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ABSTRACT

We investigate PAC-Bayes bounds for deep neural networks through the closely
related IB-Lagrangian objective. ~We first propose to approximate the IB-
Lagrangian through a second order Taylor expansion of the randomized loss
around the minimum. For the case of Gaussian priors and posteriors with fixed
means and diagonal covariance, we are able to derive a lower bound to this approx-
imation that corresponds to an “invalid” PAC-Bayes prior (a prior that is training
set dependent). Our lower bound depends only on the flatness of the minimum,
and the distance between the prior and posterior means. Through a number of
experiments our lower bound implies easy and and hard cases where one can or
cannot prove generalization even through “cheating”. Motivated by this result, we
see that for the easy cases, a simple baseline closely matches our lower bound and
is sufficient to achieve a non-vacuous PAC-Bayes bound. Crucially the baseline
prior is centered on the random deep neural network initialization. This suggests
that a good prior mean choice is the main innovation in recent non-vacuous bounds
with further optimization of the PAC-Bayes bound through SGD having a com-
plementary role.

1 INTRODUCTION

Recently two works Dziugaite & Roy|(2017) [Zhou et al.| (2018) have made significant progress in

proving generalization for deep neural networks. They manage to prove non-vacuous generalization
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Figure 1: The importance of retaining the original minimum: A number of works have shown the
existence of an empirical correlation between generalization error and flatness in the loss landscape
around the deep neural network minimum . Recently popular PAC-Bayes analyses can be seen
as a formal way of quantifying this flatness. However, moving forward from simple empirical cor-
relations, existing optimization based non-vacuous bounds compute implicitly a different minimum
fto and then evaluate the flatness around that minimum. By contrast we aim to estimate the flatness
and a related optimal posterior distribution around the original minimum geg.
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bounds for a simplified Mnist dataset|Dziugaite & Roy|(2017) and the Imagenet dataset respectively
Zhou et al.[(2018)). This stands in stark contrast with previous works |Bartlett et al.[(2017)) Neyshabur,
et al.| (2017b) |Golowich et al.| (2017) which yield bounds that are vacuous by several orders of
magnitude and are usually motivated by simple empirical correlation with the generalization error.

Both works rely crucially on applying the PAC-Bayes framework [McAllester| (1999) which typi-
cally addresses the generalization error of stochastic classifiers. Given the randomized empirical

error Eg..o[L(0)], the randomized population error Eg..q[L(0)], a prior weight distribution P, a
posterior weight distribution () and N training samples the PAC-Bayes bound gives a guarantee of
the form

o IL(0)] < B [L(0)] + AV/(KL(QI[P) + B)/N. (1)

with some probability 1 — § where A and B are constants related to the derivation. The PAC-
Bayes bound models the complexity of a classifier as the KL-Divergence between a prior P and
a posterior () weight distribution. Apart from yielding state of the art bounds for SVMs, a further
motivation for this framework, is it’s Bayesian nature i.e. is the existance of the prior P. Complexity
is not measured with respect to an arbitrary reference point, but as in the luckiness framework
Shawe-Taylor et al.| (1998)), with respect to a reference point that can potentially incorporate our
prior knowledge about good solutions to the classification problem, and can lead to possibly tighter
bounds.

In|Dziugaite & Roy|(2017) the authors model the weights as originating from a Gaussian posterior
distribution with diagonal covariance 8 = p + £ ©® o where € ~ N(0,I). Then they optimize
directly the stochastic objective resulting from the PAC-Bayes bound, by approximating stochastic
quantities with MC sampling. Similarly in|Zhou et al.|(2018)) the authorts first compress a DNN with
an off the shelf compession algorithm, removing redundant parameters and applying the PAC-Bayes
approach to the remaining weights. This can be seen as explicitly minimizing the length of a code
describing the DNN. While compression in [Zhou et al.[(2018) is done explicitly, |Dziugaite & Roy
(2017) can also be seen under this light, the random variables form a variational code whose length
is explicitly minimized Blier & Ollivier| (2018)).

While these two works result in non-vacuous bounds they have a number of important limitations.

e Importantly they provide generalization error guarantees for a different classifier than the
original. Compressing the neural network or modelling it as originating from a Gaussian
distribution whose mean is modified, results in finding a completely different point in the
parameter space than the original. The function that the new weights describe might or
might not be close to the original. This might seem like an academic problem. However we
argue that analyzing networks that typically result from vanilla SGD is equally important
potentially leading to better initialization and regularisation of SGD, as well as discovering
inherent limitions of our generalization proof toolbox.

e The bounds provided by Dziugaite & Roy| (2017)Zhou et al.|(2018) are non-vacuous but
loose. What is the source of this looseness? Both methods rely in non-convex optimisation
that might have simply not converged properly. This is a particular problem in |Dziugaite!
& Roy|(2017) where it is well known that VI techniques require laborious hyperparameter
tuning, something that has hindered significantly the wide applicability of Bayesian neural
networks Wu et al.|(2018)). Even when care is taken the resuls are widely considered sub-
optimal in terms of uncertainty estimation for prediction tasks and code length description
of the DNN |Wu et al.|(2018)Blier & Ollivier| (2018). As such we argue that one stands to
benefit from circumventing these non-convex optimisation procedures when possible.

