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ABSTRACT

Deep neural networks provide state-of-the-art performance for image denoising,
where the goal is to recover a near noise-free image from a noisy image. The
underlying principle is that neural networks trained on large datasets have em-
pirically been shown to be able to generate natural images well from a low-
dimensional latent representation of the image. Given such a generator network,
or prior, a noisy image can be denoised by finding the closest image in the range
of the prior. However, there is little theory to justify this success, let alone to
predict the denoising performance as a function of the networks parameters. In
this paper we consider the problem of denoising an image from additive Gaussian
noise, assuming the image is well described by a deep neural network with ReLu
activations functions, mapping a k-dimensional latent space to an n-dimensional
image. We state and analyze a simple gradient-descent-like iterative algorithm
that minimizes a non-convex loss function, and provably removes a fraction of
p1´Opk{nqq of the noise energy. We also demonstrate in numerical experiments
that this denoising performance is, indeed, achieved by generative priors learned
from data.

1 INTRODUCTION

We consider the image or signal denoising problem, where the goal is to remove noise from an
unknown image or signal. In more detail, our goal is to obtain an estimate of an image or signal
y˚ P Rn from

y “ y˚ ` η,

where η is unknown noise, often modeled as a zero-mean white Gaussian random variable with
covariance matrix σ2{nI .

Image denoising relies on modeling or prior assumptions on the image y˚. For example, suppose
that the image y˚ lies in a k-dimensional subspace of Rn denoted by Y . Then we can estimate the
original image by finding the closest point in `2-distance to the noisy observation y on the subspace
Y . The corresponding estimate, denoted by ŷ, obeys

}ŷ ´ y˚}
2
À σ2 k

n
, (1)

with high probability (throughout, }¨} denotes the `2-norm). Thus, the noise energy is reduced by a
factor of k{n over the trivial estimate ŷ “ y which does not use any prior knowledge of the signal.
The denoising rate (1) shows that the more concise the image prior or image representation (i.e.,
the smaller k), the more noise can be removed. If on the other hand the prior (the subspace, in this
example) does not include the original image y˚, then the error bound (1) increases as we would
remove a significant part of the signal along with noise when projecting onto the range of the signal
prior. Thus a concise and accurate prior is crucial for denoising.

Real world signals rarely lie in a priori known subspaces, and the last few decades of image denois-
ing research have developed sophisticated and accurate image models or priors and algorithms.
Examples include models based on sparse representations in overcomplete dictionaries such as
wavelets (Donoho, 1995) and curvelets (Starck et al., 2002), and algorithms based on exploiting
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self-similarity within images (Dabov et al., 2007). A prominent example of the former class of al-
gorithms is the BM3D (Dabov et al., 2007) algorithm, which achieves state-of-the-art performance
for certain denoising problems. However, the nuances of real world images are difficult to describe
with handcrafted models. Thus, starting with the paper (Elad & Aharon, 2006) that proposes to learn
sparse representation based on training data, it has become common to learn concise representation
for denoising (and other inverse problems) from a set of training images.

In 2012, Burger et al. (Burger et al., 2012) applied deep networks to the denoising problem, by
training a deep network on a large set of images. Since then, deep learning based denoisers (Zhang
et al., 2017) have set the standard for denoising. The success of deep network priors can be at-
tributed to their ability to efficiently represent and learn realistic image priors, for example via auto-
decoders (Hinton & Salakhutdinov, 2006) and generative adversarial models (Goodfellow et al.,
2014). Over the last few years, the quality of deep priors has significantly improved (Karras et al.,
2017; Ulyanov et al., 2017). As this field matures, priors will be developed with even smaller latent
code dimensionality and more accurate approximation of natural signal manifolds. Consequently,
the representation error from deep priors will decrease, and thereby enable even more powerful
denoisers.

As the influence of deep networks in inverse problems grows, it becomes increasingly important to
understand their performance at a theoretical level. Given that most optimization approaches for
deep learning are first order gradient methods, a justification is needed for why they do not get stuck
in local minima. The closest theoretical work to this question is Bora et al. (2017), which solves
a noisy compressive sensing problem with generative priors by minimizing empirical risk. Under
the assumption that the network is Lipschitz, they show that if the global optimizer can be found,
which is in principle NP-hard, then a signal estimate is recovered to within the noise level. While
the Lipschitzness assumption is quite mild, the resulting theory does not provide justification for
why global optimality can be reached.

The most related work that establishes theoretical reasons for why gradient methods would not get
stuck in local minima, when using deep generative priors for solving inverse problems, is Hand &
Voroninski (2018). In it, the authors establish global favorability for optimization of the noiseless
empirical risk function. Specifically, they show existence of a descent direction outside a ball around
the global optimizer and a negative multiple of it in the latent space of the generative model. This
work does not provide a specific algorithm which provably estimates the global minimizer, nor does
it provide an analysis of the robustness of the problem with respect to noise.

In this paper, we propose the first algorithm for solving denoising with deep generative priors that
provably finds an approximation of the underlying image. Following the lead of Hand & Voronin-
ski (2018), we assume an expansive Gaussian model for the deep generative network in order to
establish this result.

Contributions: The goal of this paper is to analytically quantify the denoising performance of
deep-prior based denoisers. Specifically, we characterize the performance of a simple and efficient
algorithm for denoising based on a d-layer generative neural network G : Rk Ñ Rn, with k ă n,
and random weights. In more detail, we propose a gradient method with a tweak that attempts to
minimize the least-squares loss fpxq “ 1

2}Gpxq ´ y}
2 between the noisy image y and an image in

the range of the prior, Gpxq. While f is non-convex, we show that the gradient method yields an
estimate x̂ obeying

}Gpx̂q ´ y˚}
2
À σ2 k

n
,

with high probability, where the notation À absorbs a constant factor depending on the number
of layers of the network, and its expansitivity, as discussed in more detail later. Our result shows
that the denoising rate of a deep prior based denoiser is determined by the dimension of the latent
representation.

We also show in numerical experiments, that this rate—shown to be analytically achieved for random
priors—is also experimentally achieved for priors learned from real imaging data.
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Figure 1: Loss surface fpxq “ }Gpxq ´Gpx˚q}, x˚ “ r1, 0s, of an expansive network G with
ReLu activation functions with k “ 2 nodes in the input layer and n2 “ 300 and n3 “ 784 nodes in
the hidden and output layers, respectively, with random Gaussian weights in each layer. The surface
has a critical point near ´x˚, a global minimum at x˚, and a local maximum at 0.

2 PROBLEM FORMULATION

We consider the problem of estimating a vector y˚ P Rn from a noisy observation y “ y˚ ` η. We
assume that the vector y˚ belongs to the range of a d-layer generative neural network G : Rk Ñ Rn,
with k ă n. That is, y˚ “ Gpx˚q for some x˚ P Rk. We consider a generative network of the form

Gpxq “ relupWd . . . relupW2 relupW1x˚qq . . .q,

where relupxq “ maxpx, 0q applies entrywise, Wi P Rniˆni´1 , are the weights in the i-th layer, ni
is the number of neurons in the ith layer, and the network is expansive in the sense that k “ n0 ă

n1 ă ¨ ¨ ¨ ă nd “ n. The problem at hand is: Given the weights of the network W1 . . .Wd and a
noisy observation y, obtain an estimate ŷ of the original image y˚ such that }ŷ ´ y˚} is small and ŷ
is in the range of G.

3 DENOISING VIA EMPIRICAL RISK MINIMIZATION

As a way to solve the above problem, we first obtain an estimate of x˚, denoted by x̂, and then
estimate y˚ as Gpx̂q. In order to estimate x˚, we minimize the empirical risk objective

fpxq :“
1

2
}Gpxq ´ y}

2
.

Since this objective is nonconvex, there is no a priori guarantee of efficiently finding the global min-
imum. Approaches such as gradient methods could in principle get stuck in local minima, instead
of finding a global minimizer that is close to x˚.

However, as we show in this paper, under appropriate conditions, a gradient method with a tweak—
introduced next—finds a point that is very close to the original latent parameter x˚, with the distance
to the parameter x˚ controlled by the noise. In order to state the algorithm, we first introduce a useful
quantity. For analyzing which rows of a matrix W are active when computing relupWxq, we let

W`,x “ diagpWx ą 0qW.

For a fixed weight matrix W , the matrix W`,x zeros out the rows of W that do not have a positive
dot product with x. Alternatively put, W`,x contains weights from only the neurons that are active
for the input x. We also define W1,`,x “ pW1q`,x “ diagpW1x ą 0qW1 and

Wi,`,x “ diagpWiWi´1,`,x ¨ ¨ ¨W2,`,xW1,`,xx ą 0qWi.

