
The Parameterized Complexity of
Cascading Portfolio Scheduling

Eduard Eiben
Royal Holloway

University of London
Department of CS

UK

Robert Ganian
TU Wien

Algorithms and
Complexity Group

Austria

Iyad Kanj
DePaul University

School of Computing
Chicago

USA

Stefan Szeider
TU Wien

Algorithms and
Complexity Group

Austria

Abstract

Cascading portfolio scheduling is a static algorithm selection strategy which uses a
sample of test instances to compute an optimal ordering (a cascading schedule) of
a portfolio of available algorithms. The algorithms are then applied to each future
instance according to this cascading schedule, until some algorithm in the schedule
succeeds. Cascading scheduling has proven to be effective in several applications,
including QBF solving and generation of ImageNet classification models.

It is known that the computation of an optimal cascading schedule in the offline
phase is NP-hard. In this paper we study the parameterized complexity of this
problem and establish its fixed-parameter tractability by utilizing structural prop-
erties of the success relation between algorithms and test instances. Our findings
are significant as they reveal that in spite of the intractability of the problem in its
general form, one can indeed exploit sparseness or density of the success relation
to obtain non-trivial runtime guarantees for finding an optimal cascading schedule.

1 Introduction
When dealing with hard computational problems, one often has access to a portfolio of different
algorithms that can be applied to solve the given problem, with each of the algorithms having
complementary strengths. There are various ways of how this performance complementarity can be
exploited. Algorithm selection, a line of research initiated by Rice [19], studies various approaches
one can use to select algorithms from the portfolio. Algorithm selection has proven to be an extremely
powerful tool with many success stories in Propositional Satisfiability, Constraint Satisfaction,
Planning, QBF Solving, Machine Learning and other domains [12, 13, 14, 20]. A common approach
to algorithm selection is per-instance-based algorithm selection, where an algorithm is chosen for
each instance independently, based on some features of the instance (see, e.g., [15, 10]). However,
sometimes information about the individual instances is not available or difficult to use. Then, one
can instead make use of information about the distribution of the set of instances, e.g., in terms of
a representative sample of instances which can be used as a training set. In such cases, one can
compute in an offline phase a suitable linear ordering of the algorithms, optimizing the ordering for
the training set of instances. This ordering is then applied uniformly to any given problem instance in
an online fashion—in particular, if the first algorithm in our ordering fails to solve a given instance
(due to timeout, memory overflow, or due to not reaching a desired accuracy), then the second
algorithm is called, and this continues until we solve the instance. Such a static algorithm selection,
“cascading portfolio scheduling”, is simpler to implement than per-instance selection methods and
can be very effective [22]. One prominent recent application of cascading portfolio scheduling lies in
state-of-the-art ImageNet classification models, where it resulted in a significant speedup by reducing
the number of floating-point operations [23]. Cascading portfolio scheduling is also related to online
portfolio scheduling [11, 16].

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

In this paper we address the fundamental problem of finding an optimal cascading schedule for a
given portfolio A of algorithms with respect to a given training set T of instances. In particular,
for the problem CASCADING PORTFOLIO SCHEDULING (or CPS for short) that we consider, we
are given m algorithms, n test instances, and a cost mapping cost, where cost(α, t) denotes the cost
of running algorithm α on test instance t, and a success relation S where (α, t) ∈ S means that
algorithm α succeeds on test instance t. As the cost mapping and the success relation are defined
independently, this setting is very general and entails different scenarios.

Scenario 1 Each algorithm is run until a globally set timeout C is reached. If the algorithm α solves
test instance t in time c ≤ C then cost(α, t) = c and (α, t) ∈ S; otherwise we have cost(α, t) = C
and (α, t) /∈ S.

Scenario 2 Algorithm α solves a test instance t in time c and outputs an accuracy estimate r for its
solution. r is then compared with a globally set accuracy threshold R. If r ≥ R then (α, t) ∈ S,
otherwise (α, t) /∈ S; in any case cost(α, t) = c. Such a strategy has been used for prediction
model generation [23].

Scenario 3 All the algorithms are first run with a short timeout and if the test instance has not been
solved after this, algorithms are run again without a timeout (a similar strategy has been used for
QBF solving [18]). Such a strategy can be instantiated to our setting by adding two copies of each
algorithm to the portfolio, one with a short timeout and one without a timeout.