The PAC-Bayes bound can also be seen under the light of flat minima. Flat minima have been em-
pirically shown to correlate with better generalization Neyshabur et al.|(2017a)Keskar et al.| (2016).
The PAC-Bayes bound can be interpreted as balancing two terms, the randommized empirical loss
and the KL complexity term [Neyshabur et al.| (2017a). As the posterior can be arbitrarily chosen
increasing the variance of the noise added to the parameters will typically decrease the KL term
while increasing the empirical loss. If the neural network solution corresponds to a flat minimum,
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more noise can be added to the parameters without affecting the empirical performance Neyshabur
et al.|(2017a).

In this work we propose to tackle the above problems by using a second order Taylor expansion of
the loss around the minimum, in conjunction with the PAC-Bayes framework. The second order term
parameterized by the Hessian matrix corresponds to the curvature of the loss around the minimum.
In line with the works linking flat minima to better generalization Neyshabur et al.[ (2017a)|Keskar
et al.| (2016), we are effectively estimating the flatness of the minimum along all parameter dierec-
tions. Thus we are able to add more noise to the flat directions and less noise to the curved ones,
something that will typically decrease significantly the KL term in the PAC-Bayes framework while
ensuring that the loss of the stochastic classifier remains small. Crucially for the case of Gaussian
posteriors the optimal posterior covariance can be found in closed form, allowing us to circumvent
a non-convex optimization procedure by incuring an approximation penalty due to using a second
order approximation of the loss.

The resulting approximation is closely linked to the Laplace approximation in Bayesian statistics
Bishop| (20006). It and similar approximations to the posterior have a appeared a number of times in
the literature of bayesian neural networks yielding good results in a number of tasks|Maddox et al.
(2019); [Khan et al.| (2019); Ritter et al.| (2018)); Zhang et al.| (2017); Khan et al.| (2018). Similarly
second order approximations of the loss around a minimum have a long history in the literature of
DNN compression |Dong et al.| (2017); |Wang et al.| (2019); Peng et al.| (2019); |LeCun et al.| (1990);
Hassibi & Stork! (1993) often yielding state of the art results in parameter reduction.

Even though the resulting posterior is optimal with respect to our approximation, being able to
chose a data driven informative prior still leaves room for looseness. Importantly the prior in the
PAC-Bayes framework can depend on the data generating distribution but not on the training set
used to train the evaluated classifier. Workarounds include choosing data driven priors by training
a separate classifier on a different training set, or using the same training set but enforcing that the
training set is not too informative about each individual training signal. The later can be formalized
through the framework of differential privacy. Both of the above will usually involve some non-
convex optimisation procedure leaving again doubt as to the optimality of the classifier complexity
estimate. We show that for the case of Gaussian priors and posteriors with diagonal covariance we
can derive the optimal invalid prior covariance in closed form.

The invalid prior cannot be used to prove generalization, however it can be used as a sanity check
to see whether proving generalization is possible in principle. The optimal solution with respect
to both prior and posterior covariance results in a lower bound on a function closely related to the
PAC-Bayes bound (but not exactly equal given that we make a number of approximations). Through
experiments we find that, depending on the hardness of the dataset, one can find cases where the set
of feasible solutions implied from the lower bound and the set of non-vacuous PAC-Bayes bound
solutions don’t intersect. One is unable to prove generalization, even through choosing a prior in an
invalid manner.

A number of works |Achille & Soatto| (2018)); |Dziugaite & Roy|(2017); |(Germain et al.| (2016) have
noted the similarity between the stochastic PAC-Bayes objective and the objective

Ca(D; P,Q) = E_L(6)] + BKL(QI|P). )

For $ = 1 this is known as the Evidence Lower Bound (ELBO) objective in Variational Inference
literature [Kingma et al.| (2015)Bishop| (2006). In the Information Bottleneck framework |Achille &
Soatto| (2018)Tishby et al. (2000) it is know as the IB-Lagrangian. More recently the same objective
has been interpreted as the “’task complexity”|Achille et al.[(2019). Then /3 has the role of regulating
the amount of information in the randomized neural network |Achille & Soatto|(2018)), smaller values
correspond to more information and potential to overfit. While the objectives[I]and[2]are not entirely
equivalent due to a square root term over the KL divergence in the PAC-Bayes case, we will be using
the IB formulation as removing the square root will ease our derivations. We note that|Dziugaite &
Roy| (2017) have used the two objectives intercheangably with no significant difference in results.

A number of preprints have appeared on Arxiv trying to link PAC-Bayes to flat minima |Wang et al.
(2018); |L1 et al.|(2019); [Tsuzuku et al.| (2019);|Yang et al.| (2019). These typically involve heuristic
choices for the optimal posterior, do not analyze the role of the prior, and focus on quantities that
simply correlate with the generalization error. Motivating vacuous generalization bounds on the
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basis of empirical correlations with generalization error has been criticised in a number of recent
works [Kawaguchi et al.| (2017); Nagarajan & Kolter| (2019b); |Pitas et al.[(2019).