The matrix Wi,`,x consists only of the weights of the neurons in the ith layer that are active if the
input to the first layer is x.
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We are now ready to state our algorithm: a gradient method with a tweak informed by the loss
surface of the function to be minimized. Given a noisy observation y, the algorithm starts with
an arbitrary initial point x0 ‰ 0. At each iteration i “ 0, 1, . . ., the algorithm computes the step
direction

ṽxi “ pΠ
1
i“dWi,`,xiq

tpGpxiq ´ yq,

which is equal to the gradient of f if f is differentiable at xi. It then takes a small step opposite to
ṽxi

. The tweak is that before each iteration, the algorithm checks whether fp´xiq is smaller than
fpxiq, and if so, negates the sign of the current iterate xi.

This tweak is informed by the loss surface. To understand this step, it is instructive to examine the
loss surface for the noiseless case in Figure 1. It can be seen that while the loss function has a global
minimum at x˚, it is relatively flat close to ´x˚. In expectation, there is a critical point that is a
negative multiple of x˚ with the property that the curvature in the ˘x˚ direction is positive, and the
curvature in the orthogonal directions is zero. Further, around approximately ´x˚, the loss function
is larger than around the optimum x˚. As a simple gradient descent method (without the tweak)
could potentially get stuck in this region, the negation check provides a way to avoid converging to
this region. Our algorithm is formally summarized as Algorithm 1 below.

Algorithm 1 Gradient method
Require: Weights of the network Wi, noisy observation y, and step size α ą 0

1: Choose an arbitrary initial point x0 P Rkzt0u
2: for i “ 0, 1, . . . do
3: if fp´xiq ă fpxiq then
4: xi Ð ´xi;
5: end if
6: Compute ṽxi

“ pΠ1
i“dWi,`,xi

qtpGpxiq ´ yq
7: xi`1 “ xi ´ αṽxi

8: end for

Other variations of the tweak are also possible. For example, the negation check in Step 2 could be
performed after a convergence criterion is satisfied, and if a lower objective is achieved by negating
the latent code, then the gradient descent can be continued again until a convergence criterion is
again satisfied.

4 MAIN RESULTS

For our analysis, we consider a fully-connected generative network G : Rk Ñ Rn with Gaussian
weights and no bias terms. Specifically, we assume that the weights Wi are independently and iden-
tically distributed as N p0, 2{niq, but do not require them to be independent across layers. Moreover,
we assume that the network is sufficiently expansive:

Expansivity condition. We say that the expansivity condition with constant ε ą 0 holds if

ni ě cε´2 logp1{εqni´1 log ni´1, for all i,

where c is a particular numerical constant.

In a real-world generative network the weights are learned from training data, and are not drawn
from a Gaussian distribution. Nonetheless, the motivation for selecting Gaussian weights for our
analysis is as follows:

1. The empirical distribution of weights from deep neural networks often have statistics con-
sistent with Gaussians. AlexNet is a concrete example (Arora et al., 2015).

2. The field of theoretical analysis of recovery guarantees for deep learning is nascent, and
Gaussian networks can permit theoretical results because of well developed theories for
random matrices.

3. It is not clear which non-Gaussian distribution for weights is superior from the joint per-
spective of realism and analytical tractability.
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4. Truly random nets, such as in the Deep Image Prior (Ulyanov et al., 2017), are increas-
ingly becoming of practical relevance. Thus, theoretical advances on random nets is of
independent interest.

We are now ready to state our main result.

Theorem 1. Consider a network with the weights in the i-th layer,Wi P Rniˆni´1 , i.i.d. N p0, 2{niq
distributed, and suppose that the network satisfies the expansivity condition for some ε ď K{d90.
Also, suppose that the noise variance obeys

ω ď
}x˚}K1

d16
, ω :“

c

18σ2
k

n
logpnd1n

d´1
2 . . . ndq.

Consider the iterates of Algorithm 1 with stepsize α “ K4
1
d2 . Then, there exists a number of steps

N upper bounded by

N ď
K2

d4ε

fpx0q

}x˚}

such that after N steps, the iterates of Algorithm 1 obey

}xi ´ x˚} ď K5d
9}x˚}

?
ε`K6d

6ω, for all i ě N, (2)

with probability at least 1´2e´2k logn´
řd
i“2 8nie

´K7ni´2´8n1e
´K7ε

2 logp1{εqk. Here,K1,K2, ..
are numerical constants, and x0 is the initial point in the optimization.

The error term in the bound (2) consists of two terms—the first is controlled by ε, and the second
depends on the noise. The first term is negligible if ε is chosen sufficiently small, but that comes
at the expense of the expansivity condition being more stringent. The second term in the bound (2)
is more interesting and controls the effect of noise. Specifically, for ε sufficiently small, our result
guarantees that after sufficiently many iterations,

}xi ´ x˚}
2
À σ2 k

n
,

where the notation À absorbs a factor logarithmic in n and polynomial in d. One can show that G is
Lipschitz in a region around x˚1,

}Gpxiq ´Gpx˚q}
2
À σ2 k

n
.

Thus, the theorem guarantees that our algorithm yields the denoising rate of σ2k{n, and, as a conse-
quence, denoising based on a generative deep prior provably reduces the energy of the noise in the
original image by a factor of k{n. We note that the intention of this paper is to show rate-optimality
of recovery with respect to the noise power, the latent code dimensionality, and the signal dimen-
sionality. As a result, no attempt was made to establish optimal bounds with respect to the scaling
of constants or to powers of d. The bounds provided in the theorem are highly conservative in the
constants and dependency on the number of layers, d, in order to keep the proof as simple as possi-
ble. Numerical experiments shown later reveal that the parameter range for successful denoising are
much broader than the constants suggest. As this result is the first of its kind for rigorous analysis
of denoising performance by deep generative networks, we anticipate the results can be improved in
future research, as has happened for other problems, such as sparsity-based compressed sensing and
phase retrieval.

4.1 THE WEIGHT DISTRIBUTION CONDITION (WDC)

To prove our main result, we make use of a deterministic condition on G, called the Weight Distri-
bution Condition (WDC), and then show that Gaussian Wi, as given by the statement of Theorem 1
are such that Wi{

?
2 satisfies the WDC with the appropriate probability for all i, provided the ex-

pansivity condition holds. Our main result, Theorem 1, continues to hold for any weight matrices
such that Wi{

?
2 satisfy the WDC.

1The proof of Lipschitzness follows from applying the Weight Distribution Condition in Section 4.1.
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The condition is on the spatial arrangement of the network weights within each layer. We say that
the matrix W P Rnˆk satisfies the Weight Distribution Condition with constant ε if for all nonzero
x, y P Rk,

›

›

›

n
ÿ

i“1

1〈wi,x〉ą01〈wi,y〉ą0 ¨ wiw
t
i ´Qx,y

›

›

›
ď ε, with Qx,y “

π ´ θ0

2π
Ik `

sin θ0

2π
Mx̂Øŷ, (3)

where wi P Rk is the ith row of W ; Mx̂Øŷ P Rkˆk is the matrix2 such that x̂ ÞÑ ŷ, ŷ ÞÑ x̂,
and z ÞÑ 0 for all z P spanptx, yuqK; x̂ “ x{}x}2 and ŷ “ y{}y}2; θ0 “ =px, yq; and 1S is
the indicator function on S. The norm in the left hand side of (3) is the spectral norm. Note that an
elementary calculation3 gives thatQx,y “ Er

řn
i“1 1〈wi,x〉ą01〈wi,y〉ą0 ¨wiw

t
is forwi „ N p0, Ik{nq.

As the rows wi correspond to the neural network weights of the ith neuron in a layer given by W ,
the WDC provides a deterministic property under which the set of neuron weights within the layer
given by W are distributed approximately like a Gaussian. The WDC could also be interpreted as a
deterministic property under which the neuron weights are distributed approximately like a uniform
random variable on a sphere of a particular radius. Note that if x “ y, Qx,y is an isometry up to a
factor of 1{2.

5 APPLICATIONS TO COMPRESSED SENSING

In this section we briefly discuss another important scenario to which our results apply to, namely
regularizing inverse problems using deep generative priors. Approaches that regularize inverse prob-
lems using deep generative models (Bora et al., 2017) have empirically been shown to improve
over sparsity-based approaches, see (Lucas et al., 2018) for a review for applications in imaging,
and (Mardani et al., 2017) for an application in Magnetic Resonance Imaging showing a significant
performance improvement over conventional methods.

Consider an inverse problem, where the goal is to reconstruct an unknown vector y˚ P Rn from
m ă n noisy linear measurements:

z “ Ay˚ ` η P Rm,

where A P Rmˆn is called the measurement matrix and η is zero mean Gaussian noise with
covariance matrix σ2{nI , as before. As before, assume that y˚ lies in the range of a genera-
tive prior G, i.e., y˚ “ Gpx˚q for some x˚. As a way to recover x˚, consider minimizing the
empirical risk objective fpxq “ 1

2}AGpxq ´ z}, using Algorithm 1, with Step 6 substituted by
ṽxi “ pAΠ1

i“dWi,`,xiq
tpAGpxiq ´ yq, to account for the fact that measurements were taken with

the matrix A.