Contribution. We establish the fixed-parameter tractability1 of computing an optimal cascading
schedule by utilizing structural properties of the success relation. We look at the success relation in
terms of a Boolean matrix, the evaluation matrix, where each row corresponds to a test instance and
each column corresponds to an algorithm. A cell contains the entry 1 iff the corresponding algorithm
succeeds on the corresponding test. We show that if this matrix is either very sparse or very dense,
then the computation of an optimal schedule is tractable. More specifically, we establish the following
results, which we describe by writing CPS[parm] for CASCADING PORTFOLIO SCHEDULING
parameterized by parameter parm.

First we consider the algorithm failure degree which is the largest number of tests a single algorithm
fails on, and the test failure degree which is the largest number of algorithms that fail on a single
test (these two parameters can also be seen as the largest number of 0’s that appear in a row and the
largest number of 0’s that appear in a column of the matrix, respectively).

(1) CPS[algorithm failure degree] and CPS[test failure degree] are fixed-parameter tractable (Theo-
rems 4 and 5).

It is natural to consider also the dual parameters algorithm success degree and test success degree.
However, it follows from known results that CPS is already NP-hard if both of these parameters
are bounded by a constant (Proposition 6). Hence, our results exhibit a certain asymmetry between
failure and success degrees.

We then consider more sophisticated parameters that capture the sparsity or density of the evaluation
matrix. The failure cover number is the smallest number of rows and columns in the evaluation
matrix needed to cover all the 0’s in the matrix; similarly, the success cover number is the smallest
number of rows and columns needed to cover all the 1’s. In fact, both parameters can be computed in
polynomial time using bipartite vertex cover algorithms [7].

(2) CPS[failure cover number] and CPS[success cover number] are fixed-parameter tractable
(Corollary 8 and Theorem 16).

These results are significant as they indicate that CASCADING PORTFOLIO SCHEDULING can be
solved efficiently as long as the evaluation matrix is sufficiently sparse or dense. Our result for
CPS[failure cover number] in fact also shows fixed-parameter tractability of the problem for an even
more general parameter than success cover number: the treewidth [21] of the bipartite graph between
the algorithms and tests, where edges join success pairs. This is our most technical contribution and
reveals how a fundamental graphical parameter [see, e.g., 8] can be utilized for algorithm scheduling.

Another natural variant of the problem, CPSopt[length], arises by adding an upper bound ` on the
length, i.e., cardinality, of the computed schedule, and asking for a schedule of length≤ ` of minimum
cost. We obtain a complexity classification of the problem under this parameterization as well.

1Fixed-parameter tractability is a relaxation of polynomial tractability; definitions are provided in Section 2.

2

(3) CPS[length] can be solved in polynomial time for each fixed bound `, but is not fixed-parameter
tractable parameterized by ` subject to established complexity assumptions.

An overview of our results is provided in Table 1.

Parameter Complexity Reference
Algorithm failure degree FPT Proposition 4
Test failure degree FPT Proposition 5
Algorithm and test success degree NP-hard (for constant parameters) Proposition 6
Failure cover number and failure treewidth FPT Theorem 7
Success cover number FPT Theorem 16
Length in XP and W[2]-hard Proposition 3

Table 1: An overview of the complexity results presented in this paper.

2 Preliminaries
Problem Definition. An instance of the CASCADING PORTFOLIO SCHEDULING problem is a
tuple (A, T, cost, S) comprising:

• a set A of m algorithms,
• a set T of n tests,
• a cost mapping cost : (A× T)→ N, and
• a success relation S ⊆ A× T .

Let τ be a totally ordered subset of A; we call such a set a schedule. The length of a schedule is
its cardinality. We say that τ is valid if for each test t there exists an algorithm α ∈ τ such that
(α, t) ∈ S. Throughout the paper, we will assume that there exists a valid schedule for our considered
instances—or, equivalently, that each test is solved by at least one algorithm.

The processing cost of a test t for a valid schedule τ = (α1, . . . , αq) is defined as
∑j
i=1 cost(αi, t),

where j is the first algorithm in τ such that (αj , t) ∈ S. The cost of a valid schedule τ , denoted
cost(τ), is the sum of the processing costs of all tests in T for τ . The aim in CASCADING PORTFOLIO
SCHEDULING is to find a valid schedule τ of minimum cost.