2 CONTRIBUTIONS

e We propose to analyze a PAC-Bayes bound through a second order Taylor expansion of
the randomized empirical loss in the closely related IB-Lagrangian objective. We thus
pay an error resulting from the second order approximation in order to circumvent non-
convex optimisation procedures, which might require extensive hyperparameter tuning and
not converge properly.

e We are able to find a lower bound to this second order taylor expansion that corresponds
to an invalid PAC-Bayes prior (the prior is training set dependent). Experimentally we find
cases where the set of feasible solutions implied by the lower bound does not intersect with
the set of non-vacuous PAC-Bayes accuracy-complexity pairs. This in turn implies easy
and hard cases were one can and cannot prove generalization using Gaussian priors and
posteriors with diagonal covariance.

e While we rely on approximations, we see empirically that in easy cases one can find non-
vacuous generalization bounds using a very simple baseline where the prior is crucially
centered at the random DNN initialization. This in turn highlights the insightful prior mean
choice as the main innovation in previous non-vacous bound works|Dziugaite & Roy|(2017)
with bound optimization through SGD having a complementary role.

e We motivate a layerwise method to optimise PAC-Bayes bounds with respect to the poste-
rior variance, reducing the required computations significantly.

3 PAC-BAYESIAN FRAMEWORK

We consider the hypothesis class H, realized by the feedforward neural network architecture of
depth L with coordinate-wise activation functions ¢ defined as the set of functions fg : X —
Y (X CRP,Y C RE) with fo(x) = o(o(...o(x TWQ)Wl)Wg) )WL) where 8 € O, C R?is
a vectorization of the weights and © 7, = — RPXRL 5 RRUK2 5 RREXK | Given the loss function
£(-,-) we can define the population loss: L(0) := E(4 4 Npﬁ(fg( ), y) and given a training set of

N instances D = {(:cj,yj)} ", the empirical loss L( ) = Zl A(fol(x:), ys)-
The PAC-Bayesian framework McAllester| (1999) provides generalization error guarantees for ran-

domized classifiers drawn from a posterior distribution ). We will use the following form of the
PAC-Bayes bound.

Theorem 3.1. (PAC-Bayesian theorem McAllester|((1999)) For any data distribution over X X ),
we have that the following bound holds with probability at least 1 — § over random i.i.d. samples
D = {(z;, yj)}évzl of size N drawn form the data distribution:

2V =D)
E [1(0)) < E [L(0)] + \/ KLQIP) I 5 )

0~Q 2N
Here Q) is an arbitrary “posterior” distribution over parameter vectors, which may depend on the
sample D and on the prior P.

The framework models the complexity of the randomized classifier as the KL-Divergence between
the posterior () and a prior P. The prior P must be valid in that it cannot depend in any way on the
training data. On the contrary the posterior () can be chosen to be any arbitrary distribution. This
flexibility allows one to model deterministic neural networks as the mean of an arbitrary posterior
distribution, thus deriving results for a stochastic but closely related classifier.

The square root in[3|will make subsequent calculations cumbersome. We will therefore be analyzing
the similar objective

Ca(D; P,Q) = E_L(6)] + BKL(Q|P), “

which is known as the IB-Lagrangian |Achille & Soatto|(2018)); Tishby et al.|(2000). While the two
objectives are not exactly equivalent, we argue through experiments that the differences are minimal
and our results translate to the original PAC-Bayes bound
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4  QUADRATIC APPROXIMATION AND LOWER BOUND

The stochastic and non-convex objective [] is difficult to analyze theoretically. As such we first
propose to expand the randomized loss using a Taylor expansion which will make the subsequent
analysis tractable. We get

Ca(D; P,Q) = E [L(O)] + BKL(QI|P)

A T
oL(6 1
%n]NEQ’[<8(0)> n-+ 31" Hn +O(|[nl[*)] + BKL(QI|P) 5)

< E [ Hn] + SKLQIIP)
n~Q'" 2

where @’ is a centered version of Q. We’ve made a number of assumptions. In the second line we
assumed that the loss () at the minimum is 0. In line 3 we assumed that the gradient 9L(8) /00
at the minimum is also 0, the term O(||n||?) is negligible and that the loss is locally convex resulting
in the quadratic approximation being an upper bound. For a well trained overparametrized DNN
assuming that the loss and the gradient at the minimum are zero is reasonable. Assuming local
convexity at the minimum is also often a reasonable assumption Sagun et al.[(2017); Li et al.[(2018]).
Regarding the validity of the quadratic approximation we note that it often provides state of the
art results in DNN compression [Dong et al.| (2017); Wang et al.| (2019); |Peng et al.| (2019); [LeCun
et al.| (1990); Hassibi & Stork! (1993) being highly informative about parameter relevence. Finally
we will be analyzing Gaussian posterior distributions with diagonal or close to diagonal covariance
which can be assumed to sufficiently concentrate around the minimum making the local second
order approximation meaningful.

4.1 OPTIMAL POSTERIOR

We make the following modeling choices Q@ = N (po, Xo) and P = N (u1, AX1) which are popular
in VI and PAC-Bayes literature. We can then show that the optimal posterior covariance of the above
objective for fixed prior and posterior means has a closed form solution.

Lemma 4.1. The convex optimization problem ming,, E_[in"H;n] + BKL(Q||P) where Q =
nf\/

Q/
N (po, X0) and P = N (1, AX1) has the global minimum:
%5 :ﬁ(Hz+§2;1)*1, (©)

where H; captures the curvature in the directions of the parameters, while 31 is a chosen prior
covariance.

This can been seen as a Laplace approximation Bishop| (2006) to the posterior around the MAP
solution. In practice we will be using [6] by performing a grid search over the parameters /3 and .
Then we will try to find Pareto optimal pairs balancing the accuracy of the randomized classifier and
the KL complexity term.