Suppose that A is a random projection matrix, for concreteness assume that A has i.i.d. Gaussian
entries with variance 1{m. One could prove an analogous result as Theorem 1, but with ω “
b

18σ2 k
m logpnd1n

d´1
2 . . . ndq, (note that n has been replaced by m). This extension shows that,

provided ε is chosen sufficiently small, that our algorithm yields an iterate xi obeying

}Gpxiq ´Gpx˚q}
2
À σ2 k

m
,

where again À absorbs factors logarithmic in the ni’s, and polynomial in d. Proving this result
would be analogous to the proof of Theorem 1, but with the additional assumption that the sensing
matrix A acts like an isometry on the union of the ranges of Π1

i“dWi,`,xi
, analogous to the proof

in (Hand & Voroninski, 2018). This extension of our result shows that Algorithm 1 enables solving
inverse problems under noise efficiently, and quantifies the effect of the noise.

2A formula for Mx̂Øŷ is as follows. If θ0 “ =px̂, ŷq P p0, πq and R is a rotation matrix such that x̂ and ŷ

map to e1 and cos θ0 ¨ e1 ` sin θ0 ¨ e2 respectively, then Mx̂Øŷ “ Rt

¨

˝

cos θ0 sin θ0 0
sin θ0 ´ cos θ0 0
0 0 0k´2

˛

‚R, where

0k´2 is a k ´ 2ˆ k ´ 2 matrix of zeros. If θ0 “ 0 or π, then Mx̂Øŷ “ x̂x̂t or ´x̂x̂t, respectively.
3To do this calculation, take x “ e1 and y “ cos θ0 ¨ e1 ` sin θ0 ¨ e2 without loss of generality. Then each

entry of the matrix can be determined analytically by an integral that factors in polar coordinates.
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We hasten to add that the paper (Bora et al., 2017) also derived an error bound for minimizing em-
pirical loss. However, the corresponding result (for example Lemma 4.3) differs in two important
aspects to our result. First, the result in (Bora et al., 2017) only makes a statement about the mini-
mizer of the empirical loss and does not provide justification that an algorithm can efficiently find
a point near the global minimizer. As the program is non-convex, and as non-convex optimization
is NP-hard in general, the empirical loss could have local minima at which algorithms get stuck.
In contrast, the present paper presents a specific practical algorithm and proves that it finds a solu-
tion near the global optimizer regardless of initialization. Second, the result in (Bora et al., 2017)
considers arbitrary noise η and thus can not assert denoising performance. In contrast, we consider
a random model for the noise, and show the denoising behavior that the resulting error is no more
than Opk{nq, as opposed to }η}2 « Op1q, which is what we would get from direct application of
the result in (Bora et al., 2017).

6 EXPERIMENTAL RESULTS

In this section we provide experimental evidence that corroborates our theoretical claims that denois-
ing with deep priors achieves a denoising rate proportional to σ2k{n. We consider both a synthetic,
random prior, as studied theoretically in the paper, as well as a prior learned from data. All our
results are reproducible with the code provided in the supplement.

6.1 DENOISING WITH A SYNTHETIC PRIOR

We start with a synthetic generative network prior with ReLu-activation functions, and draw its
weights independently from a Gaussian distribution. We consider a two-layer network with n “
1500 neurons in the output layer, 500 in the middle layer, and vary the number of input neurons,
k, and the noise level, σ. We next present simulations showing that if k is sufficiently small, our
algorithm achieves a denoising rate proportional to σk{n as guaranteed by our theory.

Towards this goal, we generate Gaussian inputs x˚ to the network and observe the noisy image
y “ Gpx˚q ` η, η „ N p0, σ2{nIq. From the noisy image, we first obtain an estimate x̂ of the
latent representation by running Algorithm 1 until convergence, and second we obtain an estimate
of the image as ŷ “ Gpx̂q. In the left and middle panel of Figure 3, we depict the normalized mean
squared error of the latent representation, MSEpx̂, x˚q, and the mean squared error in the image
domain, MSEpGpx̂q, Gpx˚qq, where we defined MSEpz, z1q “ }z ´ z1}

2. For the left panel, we
fix the noise variance to σ2 “ 0.25, and vary k, and for the middle panel we fix k “ 50 and vary
the noise variance. The results show that, if the network is sufficiently expansive, guaranteed by
k being sufficiently small, then in the noiseless case (σ2 “ 0), the latent representation and image
are perfectly recovered. In the noisy case, we achieve a MSE proportional to σ2k{n, both in the
representation and image domains.

We also observed that for the problem instances considered here, the negation trick in step 3-4 of
Algorithm 1 is often not necessary, in that even without that step the algorithm typically converges
to the global minimum. Having said this, in general the negation step is necessary, since there exist
problem instances that have a local minimum opposite of x˚.

6.2 DENOISING WITH A LEARNED PRIOR

We next consider a prior learned from data. Technically, for such a prior our theory does not apply
since we assume the weights to be chosen at random. However, the numerical results presented in
this section show that even for the learned prior we achieve the rate predicted by our theory pertain-
ing to a random prior. Towards this goal, we consider a fully-connected autoencoder parameterized
by k, consisting of an decoder and encoder with ReLu activation functions and fully connected lay-
ers. We choose the number of neurons in the three layers of the encoder as 784, 400, k, and those
of the decoder as k, 400, 784. We set k “ 10 and k “ 20 to obtain two different autoencoders. We
train both autoencoders on the MNIST (Lecun et al., 1998) training set.

We then take an image y˚ from the MNIST test set, add Gaussian noise to it, and denoise it using our
method based on the learned decoder-network G for k “ 10 and k “ 20. Specifically, we estimate
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Figure 2: Denosing with a learned generative prior: Even when the number is barely visible, the
denoiser recovers a sharp image.
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Figure 3: Mean square error in the image domain, MSEpGpx̂q, x˚q, and in the latent representa-
tion, MSEpx̂, x˚q, as a function of the dimension of the latent representation, k, with σ2 “ 0.25 (left
panel), and the noise variance, σ2 with k “ 50 (middle panel). As suggested by the theory pertain-
ing to decoders with random weights, if k is sufficiently small, and thus the network is sufficiently
expansive, the denoising rate is proportional to σ2k{n. Right panel: Denoising of handwritten dig-
its based on a learned decoder with k “ 10 and k “ 20, along with the least-squares fit as dotted
lines. The learned decoder with k “ 20 has more parameters and thus represents the images with a
smaller error; therefore the MSE at σ “ 0 is smaller. However, the denoising rate for the decoder
with k “ 20, which is the slope of the curve is larger as well, as suggested by our theory.

the latent representation x̂ by running Algorithm 1, and then set ŷ “ Gpx̂q. See Figure 2 for a few
examples demonstrating the performance of our approach for different noise levels.

We next show that this achieves a mean squared error (MSE) proportional to σ2k{n, as suggested
by our theory which applies for decoders with random weights. We add noise to the images with
noise variance ranging from σ2 “ 0 to σ2 “ 6. In the right panel of Figure 3 we show the MSE in
the image domain, MSEpGpx̂q, Gpx˚qq, averaged over a number of images for the learned decoders
with k “ 10 and k “ 20. We observe an interesting tradeoff: The decoder with k “ 10 has fewer
parameters, and thus does not represent the digits as well, therefore the MSE is larger than that for
k “ 20 for the noiseless case (i.e., for σ “ 0). On the other hand, the smaller number of parameters
results in a better denoising rate (by about a factor of two), corresponding to the steeper slope of the
MSE as a function of the noise variance, σ2.
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A PROOFS

In this section we prove our main result, Theorem 1. Instead of proving Theorem 1 as stated, we
will prove the following equivalent rescaled statement for when Wi have i.i.d. N p0, 1{niq entries.
Because of this rescaling, Gpxq scales like 2´d{2}x}, the noise ω is assumed to scale like 2´d{2, ∇f
scales like 2d, and α scales like 2d.
Theorem 2. Consider a network with the weights in the i-th layer,Wi P Rniˆni´1 , i.i.d. N p0, 1{niq
distributed, and suppose that the network satisfies the expansivity condition for some ε ď K{d90.
Also, suppose that the noise variance obeys

ω ď
}x˚}K12´d{2

d16
, ω :“

c

18σ2
k

n
logpnd1n

d´1
2 . . . ndq.

Consider the iterates of Algorithm 1 with stepsize α “ K4
2d

d2 . Then, there exists a number of steps
N upper bounded by

N ď
K2

d4ε

fpx0q2
d

}x˚}

such that after N steps, the iterates of Algorithm 1 obey

}xi ´ x˚} ď K5d
9}x˚}

?
ε`K6d

62d{2ω, for all i ě N, (4)

with probability at least 1´2e´2k logn´
řd
i“2 8nie

´K7ni´2´8n1e
´K7ε

2 logp1{εqk. Here,K1,K2, ..
are numerical constants, and x0 is the initial point in the optimization.

