connectivity vectors can be
described by a P -mixture of Gaussians, and to determine the minimal P for which a solution can be
found.

3 Results

Our approach allowed us to identify two general principles for the roles of dimensionality and cell classes.
Below we summarize and illustrate them on a subset of studied tasks, and then exploit them to build
networks that perform multiple tasks.

3.1 Increasing rank allows to increase the number of internal variables used in the computation
We first consider a perceptual integration task (random dot motion task, RDM, Figure 1A), where a
network is exposed to a noisy input signal and is asked to report the sign of the temporally averaged
signal. We find that a network with rank K = 1 and P = 1 population is able to perform this task
(Figure 1B). The internal variable κ is easily interpreted in terms of the computation performed by the
network: it integrates the input signal before converging to either one of two fixed-points encoding the
positive/negative decision (Figure 1C). This internal variable closely matches accumulation of evidence
in drift-diffusion models that have been proposed to model this type of perceptual integration tasks.
We next consider a parametric working memory task (Romo task, Figure 1D), where two scalar signals
are successively presented, interleaved by a delay period. The task of the network is to report the
difference between the values of the two stimuli. Doing so requires two computational variables: one
that memorizes the first stimulus, and a second that encodes the difference between the two stimuli.
Accordingly, we find that the rank is required to be at least K = 2, while having P = 1 population is
sufficient (Figure 1E). In Figure 1F we analyse the dynamics of a reconstructed network, showing how
the two internal variables κ1 and κ2 implement the two computational variables required for solving the
task.
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Overall the rank of the network determines the dimensionality of the phase space of the recurrent
dynamics, and therefore the number of internal variables available to implement the computation.
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Figure 1: Computations with neural activities of increasing dimensionality. A. Visual stimuli in the
RDM task are dots moving randomly with an overall coherence, either to left or right, that has to be
estimated by the subject. The three circles show dots with their instantaneous vector fields for three
different trials of decreasing difficulty. B. Psychometric curves from a trained rank-1 network (blue),
and from a reconstructed rank-1 network model with one population (magenta). C. Dynamics of the
internal variable for four different trials modeling dots moving to the left with high coherence (blue),
low coherence (green), to the right with high coherence (red), low coherence (orange). D. Romo task:
two stimuli, interleaved by a delay period, have to be compared at the end of the trial. E. Psychometric
curves from a trained rank-2 network (blue), and from a reconstructed rank-2 network model with one
population (magenta). F. Dynamics of the two internal variables. Left: presentation of the first stimulus
and delay, different colors mean different values of the first stimulus f1. The first internal variable
encodes f1 throughout the delay. The second internal variable encodes f1 only transiently. Right: whole
trial, different colors mean different values of the second stimulus f2, f1 = 34Hz. After the second
stimulus has been presented, f1 + f2 is encoded by the first internal variable, f2 by the second internal
variable, which the read-out can combine to report the comparison f1− f2.

3.2 Multiple populations allow multiple operations to be performed on available internal
variables

We now consider a context-dependent perceptual integration task (Mante task, Figure 2A), where two
fluctuating scalar signals are presented and the network is asked to integrate only one of the two signals,
depending on a contextual cue. The task is a more complex version of RDM, where in addition to an
accumulation of evidence mechanism, an attention mechanism is required to flexibly select the integrated
signal. We find that a network with a single population is not able to implement this task, whatever
the rank. In contrast, a rank-1 network with P = 2 is sufficient. The corresponding single internal
variable corresponds to integrated evidence, the only computational variable required for solving the
task (Figure 2B). Having two populations however allows the network to switch between two operations
performed by this variable. This is achieved by reconfiguring the dynamical landscape of the internal
variable in a context-dependent manner as illustrated in Figure 2C. Analytical examination of the
reconstructed network reveals the underlying mechanism: contextual inputs selectively modulate the
gains of populations (Figure 2D), controlling network’s functional connectivities, see eq.(4).
More generally, we find that having multiple populations allows the network to flexibly switch between
different dynamics of the phase space, and therefore implement several operations on the available
internal variables.
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Figure 2: Flexible computation in multi-population networks. A. Sensory inputs in the Mante task. In
addition to exhibiting a coherent motion as in RDM, dots are also colored red or green. A decision about
motion should be reported in one context, about color in the other context. B. Dynamics of the internal
variable for the same sensory inputs in different contexts. C. Reconfiguration of dynamical landscape
by contextual inputs. For visualisation purposes, we consider in this panel a rank-2 network solving the
Mante task, and show how a contextual input allows to modify a phase portrait so as to keep only a subset
of fixed-points (blue points). D. Contextual inputs modulate selectively the gains of each population (left)
by relying on the single-neuron non-linearity (right).

3.3 Multi-tasking networks
Here we draw some perspectives about how these two principles enable the construction of networks
performing multiple-tasks. On one hand, increasing dimensionality allows multiple internal variables
to process inputs in parallel. On the other hand, increasing the number of populations allows for the
selective modulation of more functional connectivities, increasing the flexibility with which the dynamics
of an internal variable can be controlled. We illustrate these two principles by constructing networks
that perform multiple tasks in parallel, by summing the rank-1 matrix solving RDM, the rank-1 matrix
solving Mante task and the rank-2 matrix solving the Romo task to get a single network performing
those three tasks simultaneously (Figure 3A) ; and by constructing a rank-1 network of P populations
that solves a generalization of the Mante task, with P input streams, with a single internal variable
(Figure 3B).
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Figure 3: Multi-tasking networks. A. Performance of networks trained separately on each task (colored)
and of the reconstructed multi-tasking network (black). B. Psychometric curves for networks performing
the Mante tasks with P input streams, and P corresponding contextual inputs.

4 Conclusion

In this work we have provided an abstract description of computations performed in recurrent neural
networks. By focusing on simple tasks this has allowed us to identify the complementary roles of the
two important aspects that are dimensionality (section 3.1) and cell classes (section 3.2). Beyond these
simple tasks, we have been able to use this understanding to build networks solving multiple tasks
(section 3.3), and we expect these principles of neural computation to be important results for the
development of procedures aiming at reverse-engineering networks trained on more complex, real-world
tasks.
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