4.2 OPTIMAL PRIOR

The above solution is not optimal with respect to the prior covariance in that we have up to now
chosen it arbitrarily. Furthermore given that the choice of the random initialization as the prior mean
has been independently shown to result in much tighter bounds in a variety of settings [Dziugaite &
Roy| (2017); |[Nagarajan & Kolter| (2019a)) one would wish to isolate the effects of the prior mean on
the bound tightness from the prior covariance.

PAC-Bayesian theory allows one to choose an informative prior, however the prior can only depend
on the data generating distribution and not the training set. A number of previous works [Parrado-
Hernandez et al.|[(2012); |Catoni| (2003); ]Ambroladze et al.|(2007) have used this insight mainly on
simpler linear settings and usually by training a classifier on a separate training set and using the
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Figure 2: Feasible solutions vs Non-Vacuous solutions: We merge the 10 classes in Mnist and Cifar
to create simpler 2 class problems. For different values of S we compute the optimal complexity

\/KL(Q||P)+1n W= I . . .
terms SN using (7} |81 We compute the accuracy of the stochastic classifier with
MC for 5 samples. We plot this [ower bound with the solid black line. All points above it are
feasible. We see that for the Mnist problem the two regions intersect suggesting that we might be
able to prove generalization using Gaussians with diagonal covariance. By contrast in the Cifar case
the two regions do not intersect suggesting that the prior and posterior means have a prohibitive
distance between them, and we cannot prove generalization with diagonal covariances.

result as a prior. Recently |[Dziugaite & Roy|(2018)) have proposed to use the original training set to
derive valid priors by imposing differential privacy constraints.

We ignore these concerns for the moment and optimize the prior covariance directly. The objective
is non-convex, however for the case of diagonal prior and posterior covariances we can find the
global minimum.

Lemma 4.2. The optimal prior and posterior for Cs(D; P,Q) = E_[in"Hn] + SKL(Q||P)

n~Q’
with Q@ = N(po,Xo) and P = N(w1,A\X1) and assuming that Efl = A =
diag(Au, Agl, ciey Akl) and H[ = diag(hll, hgl, veny hkl) have:
A 4Bhy
A= 2 g 2P 7
! 26[\/ T (i — pin)? l 2
1 48h;;
Ay = —=[hu+4/hY + ————]. 8
0 25[ ! \/ 0 (o —/iil)z] ®

where H; encodes the local curvature at the the minimum, 1 corresponds to the random initializa-
tion (by design) of the DNN, and g corresponds to the minimum obtained after optimization.

For our choice of Gaussian prior and posterior, the following is a lower bound on the IB-Lagrangian
under any Gaussian prior covariance:

il T ai

. 1 h
Sos, Cs(D; P,Q) 2 5(2; aqt(pio — pir)* + 52:111( @ ), 9)

where aiy = ai(B, pio, pir, hat) = 5[4/ hiy + (M?ﬁ%ﬂz — hy).

The above result is intuitively pleasing setting a lower bound to what we can achieve which de-
pends only on the initialization (by design), obtained minimum, curvature at the minimum and the
regularization parameter (3. In particular the scaling factor \ has disappeared.
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We now make some important notes about what one can and cannot prove using these results, by
stressing that the above result is a necessary but not a sufficient condition for generalization under
our prior and posterior modeling.

e Given a deterministic deep neural network and it’s initialization (or other prior mean) one
can rule out being able to prove generalization using any choice of diagonal covariances
when modeling the priors and posteriors as multivariate Gaussians with fixed means. Mod-
eling with other distributions may give different resultﬂ

e One cannot prove generalization using this result, even in the case when the prior mean
is valid (only distribution dependent) and the feasible and non-vacuous sets intersect. One
still has to compute the prior and posterior covariances in a valid manner. As such a com-
putationally feasible region given finite data and computational resources as well as privacy
constraints, might be much smaller than the one we derive here.

We plot our lower bound for simplified 2 class Mnist and Cifar problems in Figure[2] We see that
while for the Mnist problem the feasible and non-vacuous regions intersect the same is not true for
the Cifar problem. What remains is to see if our results apply for the case of valid priors. First we
detail a number of computational issues in section 3]

5 COMPUTATIONAL ASPECTS

We now present a number of computational and memory issues associated with the Hessian of a
modern deep neural network. There is ambiguity in the literature about the size of the Hessians that
can be computed exactly [Kunstner et al.| (2019). There have been few results in this area and the
main problem seems to be that the relevant computations are not well supported from common auto-
differentiation libraries, such as Tensorflow and Keras. However there is certainty on the fact that
storing and manipulating the full Hessian of a number of modern deep neural network architectures
would be infeasible as the matrix is of size H € R?*¢ where d is the number of parameters. As a
point of reference a dense uncompressed Numpy matrix for d = 50000 takes up 20GB of memory.
As such we detail in the next section a number of approximations that make both computing and
storing the Hessian feasible.

5.1 APPROXIMATING THE FULL HESSIAN

As noted in [Kunstner et al,| (2019) the generalized Gauss-Newton approximation of the Hessian
H(0) coincides with the Fisher matrix F(0) = > E,, (y12..)[Veo 10g po(y|zn) Ve log pe (y|z,) ]
in modern deep learning architectures. While the Fisher matrix is difficult to compute exactly one
can compute an unbiased but noisy estimate as Martens & Grosse, (2015))

F(0) ~ Y "[Veolog pe(ijn|7n) Ve log pe(inlzn) "], (10)

n

where care must be taken to sample ¢, from the model predictive distribution ¢, ~ pe(y|zy).
Additionally we note that the interpretation of the outputs after the softmax as probabilities is not
well grounded theoretically |Gal & Ghahramani|(2016). Determining the true predictive distribution
requires MC sampling for example by taking multiple dropout samples Gal & Ghahramani| (2016).