As mentioned in Section 4.1, our proof makes use of a deterministic condition, called the Weight
Distribution Condition (WDC), formally defined in Section 4.1. The following proposition estab-
lishes that the expansivity condition ensures that the WDC holds:
Lemma 3 (Lemma 9 in (Hand & Voroninski, 2018)). Fix ε P p0, 1q. If the entires of Wi P Rniˆni´1

are i.i.d. N p0, 1{niq and the expansivity condition ni ą cε´2 logp1{εqni´1 log ni´1 holds, then Wi

satisfies the WDC with constant ε with probability at least 1 ´ 8nie
´Kε2ni´1 . Here, c and K are

numerical constants.

We note that the form of dependence of ni on ε can be read off the proofs of Lemma 10 in (Hand
& Voroninski, 2018). It follows from Lemma 3, that the WDC holds for all Wi with probability at
least 1´

řd
i“2 8nie

´K7ni´2 ´ 8n1e
´K7ε

2 logp1{εqk.

In the remainder of the proof we work on the event that the WDC holds for all Wi.

A.1 PRELIMINARIES

Recall that the goal of our algorithm is to minimize the empirical risk objective

fpxq “
1

2
}Gpxq ´ y}

2
,

where y :“ Gpx˚q ` η, with η „ N p0, σ2{nIq.

Our results rely on the fact that outside of two balls around x “ x˚ and x “ ´ρdx˚, with ρd
a constant defined below, the direction chosen by the algorithm is a descent direction, with high
probability. Towards this goal, we use a concentration argument, similar to the arguments used
in (Hand & Voroninski, 2018). First, define Λx :“ Π1

i“dWi,`,x (with Wi,`,x defined in Section 3)
for notational convenience, and note that the step direction of our algorithm can be written as

ṽx “ vx ` q̄x, with vx :“ ΛtxΛxx´ pΛxq
tpΛx˚qx˚, and q̄x :“ Λtxη. (5)

Note that at points x where G (and hence f ) is differentiable, we have that ṽx “ ∇fpxq.
The proof is based on showing that ṽx concentrates around a particular hx P Rk, defined below,
that is a continuous function of nonzero x, x˚ and is zero only at x “ x˚ and x “ ´ρdx˚. The
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definition of hx depends on a function that is helpful for controlling how the operator x ÞÑ W`,xx
distorts angles, defined as:

gpθq :“ cos´1
´

pπ ´ θq cos θ ` sin θ

π

¯

. (6)

With this notation, we define

hx :“ ´
1

2d

´

d´1
ź

i“0

π ´ θi
π

¯

x˚ `
1

2d

«

x´
d´1
ÿ

i“0

sin θi
π

´

d´1
ź

j“i`1

π ´ θj
π

¯

}x˚}2
}x}2

x

ff

,

where θ0 “ =px, x˚q and θi “ gpθi´1q. Note that hx is deterministic and only depends on x, x˚,
and the number of layers, d.

In order to bound the deviation of ṽx from hx we use the following two lemmas, bounding the
deviation controlled by the WDC and the deviation from the noise:
Lemma 4 (Lemma 6 in (Hand & Voroninski, 2018)). Suppose that the WDC holds with ε ă
1{p16πd2q2. Then, for all nonzero x, x˚ P Rk,

}vx ´ hx}2 ď K
d3
?
ε

2d
maxp}x}2, }x˚}2q, and (7)

@

pΠ1
i“dWi,`,xqx, pΠ

1
i“dWi,`,x˚qx˚

D

ě
1

4π

1

2d
}x}2}x˚}2, and (8)

›

›Π1
i“dWi,`,x

›

›

2
ď

1

2d
p1` 2εqd ď

13

12
2´d. (9)

Proof. Equation (7) and (8) are Lemma 6 in (Hand & Voroninski, 2018). Regarding (9), note that
the WDC implies that }Wi,`,x}

2
ď 1{2` ε. It follows that

›

›Π1
i“dWi,`,x

›

›

2
ď

1

2d
p1` 2εqd “

1

2d
ed logp1`2εq ď

1` 4εd

2d
ď

13

12
2´d,

where the last inequalities follow by our assumption on ε.

Lemma 5. Suppose the WDC holds with ε ă 1{p16πd2q2, that any subset of ni´1 rows of Wi are
linearly independent for each i, and that η „ N p0, σ2{nIq. Then the event

Enoise :“
!

›

›pΠ1
i“dWi,`,xq

tη
›

› ď
ω

2d{2
, for all x

)

, ω :“

c

16σ
k

n
logpnd1n

d´1
2 . . . ndq (10)

holds with probability at least 1´ 2e´2k logn.

As the cost function f is not differentiable everywhere, we will make use of the generalized sub-
differential in order to reference the subgradients at nondifferentiable points. For a Lipschitz
function f̃ defined from a Hilbert space X to R, the Clarke generalized directional derivative
of f̃ at the point x P X in the direction u, denoted by f̃opx;uq, is defined by f̃opx;uq “

lim supyÑx,tÓ0
f̃py`tuq´f̃pyq

t , and the generalized subdifferential of f̃ at x, denoted by Bf̃pxq, is
defined by

Bf̃pxq “ tv P Rk | xv, uy ď f̃opx;uq, for all u P X u.
Since fpxq is a piecewise quadratic function, we have

Bfpxq “ convpv1, v2, . . . , vtq, (11)

where conv denotes the convex hull of the vectors v1, . . . , vt, t is the number of quadratic functions
adjoint to x, and vi is the gradient of the i-th quadratic function at x.
Lemma 6. Under the assumption of Lemma 5, and assuming that Enoise holds, we have that, for any
x ‰ 0 and any vx P Bfpxq,

}vx ´ hx} ď K
d3
?
ε

2d
maxp}x}2, }x˚}2q `

ω

2d{2
.

In particular, this holds for the subgradient vx “ ṽx.

11
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Proof. By (11), Bfpxq “ convpv1, . . . vtq for some finite t, and thus vx “ a1v1 ` . . . atvt for some
a1, . . . , at ě 0,

ř

i ai “ 1. For each vi, there exists a w such that vi “ limtÓ0 ṽx`tw. On the event
Enoise, we have that for any x ‰ 0, for any ṽx P Bfpxq

}ṽx ´ hx} “ }vx ` q̄x ´ hx}

ď }vx ´ hx} ` }q̄x}

ď K
d3
?
ε

2d
maxp}x}2, }x˚}2q `

ω

2d{2
,

where the last inequality follows from Lemmas 4 and 5 above. The proof is concluded by appealing
to the continuity of hx with respect to nonzero x, and by noting that

}vx ´ hx} ď
ÿ

i

ai}vi ´ hx} ď K
d3
?
ε

2d
maxp}x}2, }x˚}2q `

ω

2d{2
,

where we used the inequality above and that
ř

i ai “ 1.

We will also need an upper bound on the norm of the step direction of our algorithm:
Lemma 7. Suppose that the WDC holds with ε ă 1{p16πd2q2 and that the event Enoise holds with

ω ď
2´d{2

}x˚}

8π . Then, for all x,

}ṽx} ď
dK

2d
maxp}x}, }x˚}q, (12)

where K is a numerical constant.

Proof. Define for convenience ζj “
śd´1
i“j

π´θ̄j,x,x˚

π . We have

}ṽx} ď}hx} ` }hx ´ ṽx}

ď

›

›

›

›

›

1

2d
x´

1

2d
ζ0x˚ ´

1

2d

d´1
ÿ

i“0

sin θ̄i,x
π

ζi`1
}x˚}

}x}
x

›

›

›

›

›

`K1
d3
?
ε

2d
maxp}x}2, }x˚}2q `

ω

2d{2

ď
1

2d
}x} `

ˆ

1

2d
`

d

π2d

˙

}x˚} `K1
d3
?
ε

2d
maxp}x}, }x˚}q `

ω

2d{2

ď
dK

2d
maxp}x}, }x˚}q,

where the second inequality follows from the definition of hx and Lemma 6, the third inequality

uses |ζj | ď 1, and the last inequality uses the assumption ω ď 2´d{2
}x˚}

8π .

A.2 PROOF OF THEOREM 2

We are now ready to prove Theorem 2. The logic of the proof is illustrated in Figure 4. Recall that
xi is the ith iterate of x as per Algorithm 1. We first ensure that we can assume throughout that xi
is bounded away from zero:
Lemma 8. Suppose that WDC holds with ε ă 1{p16πd2q2 and that Enoise holds with ω in (10)

obeying ω ď 2´d{2
}x˚}

8π . Moreover, suppose that the step size in Algorithm 1 satisfies 0 ă α ă K2d

d2 ,

where K is a numerical constant. Then, after at most N “ p 38πK02d

α q2 steps, we have that for all
i ą N that xi R Bp0,K0}x˚}q, K0 “

1
32π .

