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Abstract

Hyperband [1] has become a popular method to tune the hyperparameters (HPs) of
expensive machine learning models, whose performance depends on the amount
of resources allocated for training. While Hyperband is conceptually simple,
combining random search to a successive halving technique to reallocate resources
to the most promising HPs, it often outperforms standard Bayesian optimization
when solutions with moderate precision are sufficient. In this paper, we propose
a model-based extension of Hyperband, replacing the uniform random sampling
of HP candidates by an adaptive non-uniform sampling procedure. We show that
our extension not only improves the precision resolution of Hyperband but also
supports transfer learning, both, within a Hyperband run and across previous HP
tuning tasks. We apply the method to the problem of tuning the learning rate when
solving linear regression problems and to the optimization of the HPs of XGBoost
binary classifiers across different datasets, showing that we favorably compare with
recently proposed extensions of Hyperband.

1 Introduction

Applying machine learning (ML) and complex predictive systems requires users to set various knobs
and parameter configurations, which are broadly referred to as hyperparameters (HPs). While good
performance hinges on a careful tuning of those, this process is time-consuming and crucially depends
on the level of expertise of the practitioner. ML examples of HPs are the learning rate of stochastic
gradient descent algorithms [2] or the architectural choices of deep neural networks [3]. In order to
automate the tuning of HPs, various approaches such as random search [4] or Bayesian optimization
(BO) [5, 6] have successfully cast this problem as a global black-box optimization problem. In that
formulation, querying the black-box function of interest, say f , typically corresponds to a full training
of the underlying ML model together with its evaluation on some validation data.

Starting from the key observation that training ML models is an incremental process controlled
by some resources, for instance, training set sizes, number of epochs or some amount of time, a
recent line of work [7, 8, 9, 1, 10] has proposed to exploit this feature to reallocate resources to the
most promising HPs by making cheap and early decisions based on evaluations of f after having
consumed few resources. Hyperband [1] relies on a successive halving procedure [11], where a pool
containing randomly sampled HPs is progressively trimmed according to a theoretically-justified
resource schedule. Despite its simplicity, Hyperband was proven to outperform BO on many ML-
related tuning tasks in regimes where solutions with moderate precision are acceptable. To further
improve the precision resolution of Hyperband, several model-based extensions of Hyperband have
been recently proposed [12, 13, 14, 10]. All those approaches share the idea of replacing random
search (to generate the initial set of HP candidates) by model-based adaptive sampling.

Another line of research consists in accelerating HP optimization by transferring knowledge collected
during previous HP tuning tasks. The topic of transfer learning within the context of BO has received
much attention over the past few years [15, 7, 16, 17, 18, 19, 20, 21]. In this setting, the scalability of
the underlying surrogate model becomes an important aspect as the data coming from many related
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tuning tasks have to be ingested. In particular, standard Gaussian process (GP) surrogates, whose
inference scales cubicly with respect to the number of evaluations [22], become impractical. Possible
solutions include using scalable Bayesian neural networks [23, 20] or ensembles of GPs [21]. Having
introduced the relevant related work, we next present our contributions:

•We provide a scalable, model-based extension of Hyperband similar to [10]. While [10] uses Tree-
of-Parzen-Estimators (TPE) [24] to replace the random sampling of Hyperband, we use the adaptive
Bayesian linear regression (ABLR) model developed in [20]. We do so to take advantage of its
established scalability and transfer learning capabilities.

• Our method supports transfer learning at two levels: within a single run of Hyperband, which
is similar to the setting considered by [10], and across different Hyperband runs (on related HP
optimization tasks), which was not considered by [10]. Following the philosophy of [10] that
emphasizes simplicity as a core feature, we argue that our approach is even simpler, discarding any
additional heuristics (e.g., in relation to the control of the exploration).

•We demonstrate the benefits of our methodology on synthetic simulations to tune the learning rates
for the stochastic optimization of linear models and on real-world binary classification tasks with
XGBoost [25]. Our experimental results indicate that ABLR+Hyperband consistently outperforms
the approach proposed by [10].

2 Background

In this section, we recall important background material required to introduce our methodology.

Bayesian optimization (BO). BO is a well-established methodology to optimize expensive black-
box functions [6]. It relies on a probabilistic model of an unknown target f(x) one wishes to
optimize and which is repeatedly queried until one runs out of budget (e.g., time). Queries consist in
evaluations of f at HP configurations x1, . . . ,xn selected according to an explore-exploit trade-off
criterion or acquisition function [26, 27, 6]. The HP configuration corresponding to the best query
is then returned. One popular approach is to impose a GP prior over f and, in light of the observed
queries f(x1), . . . , f(xn), to compute the posterior GP. The GP model maintains posterior mean and
variance functions that are required when evaluating the acquisition function for each new query of f .
When n is large and scalability matters, the GP surrogate model can be replaced by other models
such as random forest [28], sparse GPs [29, 30] or (Bayesian) neural networks [31, 23, 20].