We now make two additional notes regarding computational aspects of the above. The approxi-
mation of the Hessian can be computed efficiently as the outer product of large but manageable
gradient vectors. The main computational burden after we approximate the Hessian, and given that
we choose a standard normal prior, is inverting a matrix of the form H + al. This problem can be
tackled in a few different ways. The simplest would be to consider only the diagonal elements of H
and the resulting diagonal matrix can be efficiently inverted. However inversion of the full matrix
H + ol is also possible recursively using the Sherman-Morrison formula.

"While our result is a formal lower bound on what is achievable by @ it’s applicability on direct minimiza-
tion of the IB-LagrangianEjdepends on the tightness of the second order approximation.
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Figure 3: Accuracy vs Complexity for different bounds: We plot \/ N and train-
ing accuracy (of the randomized classifier) for different architectures and datasets. Points to the right
of the dashed line correspond to non-vacuous pairs. All Mnist bounds are non-vacuous. All Cifar
bounds are vacuous. We are able to progressively get tighter bounds by using the diagonal Hessian
and then the full layerwise Hessian. The improvement is larger over the more difficult Cifar dataset.

Further issues exist with computing the KL-Divergence of large multivariate Gaussians with non-
diagonal covariances in closed form which includes a determinant term that has to be computed with
the matrix determinant lemma, as well as sampling efficiently from these distributions. As such we
have used the diagonal variant of approximation [I0] for our lower bound, but perform a layerwise
approximation of the Hessian for all other experiments. We detail this layerwise approximation in
the next section, and motivate it theoretically.

5.2 LAYERWISE APPROXIMATION

For a specific case of the empirical loss we will now derive an upper bound on [ which is more
suitable for optimization.

Lemma 5.1. Assuming the following empirical loss L(0) = || fo(X) = Y||r with X = [z, ..., £ N]
and Y = [yo, ..., yn| the following is an upper bound on the IB Lagrangian given that we are at a
local minimum:

1
PP LY ¢Z o B [nmHun 0 KUQuIR), (1)
l J b

L,j

where | denotes different layers, j denotes the different neurons at each layer (we assume the same
number for simplicity), Hy; denotes the local Hessian, and Q] ; Is a centered version of Q1. The

. . - T - .
local Hessian can be computed efficiently as H;; = % Zfil zj_yz}_, and z]_, is the latent
representation input to layer [ for signal 1.

We see that we have managed to upper bound the empirical randomized loss by a scaled sum of
quadratic terms involving layerwise Hessian matrices and centered random noise vectors. Intuitively
we have reduced the complexity of our optimization problem simply by turning it into a number of
separate subproblems. The local Hessians can be computed efficiently from outer products of a
forward pass of the dataset. Apart from avoiding using backpropagation, breaking the Hessian into
subproblems in this manner allows us to move beyond the simplistic diagonal approximation. Im-
plicitly the Hessian now has a block diagonal structure and the blocks are small enough to be inverted
directly for the architectures used in this paper. For architectures with larger latent representations
the Sherman-Morrison formula can be used instead. While [5.1] holds for a specific loss which is
uncommon in practice, we have found empirically that solving the posterior optimization problem
in a layerwise manner gives good results with the more common loss functions.
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6 EXPERIMENTS

We now make a number of experiments on the simplified 2 class Mnist and Cifar datasets. Specifi-
cally we test the architecture

input — 300FC — 300FC — #classesFC — output

on Mnist and
input — 200FC — 200FC — #classesFC — output

on Cifar. We note that the Mnist architecture corresponds exactly to the architecture T-3002 p.7 in
Dziugaite & Roy| (2017). We train each configuration to 100% accuracy and derive the layerwise
Hessians. We model the prior and posteriors as multivariate Gaussians centered at the initialization
and deterministic solution respectively. For the prior we choose the uninformative unit diagonal
covariance, scaled by the free parameter A. The baseline posterior that we use has the same diagonal
covariance as the prior. For the baseline we perform a grid search over A which increases the
complexity negligibly. For the optimized posterior we initially test a diagonal approximation of
the Hessian ”"Diag Hessian” which results in an optimal diagonal covariance. We perform a grid
search for the parameters A and /8 using formula [6] to derive candidates for the optimal posterior
covariance. For each point on the grid we calculate the empirical accuracy over the training set

KL@QIIP)+in #5572

using Monte Carlo sampling and 5 samples, as well as the complexity term
We then choose the Pareto optimal points from all candidates. We plot the results in Flgure Bl

Interestingly we see that for the case of Mnist the baseline is tight with respect to our lower bound
and provides non-vacuous bounds. Therefore not much improvement can be achieved using the
Hessian approach. This implies a more careful interpretation of the results in |Dziugaite & Roy
(2017). We see that non-vacuity can also be achieved as a result of the problem being very simple,
and the choice of the prior mean being the random initialization. The optimization techniques em-
ployed in Dziugaite & Roy|(2017) should simply tighten the bound further, mainly by moving the
posterior mean closer to the prior mean (the random initialization). For the case of Cifar we see
that we can significantly tighten the bound. However we cannot manage to turn a vacuous bound
to a non-vacuous one in line with our lower bound. We also test a block-diagonal approximation
to the Hessian “Full L Hessian” where each neuron of the network has it’s own block. Our non-
diagonal layerwise approximation however crude seems to improve significantly over the diagonal
case and slightly crosses our diagonal lower bound. This suggests that better approximations of the
Hessian as well as better prior means apart from the random initialization might be needed to prove
generalization in complex datasets and architectures.