Parameterized Complexity. In parameterized algorithmics [6, 4, 3, 9] the complexity of a problem
is studied not only with respect to the input size n but also a parameter k ∈ N. The most favorable
complexity class in this setting is FPT (fixed-parameter tractable) which contains all problems that
can be solved by an algorithm running in time f(k) · nO(1), where f is a computable function.
Algorithms running in this time are called fixed-parameter algorithms. We will also make use of the
complexity classes W[2] and XP, where W[2] ⊆ XP. Problems complete for W[2] are are widely
believed to not be in FPT. The class XP contains problems that are solvable in time O(nf(k)),
where f is a computable function; in other words, problems in XP are polynomial-time solvable
when the parameter is bounded by a constant. To obtain our lower bound results, we will need the
notion of a parameterized reduction, referred to as FPT-reduction, which is in many ways analogous
to the standard polynomial-time reductions; the distinction is that a parameterized reduction runs in
time f(k) · nO(1) for some computable function f , and provides upper bounds on the parameter size
in the resulting instance [4, 3, 6, 17].

We write O∗(f(k)) to denote a function of the form f(k) · nO(1), where n is the input length and k
is the parameter.

Problem Parameters. CASCADING PORTFOLIO SCHEDULING is known to be NP-hard [23], and
our aim in this paper will be to circumvent this by obtaining parameters that exploit the fine-grained
structure in relevant problem instances. We note that we explicitly aim for results which allow for
arbitrary cost mappings, since these are expected to consist of large (and often disorderly) numbers in
real-life settings. Instead, we will consider parameters that restrict structural properties of the “binary”
success relation. To visualize this success relation, it will be useful to view an instance I as an m×n
matrix MI where MI [i, j] = 1 if (αi, tj) ∈ S (i.e. if the j-th test succeeds on the i-th algorithm, for
some fixed ordering of algorithms and tests), and MI [i, j] = 0 otherwise.

3



1 1 1 0 1

0 0 1 0 1

0 1 0 1 0

1 1 1 0 1



t1 t2 t3 t4 t5
α1

α2

α3

α4



1 5 2 7 3

7 7 3 7 5

7 1 7 6 7

2 5 3 7 4


MI CI

Figure 1: An instance with 4 algorithms and 5 tests in the setting where (exact) algorithms are executed
with a global timeout of 7, as discussed in Scenario 1. On the left is the matrix MI representing the
success relation. The failure covering number is 3, as witnessed by the highlighted two rows and one
column. The matrix CI on the right represents the cost relation, with CI [i, j] = cost[αi, tj]. The
instance I depicted here has a single solution, notably (α1, α3).

The two most natural parameters to consider arem and n, and these correspond to the number of rows
and columns in MI , respectively. Unfortunately, these two parameters are also fairly restrictive—it
is unlikely that instances of interest will have a very small number of algorithms or test instances.
Another option would be to use the maximum number of times an algorithm (or test) can fail (or
succeed) as a parameter. In particular, the algorithm success (or failure) degree is the maximum
number of 1’s (or 0’s, respectively) occurring in any row in MI . Similarly, we let the test success (or
failure) degree be the maximum number of 1’s (or 0’s, respectively) occurring in any column in MI .
Instances where these parameters are small correspond to cases where “almost everything” either
fails or succeeds.

A more advanced parameter that can be extracted from MI is the covering number, which intuitively
captures the minimum number of rows and columns that are needed to “cover” all successes (or
failures) in the matrix. More formally, we say that an entry MI [i, j] is covered by row i and by
column j. Then the success (or failure) covering number is the minimum value of r + c such that
there exist r rows and c columns inMI with the property that each occurrence of 1 (or 0, respectively)
in MI is covered by one of these rows or columns. Intuitively, an instance has success covering
number s if there exist r algorithms and s − r tests such that these have a non-empty intersection
with every relation in S—see Figure 1 for an example. We note that the covering number has been
used as a structural parameter of matrices, notably in previous work on the MATRIX COMPLETION
problem [7], and that it is possible to compute r algorithms and c tests achieving a minimum covering
number in polynomial time [7, Proposition 1]. We will denote the success covering number by covs
and the failure covering number by covf .

3 Results for Basic Parameters
In this section we consider the CASCADING PORTFOLIO SCHEDULING problem parameterized by
the number of algorithms (i.e., by m = |A|), by the number of tests (i.e., by n = |T |), and by the
length of the computed schedule.

We begin mapping the complexity of our problem with two initial propositions. Note that both
propositions can also be obtained as corollaries of the more general Theorem 16, presented later. Still,
we consider it useful to present a short sketch of proof of Proposition 1, since it nicely introduces the
combinatorial techniques that will later be extended in the proof of Theorem 1.