Adaptive Bayesian linear regression (ABLR) [20]. Let us consider T tasks, which consist in the
black-box functions {ft(·)}Tt=1, one of which we wish to optimize. Those functions are related in
some way, e.g., evaluations of a same model on different data sets. Assume ft(·) is evaluated Nt
times, resulting in the data Dt = {(xnt , ynt )}

Nt
n=1, also denoted by Xt ∈ RNt×P and yt ∈ RNt in

stacked form. ABLR considers a joint model for the responses yt made of two parts. First a shared
feature map φz(x) : RP 7→RD corresponding to a feedforward NN with D output units, where z
collects all its weights and biases. Second, separate Bayesian linear regression surrogates that share
the feature map φz(x) to model the black-box functions (noting Φz(Xt)=[φz(x

n
t )]n ∈ RNt×D):

P (yt|wt, z, βt) = N (Φz(Xt)wt, β
−1
t INt

), P (wt|αt) = N (0, α−1t ID),

where βt > 0 and αt > 0 are precision (i.e., inverse variance) parameters. The model adapts
to the scale and the noise level of the black-box function ft via βt and αt, while the underlying
NN parametrized by a shared vector z learns a representation to transfer information between the
black-box functions. The weights wt of the Bayesian linear regression models are latent variables
that are integrated out, while z and {αt, βt}Tt=1 are learned. ABLR can thus be regarded as a
NN whose final linear layers (the wt’s) are subject to a Bayesian treatment. As further detailed
in [20], posterior inference is analytically tractable with an overall computational complexity of
O(
∑T
t=1 min{Nt, D}2 max{Nt, D}), while the parameters z and {αt, βt}Tt=1 are jointly learned by

optimizing the marginal likelihood with L-BFGS.

Hyperband. The algorithm from [1] addresses the problem of HP tuning by incrementally allocat-
ing more resources to the best-performing candidates initially taken from a pool of randomly sampled
candidates. Supported by theoretical guarantees for correctness and sample complexity, Hyperband
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follows a resource-allocation schedule determined from two parameters, namely the fraction 1/η
of candidates to incrementally discard (by default in [1], η = 3) and the maximum resources to be
allocated to a given candidate (e.g., a maximum number of epochs or a certain maximum time budget).
This schedule is structured in several independent brackets that represent different resource-allocation
trade-offs, for instance, having many initial candidates run for the smallest amount of resources or
starting with a few candidates immediately benefiting from the maximum resources.

As a result, an execution of Hyperband produces the data DHB = ∪b∈bracketsDHB,b, where DHB,b

is formed of all the Nb triplets {(xn, yn, rn)}Nb
n=1 evaluated in the bracket b, recording the HP

candidates, their evaluations and the corresponding resources used.

3 Combining ABLR with Hyperband

We wish to combine ABLR with Hyperband to leverage the attractive properties of the two methods.
Next, we describe our approach and argue that it simplifies the methodology developed in [10].
Thanks to the scalability of ABLR, we can maintain a single ABLR model across all resource
allocation trade-offs. The model is learned by ingesting all the data DHB produced by Hyperband
over the course of the optimization and the brackets (see previous section). Importantly, the resource
r is not optimized over since it is fixed by the schedule of Hyperband. It is therefore modeled as a
contextual input variable (or an environmental variable to reuse the terminology from [9]) of ABLR.
More formally, the shared feature map becomes φz(x, r) : RP+1 7→RD. This differs from [10],
where one TPE model is considered per resource value r, but can span several brackets. This means
that no transfer of information is possible across models that use a different number of resources.
Moreover, by exploiting all the data generated by Hyperband, we need not introduce an initialization
heuristic for the surrogate model when the number of evaluations is too low for some resource value
(see Section 4.1 in [10]). Finally, and unlike [10] that introduce an extra multiplicative factor in the
bandwidths of TPE, we do not apply any heuristic to adjust the aggressiveness of the exploration.

To query ABLR to suggest a new candidate, we set the contextual variable to r = rcurrent, where
rcurrent is the current resource value defined by the Hyperband schedule. We do so for the sake of
simplicity, and we leave other options (e.g., setting r = rmax) in the spirit of [9], for future work.