7 CONCLUSION

We have presented a lower bound on an approximation of the IB-Lagrangian for the case of multi-
variate Gaussian priors and posteriors with diagonal covariance. This coincides with a lower bound
on a PAC-Bayesian generalization bound for an invalid (training set dependent) prior. For cases
where the feasible and non-vacuous regions intersect we have seen that it is possible to reach the
lower bound and achieve non-vacuous bounds by using valid non-informative priors. We have also
presented closed form solutions for the optimal posteriors given fixed means under our modeling
assumptions, and motivated theoretically breaking the estimation into layerwise subproblems. Cru-
cially all results depend on high quality estimates of the Hessian which remains an open topic of
research for large scale modern deep neural networks.
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APPENDIX

A. ADDITIONAL EXPERIMENTS

We test the architectures

input — 300FC — 300FC — #classesFC — output

on Mnist and
input — 200FC — 200FC — #classesFC — output

on Cifar. We conduct additional experiments on the original Cifar10 and Mnist10 datasets, as well as
Cifar5 and Mnist5 where we merge the 10 classes into 5. The results are consistent across datasets,
with more improvement when incorporating the Hessian for more difficult datasets.

Mnist2 Mnisth Mnist10

B Bascline
os{ BB Diag Hessian
B Full L Hessian

RL@[P)/2m
KL(U||P)/2m
KL{U|[P)/2m

0.0+
0.0 0.2 0.4 0.6 0.8 10 .0 0.2 0.4 0.6 0.8

0.2 04 0.6 0.8

Training Accuracy Training Accuracy Training Accuracy
(a) ©
N Cifar2 Cifar10
& $8
S 0.54 S
N N
~. ~.
’p—: 0.6 4 ’p—:
5, 0.4 5,
= =
M 0.2 M
0.0 4
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 0.2 04 0.6 0.8
Training Accuracy Training Accuracy Training Accuracy
@ (@) ®

2(N—1)
Figure 4: Accuracy vs Complexity for different bounds: We plot \/ KL@IP)Hn 75 54 train-

ing accuracy (of the randomized classifier) for different architectures and datase2t]s\{ Points to the right
of the dashed line correspond to non-vacuous pairs. All Mnist bounds are non-vacuous. All Cifar
bounds are vacuous. We are able to progressively get tighter bounds by using the diagonal Hessian
and then the full layerwise Hessian. The improvement is larger over the more difficult Cifar dataset.
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B. PROOFS
Lemma 4.1. The convex optimization problem miny;, EQ [in"Hin] + BKL(Q||P) where Q =
’,’N ’
N (o, 20) and P = N (p1, AX1) has the global minimum:
=5 = BH; + ngl)*l, (12)

where H; captures the curvature in the directions of the parameters, while 33; is a chosen prior
covariance.

Proof.

L H) + BKLQIIP) =

Cs(D; P,Q) 5

= E
n~Q’

E_ (Lo ™) + SKLQ|IP) =
n~Q" 2

Sir(H, E ") + BKL(Q|IP) = (13)
n~Q

1 1. 1 _
S (HIS0) + D (0301 50) — b+ (o — 1) " (o — o)

)
det A,
1
+ n( det o ))

The gradient with respect to X is

0C3(D; P, 1 _ _
755920 Q) _ [5H: + %21 - gzo 1. (14)
Setting it to zero, we obtain the minimizer 3} = S(H; + gE;l)_l. O

Lemma 4.2. The optimal prior and posterior for Cg(D; P, Q) = EQ [AnTH;n]+BKL(Q||P) with
,'.IN !

Q = N(mo,3o) and P = N (p1,\E;) and assuming that 37 = Ay = diag(A11, Agr, ..., Agr)
and Hl = diag(hu, hgh vy hkl) have:

A 4Bhy
A = —=[/h3 + ——— — hyl, 15
! 25[\/ il (tio — Mi1)2 l] (13)
1 48h;;
Ay = —=[ha+ h?—l—i. (16)
0 Qﬂ[ ! \/ ! (peio — ,uil)Z}

where H; encodes the local curvature at the the minimum, g¢; corresponds to the random initializa-
tion (by design) of the DNN, and g corresponds to the minimum obtained after optimization.

For our choice of Gaussian prior and posterior, the following is a lower bound on the IB-Lagrangian
under any Gaussian prior covariance:

1 hi + a;
. A > - ) 2 il il
Er?,%l Cs(D; P,Q) 2, 2( % ai(pio — in)* + B % ln(ia“ ), (17)
where ay £ (B, tio, prir, hat) = 3[\/ 03 + 7%?)6_},3;1)2 — hal.