In particular, if α “ K2d{d2, then N is bounded by a constant times d4.

We can therefore assume throughout this proof that xi R Bp0,K0}x˚}q, K0 “
1

32π . We prove
Theorem 2 by showing that if }hx} is sufficiently large, i.e., if the iterate xi is outside of set

Sβ “
!

x P Rk | }hx} ď
1

2d
βmaxp}x}, }x˚}q

)

,

12
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x˚´ρdx˚ 0

S`βS´β

Figure 4: Logic of the proof: Starting at an arbitrary point, Algorithm 1 moves away from 0,
at least till its iterates are outside the gray ring, as 0 is a local maximum; and once an iterate xi
leaves the gray ring around 0, all subsequent iterates will never be in the white circle around 0 again
(see Lemma 8). Then the algorithm might move towards ´ρdx˚, but once it enters the dashed ball
around ´ρdx˚, it enters a region where the function value is strictly larger than that of the dashed
ball around x˚, by Lemma 10. Thus steps 3-5 of the algorithm will ensure that the next iterate
xi is in the dashed ball around x˚. From there, the iterates will move into the region S`β , since
outside of S`β YS´β the algorithm chooses a descent direction in each step (see the argument around
equation (16)). The region S`β is covered by a ball of radius r, by Lemma 9, determined by the noise
and ε.

with

β “ 4Kd3
?
ε` 13ω2d{2{}x˚}, (13)

then the algorithm makes progress in the sense that fpxi`1q´fpxiq is smaller than a certain negative
value. The set Sβ is contained in two balls around x˚ and ´ρx˚, whose radius is controlled by β:

Lemma 9. For any β ď 1
642d12 ,

Sβ Ă Bpx˚, 5000d6β}x˚}2q Y Bp´ρdx˚, 500d11
a

β}x˚}2q. (14)

Here, ρd ą 0 is defined in the proof and obeys ρd Ñ 1 as dÑ8.

Note that by the assumption ω ď }x˚}K12´d{2

d16 and Kd45
?
ε ď 1, our choice of β in (13) obeys

β ď 1
642d12 for sufficiently small K1,K, and thus Lemma 9 yields:

Sβ Ă Bpx˚, rq Y Bp´ρdx˚,
b

r}x˚}d
8q.

were we define the radius r “ K2d
9
?
ε}x˚} `K3d

6ω2d{2, where K2,K3 are numerical constants.
Note that hat the radius r is equal to the right hand side in the error bound (4) in our theorem. In
order to guarantee that the algorithm converges to a ball around x˚, and not to that around ´ρdx˚,
we use the following lemma:

Lemma 10. Suppose that the WDC holds with ε ă 1{p16πd2q2. Moreover suppose that Enoise holds,
and that ω in the event Enoise obeys ω

2´d{2}x˚}2
ď K9{d

2, where K9 ă 1 is a universal constant.
Then for any φd P rρd, 1s, it holds that

fpxq ă fpyq (15)

for all x P Bpφdx˚,K3d
´10}x˚}q and y P Bp´φdx˚,K3d

´10}x˚}q, where K3 ă 1 is a universal
constant.

In order to apply Lemma 10, define for convenience the two sets:

S`β :“Sβ X Bpx˚, rq, and

S´β :“Sβ X Bp´ρdx˚,
b

r}x˚}d
8q.
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By the assumption that Kd45
?
ε ď 1 and ω ď K1d

´162´d{2}x˚}, we have that for sufficiently
small K1,K,

S`β Ď Bpx˚,K3d
´10}x˚}q and S´β Ď Bp´ρdx˚,K3d

´10}x˚}q.

Thus, the assumptions of Lemma 10 are met, and the lemma implies that for any x P S´β and
y P S`β , it holds that fpxq ą fpyq. We now show that the algorithm converges to a point in S`β .
This fact and the negation step in our algorithm (line 3-5) establish that the algorithm converges to
a point in S`β if we prove that the objective is nonincreasing with iteration number, which will form
the remainder of this proof.

Consider i such that xi R Sβ . By the mean value theorem (Clason, 2017, Theorem 8.13), there is
a t P r0, 1s such that for x̂i “ xi ´ tαṽxi

there is a vx̂i
P Bfpx̂iq, where Bf is the generalized

subdifferential of f , obeying

fpxi ´ αṽxiq ´ fpxiq “xvx̂i ,´αṽxiy

“xṽxi
,´αṽxi

y ` xvx̂i
´ ṽxi

,´αṽxi
y

ď ´ α}ṽxi
}2 ` α}vx̂i

´ ṽxi
}}ṽxi

}

“ ´ α}ṽxi}p}ṽxi} ´ }vx̂i ´ ṽxi}q. (16)

In the next subsection, we guarantee that for any t P r0, 1s, vx̂i
with x̂i “ xi´ tαṽxi

is close to ṽxi
:

}vx̂i
´ ṽxi

} ď

ˆ

5

6
` αK7

d2

2d

˙

}ṽxi
}, for all vx̂i P Bfpx̂iq. (17)

Applying (17) to (16) yields

fpxi ´ αṽxiq ´ fpxiq ď ´
1

12
α}ṽxi}

2
2,

where we used that αK7
d2

2d ď
1
12 , by our assumption on the stepsize α being sufficiently small.

Thus, the maximum number of iterations for which xi R Sβ is fpx0q12{pαmini }ṽxi
}
2
q. We next

lower-bound }ṽxi
}. We have that on Enoise, for all x R Sβ , with β given by (13).

}ṽx}2 ě }hx} ´ }hx ´ ṽx}

ě 2´d maxp}x}, }x˚}q
´

β ´K1d
3
?
ε´ ω

2d{2

}x˚}

¯

ě 2´d maxp}x}, }x˚}q

ˆ

3Kd3
?
ε` 12ω

2d{2

}x˚}

˙

(18)

ě 2´d}x˚}3Kd
3
?
ε

where the second inequality follows by the definition of Sβ and Lemma 6, and the third inequality
follows from our definition of β in (13). Thus,

fpxi ´ αṽxi
q ´ fpxiq ď ´αK52´2dd6ε}x˚}

2
ď ´2´dd4K6ε}x˚}

2

where we used α “ K4
2d

d2 . Hence, there can be at most fpx0q2
d

K6d4ε}x˚}
2 iterations for which xi R Sβ .

In order to conclude our proof, we remark that once xi is inside a ball of radius r around x˚, the
iterates do not leave a ball of radius 2r around x˚. To see this, note that by (12) and our choice of
stepsize,

α}ṽxi
} ď

K

d
maxp}xi}, }x˚}q.

This concludes our proof.

The remainder of the proof is devoted to prove the lemmas used in this section.

14
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A.3 PROOF OF EQUATION (17)

Our proof relies on hx being Lipschitz, as formalized by the lemma below, which is proven in
Section A.9:

Lemma 11. For any x, y R Bp0,K0}x˚}q, where K0 and K4 are numerical constants,

}hx ´ hy} ď
K4d

2

2d
}x´ y}.

By Lemma 11, for all t P r0, 1s and i ą N (recall that by Lemma 8, after at most N steps,
xi ‰ Bp0,K0}x˚}q):

}hx̂i
´ hxi

} ď
K4d

2

2d
}x̂i ´ xi}, (19)

where x̂i “ xi ´ tαṽxi . Thus, we have that on Enoise, for any vx̂i P Bfpx̂iq by Lemma 6,

}vx̂i ´ ṽxi} ď}vx̂i ´ hx̂i} ` }hx̂i ´ hxi} ` }hxi ´ ṽxi}

ďK1
d3
?
ε

2d
maxp}x̂i}, }x˚}q `

ω

2d{2
`
K4d

2

2d
}x̂i ´ xi} `K1

d3
?
ε

2d
maxp}xi}, }x˚}q `

ω

2d{2

ďK1
d3
?
ε

2d
maxp}xi} ` α}ṽxi}, }x˚}q `

K4d
2

2d
α}ṽxi} `K1

d3
?
ε

2d
maxp}xi}, }x˚}q ` 2

ω

2d{2

ďK1
d3
?
ε

2d

ˆ

2`
αdK

2d

˙

maxp}xi}, }x˚}q `
K4d

2

2d
α}ṽxi} ` 2

K9{d
2

2d
}x˚} (20)

where the second inequality is from Lemma 6 and Equation 19, and the fourth inequality is from (12)
and the assumption ω

2´d{2}x˚}2
ď K9{d

2.

Combining (20) and (18), we get that

}vx̂i
´ ṽxi

} ď

ˆ

5

6
` αK7

d2

2d

˙

}ṽxi
},

with the appropriate constants chosen sufficiently small. This concludes the proof of Equation (17).