Our combination of ABLR with Hyperband straightforwardly extends to the transfer learning setting.
Assume we have T tasks with data {DHB

t }Tt=1, corresponding for instance to the application of
Hyperband to a given ML model over T different datasets. We adopt the methodology proposed
in [20], namely considering one Bayesian linear regression per HP optimization task and sharing
the same feature map φz(x, r) across them. As a result, we obtain a transfer learning variant of
Hyperband that can simultaneously exploit the data collected during previous Hyperband-based
tuning tasks and within the current Hyperband run.

4 Experiments

We consider the following set of competing methods which we divide into two families:

(1) Resource-unaware approaches for which one evaluation of f implies using the maximum
amount of resources: random search [4] (random), standard Gaussian process (GP, with the im-
plementation from [32]), ABLR without transfer learning (ABLR) and ABLR with transfer learning
(ABLR_transfer). Here, transfer learning is to be understood as reusing evaluations from previous
HP optimization tasks computed with a maximum number of resources.

(2) Resource-aware approaches: standard Hyperband (HB), the approach of [10] (HB_BO, using the
code from https://github.com/automl/HpBandSter), Hyperband combined with GP (HB_GP),
Hyperband combined with ABLR without and with transfer learning (respectively HB_ABLR and
HB_ABLR_transfer). HB_GP and HB_ABLR use the same mechanism to transfer information within
a Hyperband: they encode the resource r as a contextual variable (normalized within [−1, 1]). HB_GP
is applicable because the number of evaluations is modest (i.e, only evaluations from within a
Hyperband run, which amounts to a total of about several hundreds in our experiments). We did not
compare to [9, 13, 14] since [10] was shown to outperform those previous approaches.

Our experimental protocol follows a leave-one-task-out procedure, where a BO problem is solved
for a given held-out task using the data from the T − 1 remaining tasks. We thereafter report results
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Figure 1: Comparison of different competing methods (left) for the tuning of the learning rate to
optimize linear regression problems and (right) for the tuning of XGBoost binary classifiers.

averaged over, both, the T leave-one-task-out folds and the 30 random replications of the experiments.
Inspired by [33], we aggregate results across tasks by first normalizing according to the results
of random search within each task (random has then unit performance, or close to zero if a log
transformation is applied as in Figure 1). For ABLR_transfer and HB_ABLR_transfer, we use
transfer learning data resulting from a run of random and HB respectively (leading in Sections 4.1-4.2
to a total of 206 evaluations per task, associated with either the maximum or various amounts of
resources respectively).

4.1 Tuning the learning rate for the stochastic optimization of linear regression models

We consider the problem of tuning the learning rate for the stochastic optimization of linear regression
problems. More precisely, denoting the squared loss by `i(u) = 1

2 (θ
>
i u− τi)2, we focus on solving

min
u∈Rp

n∑
i=1

`i(u) with the stochastic gradient (SGD) update rule at step k:
{

v=γv + ν
1+νλk∇`i(u

(k))

u(k+1)=u(k) − v

where θi ∈ Rp and τi ∈ R refer to input and target of the regression problem, while we use the
momentum γ ∈ [0.3, 0.999] together with the learning rate parametrization ν ∈ [0.001, 1.0] and
λ ∈ [0.001, 1000.0], as advocated in [34]. We tune the HPs {γ, ν, λ} to optimize the validation
RMSE. For the targets, we consider a noisy linear model τi = θ>i u∗ + εi for some u∗ ∈ Rp. Using
a standard normal distribution, we randomly generate T = 30 train/validation problem instances
u∗t ∈ Rp, (Θtrain

t , εtrain
t ) ∈ Rn×p×Rn and (Θval

t , ε
val
t ) ∈ Rn×p×Rn, with n = 81 and p = 9.

Regarding the resources, we define an unit of resource as three SGD updates and set the maximum
amount of resources to 243 (given that n = 81, this choice amounts to 3 epochs).

4.2 Tuning XGBoost binary classifiers

In the second experiment, we focus on the tuning of XGBoost binary classifiers to maximize the
validation AUC. We tune 8 HPs of XGBoost and consider a subset of T = 25 datasets from the
libsvm repository [35]; the details about the HPs and datasets are provided in the supplementary
material. Concerning the resources, we define an unit of resource as one round of XGBoost and set
the maximum amount of resources to 81.

4.3 Discussion

The results are reported in Figure 1. On the one hand, we can observe two clusters of curves de-
pending on whether resources are exploited, which turns out to be beneficial at the beginning of
the optimization. On the other hand, except for HB_ABLR in the SGD setting where performances
are comparable, HB_ABLR_transfer seems to consistently outperform the other approaches includ-
ing HB_BO. Interestingly, in the XGBoost setting, the gain in performance due to transfer learning
already reported in [20] (see ABLR and ABLR_transfer) appears to carry over as well while using
the combination with HB (see HB_ABLR and HB_ABLR_transfer).
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