14
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Proof. Setting A; = Efl We can then see that the minimizer is equal to 3§ = S(H; + §A1)_1
Substituting 3¢ = X§ in C3(D; P, Q) we obtain:

1
Cs(D; P,Q)|sy=x; ZW@Q[iTITHm] + BKL(Q||P)|sy=5: =

B
2

%tr(Hlﬁ(Hl + §A1)—1) + (tr(%Alﬂ(Hl + §A1)‘1)

1 T _ _ det \MAT!
+ (o — 1) A (po — p1) — k+1n (detﬁ(Hl n ﬁAl) ))
B B2 B

:gtf(Hl(Hz + §A1) D+ ﬁ(tf(Al(Hl + /\Al)_l))

>

+

8, 1 T det AAT!
B+~ (o — 1) A (o — pr) — b +1
g (Hx (ko =)Ao = i) "\det (H, + 2A,) )

(tr((H; + §A1)(Hl + §A1)71)

det AAT!
—u)TA — —k+1In L
(o — p1) " Ax(po — p1) det B(H, + §A1)*1 )

[+

N > w\m

det AT
— p1) " Ar (o — p1) +In !
(o — p1) Ax(po — p1) det B(H, + §A1)71 ]

> =

(18)

The above matrix equation [18]is difficult to deal with directly. We will therefore use the common
diagonal approximation of the Hessian which is more amenable to manipulation. Substituting A; =
diag(Aq11,A21, ..., Ak1) and H; = diag(hqy, hay, ..., hii) in the above expression we get

. B 1 Ll 1l+ Azl
CB<D,P7Q)\20223=5(X;A 1(ptio — pin)? Zln +Zl —2—)) (19

The above expression is easy to optimize. We see that the sole stationary point exists at

A 4hy
J AN Oy % S oL —— . 20
! 25[\/ T (a0 — pan)? d (20)

We now turn to the original objective and calculate it’s second derivatives. For our diagonal approx-
imation the original objective turns into a sum of separable functions. We will analyze the behavior
of one of them for simplicity. The result applies to all other functions in the sum.

» )2

CuD:P.Q) = 3 o + i - 3 g+ el
Zln (i) = Y In(vio)]

—;Ail/i()"‘;BilI:?_Z +ZC —I—D Zln (Avi1) zi:ln(z/io)]

2L

where we have set A; = %L, B, = £, C; = M D; = £. Denoting Cis(D; P, Q) one
function from this sum we calculate

15
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M:Ai—i————, 5( Q):_ QV()_72+7 22)
aViO V14 Vo 81/1‘1 Z/il Vﬂ Vi1
and
0Cis(D; P,Q) D;  0Cis(D; P,Q) 1 D
R ISALEL VA R RS LA L 2Y) : = 2
0%y l/igo ’ 0% (Bavo + G )Vn V'L21 *)
V0041 N Vi217 Ovi10vy B Vi21

We need to check whether the Hessian matrix is PSD so that the stationary point we found is a local
minimum and the function is convex. We do that by calculating whether all principal minors of the
Hessian are positive.

D; -5
. ' N Vi2 Vizl
\V/ Czﬁ(VZOv 1/11) [ l/»i Q(BiViO + Oz)y% _ D;| (25)

il il il

M‘

We see easily that det(

) > 0. While

det(V>Cig(vio, vi1)) = —5- (2(Bi7/i0 + Ci)VT - 2) -1

Vio i Vil Vi1
1
= —— (2C;Djvi1 — (Divi1 — Bivip)?) (26)
VioVi1

_ 1 B2 (1io — pin)? 1 Vio o
= (g ) (R o =)

A first observation is that this determinant is not always positive and the function is not convex
everywhere. However we observe that it is not highly non convex either and the non convexity
mainly results from the function tending to infinity logarithmically on one of the boundaries. We
now check whether the sole stationary point is always a local minimum. We start by substituting

vy = Blhy + gi)_l in the multiplicand of 26/ as the multiplier is positive by definition

. 1 B2 (a0 — pir)? 1 B g1
det(V2Cig(viy, vi1)) = 21 o ( \ Vi1 — 5(1/1‘1 - )\(hzl + Xj) h?

Vio Vzl

1 52 Hio — ,uzl 1 8 Vit A 9
T 2,4 9 ( il_z(Vil_)\(}M)>
Vio Vi1 LAV
_ 1 /32 ( Hio — ,Uzl _ V—El(l _ B ))2>
Vi 2 T haAvii + B
_ 1 p ( fio — le _@( haAviy )2) @7)
vivh 2 2 “hglvi + 8
_ 1B (o *#11 N hv
a vty 2 < * 2(hadvi +ﬂ)2)
1

- i0 — i) ? (hadvin + — A3p2
vio? v 2X(hadva + B)? 5 (2nio = pia)*(hanhvia + B)° HIZY)
1
= QAZ i0 — Mi 2h2>‘+Az 2_)\3h2
AT 3 gy it (o — ) (k4 R )7 = Ahi)

Where we substituted v;; = A;ll as this will make the calculations easier. We now show a useful
identity for A}, = %[ h% + (“4% — hi]

i0—Hi1)?