A.4 PROOF OF LEMMA 8

First suppose that xi P Bp0, 2K0}x˚}q. We show that after a polynomial number of iterations N ,
we have that xi`N R Bp0, 2K0}x˚}q. Below, we prove that

〈x, ṽx〉 ă 0 and }ṽx} ě
1

2d16π
}x˚} for all x P Bp0, 2K0}x˚}q. (21)

It follows that for any xi P Bp0, 2K0}x˚}q, xi and the next iterate produced by the algorithm,
xi`1 “ xi ´ αṽxi

, form an obtruse triangle. As a consequence,

}xi`1}
2
ě }xi}

2
` α2}ṽxi

}
2

ě }xi}
2
` α2 1

p2d16πq2
}x˚}

2
,

where the last inequality follows from (21). Thus, the norm of the iterates xi will increase until after
`

2K02d16π
α

˘2
iterations, we have xi`N R Bp0, 2K0}x˚}q.

The proof of the lemma is concluded by showing that

xi R Bp0, 2K0}x˚}q implies xi`1 R Bp0,K0}x˚}q (22)

As a consequence, in a polynomial number N of steps, for each iterate, we have that xi R
Bp0,K0}x˚}q, for all i ě N , as claimed.
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We next prove the implication (22). Consider xi R Bp0, 2K0}x˚}q, and note that

}xi`1} “ }xi ´ αṽxi
} ě }xi} ´ α}ṽxi

}

ě }xi} ´ α
dK

2d
maxp}xi}, }x˚}q

ě }xi} ´ α
dK

2d
}xi}

2K0

ě }xi} ´
1

2
}xi}

where the second inequality follows from (12), the third inequality from }xi} ě 2K0}x˚}, and
finally the last inequality from our assumption on the stepsize α. This concludes the proof of (22).

Proof of (21): It remains to prove (21). We start with proving 〈x, ṽx〉 ă 0. For brevity of notation,
let Λz “

ś1
i“dWi,`,z . We have

xT ṽx “
〈
ΛTxΛxx´ ΛTxΛx˚x˚ ` ΛTx η, x

〉
ď

13

12
2´d}x}2 ´

1

4π

1

2d
}x}}x˚} ` }x}

ω

2d{2

ď}x}

ˆ

13

12
2´d}x} `

1{p8πq

2d
}x˚} ´

1

4π

1

2d
}x˚}

˙

ď}x}
1

2d

ˆ

2}x} ´
1

8π
}x˚}

˙

.

The first inequality follows from (8) and (9), and the second inequality follows from our assumption
on ω. Therefore, for any x P Bp0, 1

16π }x˚}q, 〈x, ṽx〉 ă 0, as desired.

We next show that, for any x P Bp0, 1
16π }x˚}q

}ṽx} “}Λ
T
xΛxx´ ΛTxΛx˚x˚ ` ΛTx η} ě }Λ

T
xΛx˚x˚} ´ }Λ

T
xΛxx} ´ }Λ

T
x η}

ě
1

4π

1

2d
}x˚} ´

13

12

1

2d
}x} ´

w

2d{2

ě
1

2d

ˆ

1

8π
´

1

16π

˙

}x˚}.

where the second inequality is from (8) and (9). This concludes the proof of (21).

A.5 PROOF OF LEMMA 5

Let Λx “ Π1
i“dWi,`,x. We have that

}q̄x}
2
“
›

›Λtxη
›

›

2
ď }Λx}

2
}PΛxη}

2
,

where PΛx is a projector onto the span of Λx. As a consequence, }PΛxη}
2 is χ2-distributed random

variable with k-degrees of freedom scaled by σ{n. A standard tail bound (see (?, p. 43)) yields that,
for any β ě k,

P
”

}PΛxη}
2
ě 4β

ı

ď 2e´β .

Next, we note that by applying Lemmas 13-14 from (Hand & Voroninski, 2018, Proof of Lem. 15))4,
with probability one, that the number of different matrices Λx can be bounded as

| tΛx|x ‰ 0u | “ |
 

Π1
i“dWi,`,x|x ‰ 0

(

| ď 10d
2

pnd1n
d´1
2 . . . ndq

k ď pnd1n
d´1
2 . . . ndq

2k,

where the second inequality holds for logp10q ď k{4 logpn1q. To see this, note that
pnd1n

d´1
2 . . . ndq

k ě 10d
2

is implied by kpd logpn1q ` pd ´ 1q logpn2q ` . . . logpndqq ě

kd2{4 logpn1q ě d2 logp10q. Thus, by the union bound,

P
”

}PΛx
η}

2
ď 16k logpnd1n

d´1
2 . . . ndq, for all x

ı

ě 1´ 2e´2k logpnq,

4The proof in that argument only uses the assumption of independence of subsets of rows of the weight
matrices.
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where n “ nd. Recall from (9) that }Λx} ď 13
12 . Combining this inequality with }q̄x}

2
ď

}Λx}
2
}PΛx

η}
2 concludes the proof.

A.6 PROOF OF LEMMA 9

We now show that hx is away from zero outside of a neighborhood of x˚ and ´ρdx˚. We prove
Lemma 9 by establishing the following:
Lemma 12. Suppose 64d6

?
β ď 1. Define

ρd :“
d´1
ÿ

i“0

sin qθi
π

˜

d´1
ź

j“i`1

π ´ qθj
π

¸

,

where qθ0 “ π and qθi “ gpqθi´1q. If x P Sβ , then we have that either

|θ0| ď 32d4β and |}x}2 ´ }x˚}2| ď 132d6β}x˚}2

or
|θ0 ´ π| ď 8πd4

a

β and |}x}2 ´ }x˚}2ρd| ď 200d7
?
ε}x˚}2.

In particular, we have

Sβ Ă Bpx˚, 5000d6β}x˚}2q Y Bp´ρdx˚, 500d11
a

β}x˚}2q. (23)

Additionally, ρd Ñ 1 as dÑ8.

Proof. Without loss of generality, let }x˚} “ 1, x˚ “ e1 and x̂ “ r cos θ0 ¨ e1 ` r sin θ0 ¨ e2 for
θ0 P r0, πs. Let x P Sβ .

First we introduce some notation for convenience. Let

ξ “
d´1
ź

i“0

π ´ θi
π

, ζ “
d´1
ÿ

i“0

sin θi
π

d´1
ź

j“i`1

π ´ θj
π

, r “ }x}2, M “ maxpr, 1q.

Thus, hx “ ´ 1
2d ξx̂0 `

1
2d pr ´ ζqx̂. By inspecting the components of hx, we have that x P Sβ

implies

| ´ ξ ` cos θ0pr ´ ζq| ď βM (24)

| sin θ0pr ´ ζq| ď βM (25)

Now, we record several properties. We have:

θi P r0, π{2s for i ě 1

θi ď θi´1 for i ě 1

|ξ| ď 1 (26)

|ζ| ď
d

π
sin θ0 (27)

qθi ď
3π

i` 3
for i ě 0 (28)

qθi ě
π

i` 1
for i ě 0 (29)

ξ “
d´1
ź

i“0

π ´ θi
π

ě
π ´ θ0

π
d´3 (30)

θ0 “ π `O1pδq ñ θi “ qθi `O1piδq (31)

θ0 “ π `O1pδq ñ |ξ| ď
δ

π
(32)

θ0 “ π `O1pδq ñ ζ “ ρd `O1p3d
3δq if

d2δ

π
ď 1 (33)

17
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We now establish (28). Observe 0 ă gpθq ď
`

1
3π `

1
θ

˘´1
“: g̃pθq for θ P p0, πs. As g and g̃ are

monotonic increasing, we have qθi “ g˝ipqθ0q “ g˝ipπq ď g̃˝ipπq “
`

i
3π `

1
π

˘´1
“ 3π

i`3 . Similarly,

gpθq ě p 1
π `

1
θ q
´1 implies that qθi ě π

i`1 , establishing (29).

We now establish (30). Using (28) and θi ď qθi, we have

d´1
ź

i“1

´

1´
θi
π

¯

ě

d´1
ź

i“1

´

1´
3

i` 3

¯

ě d´3,

where the last inequality can be established by showing that the ratio of consecutive terms with
respect to d is greater for the product in the middle expression than for d´3.

We establish (31) by using the fact that |g1pθq| ď 1 for all θ P r0, πs and using the same logic as
for (Hand & Voroninski, 2018, Eq. 17).

We now establish (33). As θ0 “ π `O1pδq, we have θi “ qθi `O1piδq. Thus, if d
2δ
π ď 1,

d´1
ź

j“i`1

π ´ θj
π

“

d´1
ź

j“i`1

´π ´ qθj
π

`O1p
iδ

2π
q

¯

“

´

d´1
ź

j“i`1

π ´ qθj
π

¯

`O1pd
2δq

So

ζ “
d´1
ÿ

i“0

´ sin qθi
π

`O1p
iδ

π
q

¯”´

d´1
ź

j“i`1

π ´ qθj
π

¯

`O1pd
2δq

ı

(34)

“ ρd `O1

´

d2δ{π ` d3δ{π ` d4δ2{π
¯

(35)

“ ρd `O1p3d
3δq. (36)

Thus (33) holds.