16



Under review as a conference paper at ICLR 2020

Hio — Mz‘1)2

2hi; (hil — \/h?l + _4ﬂhﬂ_ 2) + _4ﬂhﬂ_ 2)
(/‘LZO - N”Ll) (/‘LZO - M'Ll) (28)
haX A 43hy 28
= = |V ha— B3+ +
8 28 << : \/ L (o — H¢1)2> (pio — u11)2>

hi A ( A )
_haA o A A
B\ (o — pi1)? i

We substitute A;; = A}; in[27)and again develop only the multiplicand

1
Vo A (hah; L )2

= A; (207 (pio — a1 ) (had + A3 B)? — A2h3)
= A; (205 (a0 — pin) (RN + 2R MA B+ (A])?B82) — N°h3)

det(V>Cig (v, vh)) = (207 (o — pa1)* (hah + Aj B)? — NPh3)

hi A A
— 4,202 (i — )2 (B2A2 + 2k AL, B + (—A;) 2) = A3p2
( 1(/’[’ 0 1% 1) ( 1 l lﬁ B (,UZO o ,Uil)2 1 ﬁ ) l)
A2h;
— AG(2AY (a0 — i P(BEAZ + ha AL B+ —o iy a2
(uio —/m)
N A2h; .
= A; (277 (o — pan)* (RGN + i 5) + 2(A%)? (pio — par ) *haAB — A*hi)
(i — pi1)
A2h,
= A; (205 (pio — pa1)? lZ)?.,.M
( 1(/10 /1“1) ( l (,UiO_,uil)Q

hiA A *
+2-4 <(2 - Ail) (mio — par)2haAB — A*h)

p fio — Hi1)
A2h;
= Ai (207 (nio — pin)* (RHA® + M) + 20°R3 — 203 2% (a0 — pin )2 Afy — A°hi)
ﬂ/\zhil *

= Ai (207 (pio — pan)* (RHA® + m) + Nhi = 20302 (prio — pin)*A)

= Ai(2A} B ha + XR3)

>0

(29)

where we have set A; = V;022>\(h“/\(1/\:1),1+5)2 > 0. We have usedin lines 4 and 7.

Indeed the stationary point is always a local minimum. What remains is to show that there are no
other local minima at the boundaries of the domain. From 21] we see that we only need to evaluate
expressions of the form f(v;0) = vio — In(vy) and g(v;1) = % + In(vy). By application of
L’Hopital’s rule it’s easy to show that

hrn O vin. Vs — hm O P
ey 1,,3( 10, Vit) v z,(i( 05 Vi1)
v;1=ct vi1=ct (30)
= lim Ciﬁ(”iOvVil): lim Ciﬁ(l/i071/i1):+00
vip=ct vio=ct
Vi1 =0 vi1—+00
this concludes the proof.
O
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Lemma 5.1. Assuming the following empirical loss L(8) = || fo(X) =Y || with X = [z, ..., ]
and Y = [yo, ..., yn| the following is an upper bound on the IB Lagrangian given that we are at a
local minimum:

1
Cs(D;P,Q) S \/Z a;, B, [5n"Hyn]+ 5 > KL(Qy;lIP;), (31)
l J ti

L,j

where [ denotes different layers, j denotes the different neurons at each layer (we assume the same
number for simplicity), H;; denotes the local Hessian, and @;; is a centered version of Q;;. The

. . ; ST L
local Hessian can be computed efficiently as H;; = % Zfil z; 4z}, and z_,; is the latent
representation input to layer [ for signal <.

Proof. We start by defining a layerwise empirical error £(0;) := + va IWizf_ — z}]|3. One

can then easily show that L(6) IV E(6) Hk 11 16x]|7 + 1/ EL(0L)|Dong et al.| (2017)

substituting this in the IB Lagranglan we get
Ca(D; P,Q) = E_[L(6)] + BKL(Q|P)

SMZM TT 160/l + /B0 + BKLQIIP)
k=Il+1

gz,/ [Eu(o)] 1;[ E [16ulr] + [ E [EL(61)] + BKL(QI|P)
= l +1

(32)
S ,/ )] + BKL(Q||P)

o ,,LEQ,(&EZ( )> n+ g™+ O] + SKL(QI|P)

~

IN

00

\/ THm ] + BKL(Q||P)

were in line 3 we use the linearity of expectation, Holder’s inequality due to the non-negativity
of the random variables, and Jensen’s inequality for the concave square root. In line 4 we hide
the Frobenius terms into constants ¢;. Each error term Fj(6;) is only multiplied with Frobenius

norm terms Hél || from the deeper layers. Therefore one can start optimizing from the final layer
and proceed to the first while considering c; as constant. In practice we will just consider all ¢;
as unknown scaling factors. In line 5 we expand each El(Ol) term using a Taylor expansion, and
subsequently ignore the first term as the DNN is assumed to be well trained and the first derivative
will be zero, while terms with order higher than 2 are unimportant. We also use @’ to denote the
centered version of distribution Q.

Q

th ™= T

Taking the first and second derivatives of the layerwise error with respect to W; we get

OE; (0 al N .
l i 7 i
awl g —zll =5 Zj Wizl = 2)2z) (33)

0*E, (0
o = W A o

Where the second derivative is with respect to any row Wl(j )

2
that the full Hessian matrix H; = %57{}\(,?)

of the weight matrix W;. We see
then has a block diagonal structure where each block is

; i T i,
equal to Hy; = Zf\; z;_4z{_; . Eachrow W;j’ ) corresponds to a neuron of the layer and for
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an appropriate choice of prior and posterior with block diagonal covariances it is easy to see that the
final form of expression [32]factorizes as

1
oD P.Q Y ¢ Meu B nmHn s KLQUIR) 69
1 j &

L,y

this completes the proof. O
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