Next, we establish that x P Sβ ñ r ď 4d, and thus M ď 4d. Suppose r ą 1. At least one of the
following holds: | sin θ0| ě 1{

?
2 or | cos θ0| ě 1{

?
2. If | sin θ0| ě 1{

?
2 then (25) implies that

|r ´ ζ| ď
?

2βr. Using (27), we get r ď d{π

1´
?

2β
ď d{2 if β ă 1{4. If | cos θ0| ě 1{

?
2, then

(24) implies that |r ´ ζ| ď
?

2pβr ` |ξ|q. Using (26), (27), and β ă 1{4, we get r ď
?

2|ξ|`ζ

1´
?

2β
ď

d`
?

2
1´
?

2β
ď 4d. Thus, we have x P Sβ ñ r ď 4dñM ď 4d.

Next, we establish that we only need to consider the small angle case (θ0 « 0) and the large angle
case (θ0 « π), by considering the following three cases:

(Case I) sin θ0 ď 16d4β: We have θ0 “ O1p32d4βq or θ0 “ π`O1p32d4βq, as 32d4β ă 1.

(Case II) |r ´ ζ| ă
?
βM : Applying case II to inequality (24) yields |ξ| ď 2

?
βM . Using

(30), we get θ0 “ π `O1p2πd
3
?
βMq.

(Case III) sin θ0 ą 16d4β and |r ´ ζ| ě
?
βM : Finally, consider Case III. By (25), we

have |r ´ ζ| ď βM

sin θ0
. Using this inequality in (24), we have |ξ| ď βM `

βM

sin θ0
ď

2βM

sin θ0
ď

1
8d
´4M ď 1

2d
´3, where the second to last inequality uses sin θ0 ą 16d4β and the last

inequality uses M ď 4d. By (30), we have π´θ0
π d´3 ď ξ ď 1

2d
´3, which implies that

θ0 ě π{2. Now, as |r ´ ζ| ě
?
βM , then by (25), we have | sin θ0| ď

?
β. Hence,

θ0 “ π `O1p2
?
βq, as θ0 ě π{2 and as β ă 1.

At least one of the Cases I,II, or III hold. Thus, we see that it suffices to consider the small angle
case θ0 “ O1p32d4βq or the large angle case θ0 “ π `O1p8πd

4
?
βq.

Small Angle Case. Assume θ0 “ O1pδq with δ “ 32d4β. As θi ď θ0 ď δ for all i, we have
1 ě ξ ě p1´ δ

π q
d “ 1`O1p

2δd
π q provided δd{π ď 1{2 (which holds by our choice δ “ 32d4β by

18
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assumption 64d6
?
β ď 1). By (27), we also have ζ “ O1p

d
π δq. By (24), we have

| ´ ξ ` cos θ0pr ´ ζq| ď βM.

Thus, as cos θ0 “ 1`O1pθ
2

0{2q “ 1`O1pδ
2{2q,

´

´

1`O1p
2δd

π
q

¯

` p1`O1p
2δd

π
qqpr `O1p

δd

π
qq “ O1p4dβq,

and r ďM ď 4d (shown above) provides,

r ´ 1 “ O1p4dβ `
2δd

π
`
δd

π
`

2δd

π
4d`

2δ2d2

π2
q (37)

“ O1p4βd` 4δd2q. (38)

By plugging in that δ “ 32d4β, we have that r ´ 1 “ O1p132d6βq, where we have used that
32d5β
π ď 1{2.

Large Angle Case. Assume θ0 “ π ` O1pδq where δ “ 8πd4
?
β. By (32) and (33), we have

ξ “ O1pδ{πq, and we have ζ “ ρd `O1p3d
3δq if 8d6

?
β ď 1. By (24), we have

| ´ ξ ` cos θ0pr ´ ζq| ď βM,

so, as cos θ0 “ 1´O1pθ
2
0{2q,

O1pδ{πq ` p1`O1pδ
2{2qqpr ´ ρd `O1p3d

3δqq “ O1pβMq,

and thus, using r ď 4d, ρd ď d, and δ “ 8πd4
?
β ď 1,

r ´ ρd “ O1pβM ` δ{π ` 3d3δ `
5

2
δ2d`

3

2
d3δ3q (39)

“ O1

´

4βd` δp
1

π
` 3d3 `

5

2
d`

3

2
d3q

¯

(40)

“ O1p200d7
a

βq (41)

To conclude the proof of (23), we use the fact that

}x´ x˚}2 ď
ˇ

ˇ}x}2 ´ }x˚}2
ˇ

ˇ` p}x˚}2 `
ˇ

ˇ}x}2 ´ }x˚}2
ˇ

ˇqθ0.

This fact simply says that if a 2d point is known to have magnitude within ∆r of some r and is
known to be within angle ∆θ from 0, then its Euclidean distance to the point of polar coordinates
pr, 0q is no more than ∆r ` pr `∆rq∆θ.

Finally, we establish that ρd Ñ 1 as d Ñ 8. Note that ρd`1 “ p1 ´
qθd
π qρd `

sin qθd
π and ρ0 “ 0.

It suffices to show ρ̃d Ñ 0, where ρ̃d :“ 1 ´ ρd. The following recurrence relation holds: ρ̃d “

p1 ´
qθd´1

π qρ̃d´1 `
qθd´1´sin qθd´1

π , with ρ̃0 “ 1. Using the recurrence formula (Hand & Voroninski,
2018, Eq. (15)) and the fact that qθ0 “ π, we get that

ρ̃d “
d
ÿ

i“1

qθi´1 ´ sin qθi´1

π

d
ź

j“i`1

`

1´
qθj´1

π

˘

(42)

using (29), we have that

d
ź

j“i`1

´

1´
qθj´1

π

¯

ď

d
ź

j“i`1

´

1´
1

j

¯

“ exp
´

´

d
ÿ

j“i`1

1

j

¯

ď exp
´

´

ż d`1

i`1

1

s
ds
¯

“
i` 1

d` 1

Using (28) and the fact that qθi´1 ´ sin qθi´1 ď qθ3
i´1{6, we have that ρ̃d ď

řd
i“1

qθ3i´1

6π ¨ i`1
d`1 Ñ 0 as

dÑ8.
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A.7 PROOF OF LEMMA 10

Consider the function
fηpxq “ f0pxq ´ xGpxq ´Gpx˚q, ηy,

and note that fpxq “ fηpxq ` }η}
2. Consider x P Bpφdx˚, ϕ}x˚}q, for a ϕ that will be specified

later. Note that
|〈Gpxq ´Gpx˚q, η〉| ď |

〈
Π1
i“dWi,`,xx, η

〉
| ` |

〈
Π1
i“dWi,`,x˚x˚, η

〉
|

“ |
〈
x, pΠ1

i“dWi,`,xq
tη
〉
| ` |

〈
x˚, pΠ

1
i“dWi,`,x˚q

tη
〉
|

ď p}x} ` }x˚}q
ω

2d{2

ď pϕ}x˚} ` }x˚}q
ω

2d{2
,

where the second inequality holds on the event Enoise, by Lemma 5, and the last inequality holds by
our assumption on x. Thus, for x P Bpφdx˚, ϕ}x˚}q
fηpxq ďEf0pxq ` |f0pxq ´ Ef0pxq| ` |〈Gpxq ´Gpx˚q, η〉|

ď
1

2d`1

ˆ

φ2
d ´ 2φd `

10

K3
2

dϕ

˙

}x˚}
2 `

1

2d`1
}x˚}

2

`
εp1` 4εdq

2d
}x}2 `

εp1` 4εdq ` 48d3
?
ε

2d`1
}x}}x˚} `

εp1` 4εdq

2d
}x˚}

2

` pϕ}x˚} ` }x˚}q
ω

2d{2

ď
1

2d`1

ˆ

φ2
d ´ 2φd `

10

K3
2

dϕ

˙

}x˚}
2 `

1

2d`1
}x˚}

2

`
εp1` 4εdq

2d
pφd ` ϕq

2}x˚}
2 `

εp1` 4εdq ` 48d3
?
ε

2d`1
pφd ` ϕq}x˚}

2 `
εp1` 4εdq

2d
}x˚}

2

` pϕ}x˚} ` }x˚}q
ω

2d{2

ď
}x˚}

2

2d`1

ˆ

1` φ2
d ´ 2φd `

10

K3
2

dε` 68d2
?
ε

˙

` pϕ}x˚} ` }x˚}q
ω

2d{2
(43)

where the last inequality follows from ε ă
?
ε, ρd ď 1, 4εd ă 1, ϕ ă 1 and assuming ϕ “ ε.

Similarly, we have that for any y P Bp´φdx˚, ϕ}x˚}q
fηpyq ěErfpyqs ´ |fpyq ´ Erfpyqs| ´ |〈Gpxq ´Gpx˚q, η〉|

ě
1

2d`1

`

φ2
d ´ 2φdρd ´ 10d3ϕ

˘

}x˚}
2 `

1

2d`1
}x˚}

2

´

ˆ

εp1` 4εdq

2d
}y}2 `

εp1` 4εdq ` 48d3
?
ε

2d`1
}y}}x˚} `

εp1` 4εdq

2d
}x˚}

2

˙

´ pϕ}x˚} ` }x˚}q
ω

2d{2

ě
}x˚}

2

2d`1

`

1` φ2
d ´ 2φdρd ´ 10d3ϕ´ 68d2

?
ε
˘

´ pϕ}x˚} ` }x˚}q
ω

2d{2
(44)

Using ε ă
?
ε, ρd ď 1, 4εd ă 1, ϕ ă 1 and assuming ϕ “ ε, the right side of (43) is smaller than

the right side of (44) if

ϕ “ ε ď

¨

˝

φd ´ ρdφd ´ 13}η}2
´

125` 5
K3

2

¯

d3

˛

‚

2

. (45)

We can establish that:
Lemma 13. For all d ě 2, that

1{
`

K1pd` 2q2
˘

ď 1´ ρd ď 250{pd` 1q.

Thus, it suffices to have ϕ “ ε “ K3

d10 and 13}η}2 ď
K9

d2 ď
1
2

K2

K1pd`2q2 for an appropriate universal
constant K9, and for an appropriate universal constant K3.

20



Under review as a conference paper at ICLR 2019

A.8 PROOF OF LEMMA 13

It holds that
}x´ y} ě 2 sinpθx,y{2qminp}x}, }y}q, @x, y (46)
sinpθ{2q ě θ{4, @θ P r0, πs (47)
d

dθ
gpθq P r0, 1s @θ P r0, πs (48)

logp1` xq ď x @x P r´0.5, 1s (49)
logp1´ xq ě ´2x @x P r0, 0.75s (50)

where θx,y “ =px, yq. We recall the results (36), (37), and (50) in (Hand & Voroninski, 2018):

θ̌i ď
3π

i` 3
and θ̌i ě

π

i` 1
@i ě 0

1´ ρd “
d´1
ź

i“1

ˆ

1´
θ̌i
π

˙

`

d´1
ÿ

i“1

θ̌i ´ sin θ̌i
π

d´1
ź

j“i`1

ˆ

1´
θ̌j
π

˙

.

Therefore, we have for all 0 ď i ď d´ 2,
d´1
ź

j“i`1

ˆ

1´
θ̌j
π

˙

ď

d´1
ź

j“i`1

ˆ

1´
1

j ` 1

˙

“ e
řd´1

j“i`1 logp1´ 1
j`1 q ď e´

řd´1
j“i`1

1
j`1 ď e´

şd
i`1

1
s`1ds “

i` 2

d` 1
,

d´1
ź

j“i`1

ˆ

1´
θ̌j
π

˙

ě

d´1
ź

j“i`1

ˆ

1´
3

j ` 3

˙

“ e
řd´1

j“i`1 logp1´ 3
j`3 q ě e´

řd´1
j“i`1

6
j`3 ě e´

şd´1
i

6
s`3ds “

ˆ

i` 3

d` 2

˙6

,

where the second and the fifth inequalities follow from (49) and (50) respectively. Since π3{p12pi`
1q3q ď θ̌3

i {12 ď θ̌i ´ sin θ̌i ď θ̌3
i {6 ď 27π3{p6pi` 3q3q, we have that for all d ě 3

1´ ρd ď
2

d` 1
`

d´1
ÿ

i“1

27π3

6pi` 3q3
i` 2

d` 1
ď

2

d` 1
`

3π5

4pd` 1q
ď

250

d` 1

and

1´ ρd ě

ˆ

3

pd` 2q

˙6

`

d´1
ÿ

i“1

π3

12pi` 3q3

ˆ

i` 3

d` 2

˙6

ě
1

K1pd` 2q2
,

where we use
ř8

i“4
1
i2 ď

π2

6 and
řn
i“1 i

3 “ Opn4q.

A.9 PROOF OF LEMMA 11

To establish Lemma 11, we prove the following:
Lemma 14. For all x, y ‰ 0,

}hx ´ hy} ď

ˆ

1

2d
`

6d` 4d2

π2d
max

ˆ

1

}x}
,

1

}y}

˙

}x˚}

˙

}x´ y}

Lemma 11 follows by noting that if x, y R Bp0, r}x˚}q, then }hx ´ hy} ď
´

1
2d `

6d`4d2

πr2d

¯

}x´ y}.

Proof of Lemma 14. For brevity of notation, let ζj,z “
śd´1
i“j

π´θ̄i,z
π . Combining (46) and (47)

gives |θ̄0,x ´ θ̄0,y| ď 4 max
´

1
}x} ,

1
}y}

¯

}x´ y}. Inequality (48) implies |θ̄i,x ´ θ̄i,y| ď |θ̄j,x ´ θ̄j,y|
for all i ě j. It follows that

}hx ´ hy} ď
1

2d
}x´ y} `

1

2d
|ζ0,x ´ ζ0,y|
l jh n

T1

}x˚}

`
1

2d

ˇ

ˇ

ˇ

ˇ

ˇ

d´1
ÿ

i“0

sin θ̄i,x
π

ζi`1,xx̂´
d´1
ÿ

i“0

sin θ̄i,y
π

ζi`1,y ŷ

ˇ

ˇ

ˇ

ˇ

ˇ

l jh n

T2

}x˚}. (51)

21



Under review as a conference paper at ICLR 2019

By Lemma 15, we have

T1 ď
d

π
|θ̄0,x ´ θ̄0,y| ď

4d

π
max

ˆ

1

}x}
,

1

}y}

˙

}x´ y}. (52)

Additionally, it holds that

T2 “

ˇ

ˇ

ˇ

ˇ

ˇ

d´1
ÿ

i“0

sin θ̄i,x
π

ζi`1,xx̂´
sin θ̄i,x
π

ζi`1,xŷ `
sin θ̄i,x
π

ζi`1,xŷ ´
d´1
ÿ

i“0

sin θ̄i,y
π

ζi`1,y ŷ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
d

π
}x̂´ ŷ} `

ˇ

ˇ

ˇ

ˇ

ˇ

d´1
ÿ

i“0

sin θ̄i,x
π

ζi`1,x ´

d´1
ÿ

i“0

sin θ̄i,y
π

ζi`1,y

ˇ

ˇ

ˇ

ˇ

ˇ

l jh n

T3

. (53)

We have

T3 ď

d´1
ÿ

i“0

„
ˇ

ˇ

ˇ

ˇ

sin θ̄i,x
π

ζi`1,x ´
sin θ̄i,x
π

ζi`1,y

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

sin θ̄i,x
π

ζi`1,y ´
sin θ̄i,y
π

ζi`1,y

ˇ

ˇ

ˇ

ˇ



ď

d´1
ÿ

i“0

„

1

π

ˆ

d´ i´ 1

π

ˇ

ˇθ̄i´1,x ´ θ̄i´1,y

ˇ

ˇ

˙

`
1

π
| sin θ̄i,x ´ sin θ̄i,y|



ď
d2

π
|θ̄0,x ´ θ̄0,y| ď

4d2

π
max

ˆ

1

}x}
,

1

}y}

˙

}x´ y}. (54)

Using (46) and (47) and noting }x̂´ ŷ} ď θx,y yield

}x̂´ ŷ} ď θx,y ď 2 max

ˆ

1

}x}
,

1

}y}

˙

}x´ y}. (55)

Finally, combining (51), (52), (53), (54) and (55) yields the result.

Lemma 15. Suppose ai, bi P r0, πs for i “ 1, . . . , k, and |ai´bi| ď |aj´bj |,@i ě j. Then it holds
that

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

i“1

π ´ ai
π

´

k
ź

i“1

π ´ bi
π

ˇ

ˇ

ˇ

ˇ

ˇ

ď
k

π
|a1 ´ b1|.

Proof. Prove by induction. It is easy to verify that the inequality holds if k “ 1. Suppose the
inequality holds with k “ t´ 1. Then

ˇ

ˇ

ˇ

ˇ

ˇ

t
ź

i“1

π ´ ai
π

´

t
ź

i“1

π ´ bi
π

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

t
ź

i“1

π ´ ai
π

´
π ´ at
π

t´1
ź

i“1

π ´ bi
π

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

π ´ at
π

t´1
ź

i“1

π ´ bi
π

´

t
ź

i“1

π ´ bi
π

ˇ

ˇ

ˇ

ˇ

ˇ

ď
t´ 1

π
|a1 ´ b1| `

1

π
|at ´ bt| ď

t

π
|a1 ´ b1|.
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