Proposition 1. CPS[number of algorithms] is in FPT.

Proof Sketch. We reduce the problem to that of finding a minimum-weight path in a directed acyclic
graph (DAG) D. We construct D as follows. We create a single source vertex s, and a single
destination vertex z in D. We define L0 = {s}, Lm+1 = {z}, and apart from z, D contains m layers,
L0, . . . , Lm, of vertices, where layer Li, for i ∈ {0, . . . ,m}, contains a vertex for each subset ofA of
cardinality i, with vertex s corresponding to the empty set. We connect each vertex that corresponds
to a subset of A which is a valid portfolio to z. For each vertex u in layer Li, i ∈ {0, . . . ,m− 1},
corresponding to a subset Su ⊂ A, and each vertex v ∈ Li+1 corresponding to a subset Sv ⊆ A,
where Sv = Su ∪ {α}, for α ∈ A, we add an edge (u, v) if there exists a test t ∈ T such that (1)
(α, t) ∈ S and (2) there does not exist β ∈ Su such that (β, t) ∈ S; in such case the weight of (u, v),
wt(u, v), is defined as follows. Let Tα ⊆ T be the set of tests that cannot be solved by any algorithm
in Su. Then wt(u, v) =

∑
t∈Tα cost(α, t). Informally speaking, the weight of (u, v) is the additional

cost incurred by appending algorithm α to any (partial) portfolio consisting of the algorithms in Su.
This completes the construction of D.

4

It is not difficult to show that an optimal portfolio for A corresponds to a minimum-weight path from
s to z, which can be computed in time O∗(2m).
Proposition 2. CPS[number of tests] is in FPT.

To formally capture the parameterization of the problem by the length ` of the computed schedule,
we need to slightly adjust its formal definition. Let CPSval[length] and CPSopt[length] denote the
variants of CASCADING PORTFOLIO SCHEDULING where for each problem instance we are also
given an integer ` > 0 and only schedules up to length ` are considered (` being the parameter).
CPSval[length] is the decision problem that asks whether there exists a valid schedule of length ≤ `,
and CPSopt[length] asks to compute a valid schedule of length ≤ ` of smallest cost or decide that no
valid schedule of length ≤ ` exists. Both problems are parameterized by the length `.
Proposition 3. CPSopt[length] is in XP, but is unlikely to be in FPT since already CPSval[length] is
W[2]-complete.
Proof Sketch. Membership of CPSopt[length] in XP is easy: We enumerate every ordered selection
of at most ` algorithms from A (there are at most O(`!m`) many) and if valid, we compute its cost,
and keep track of a valid selection (if any) of minimum cost over all enumerations.

To prove the W[2]-hardness of CPSval[length], we give an FPT-reduction from the W[2]-complete
problem SET COVER [4]. The membership of CPSval[length] in W[2] follows from a straightforward
reduction to SET COVER, which is omitted.

Given an instance ((U,F), k) of SET COVER, where U is a ground set of elements, F is a family of
subsets for U , and k ∈ N is the parameter, we create an instance of CASCADING PORTFOLIO SCHE-
DULING as follows. We set T = U , and for each F ∈ F , we create an algorithm αF ∈ A and add
(αF , t) to S, for every t ∈ F . Finally, we set ` = k. The function cost can be defined arbitrarily. The
above reduction is clearly a (polynomial-time) FPT-reduction, and it is straightforward to verify that
((U,F), k) is a yes-instance of SET COVER if and only if the constructed instance of CASCADING
PORTFOLIO SCHEDULING has a valid portfolio of size at most `.
We remark that the above construction can also be used to show that the problem variants arising in
Scenarios 1-3 described in the introduction remain W[2]-complete.

4 Results for Degree Parameters
This section presents a classification of the complexity of CASCADING PORTFOLIO SCHEDULING
parameterized by the considered (success and failure) degree parameters.
Proposition 4. CPS[algorithm failure degree] is in FPT.

Proof. Denote by degAf the algorithm failure degree, and let I = (A, T, cost, S) be an instance of
CASCADING PORTFOLIO SCHEDULING. Consider an algorithm which loops over each algorithm
α ∈ A and proceeds under the assumption that α is the first algorithm in an optimal valid portfolio.
For each such α, the number of tests in T that cannot be evaluated by α is at most degAf . Removing
α from A and the subset of tests {t | (α, t) ∈ S} from T results in an instance I− of CASCADING

PORTFOLIO SCHEDULING with at most degAf tests, which, by Proposition 2, can be solved in time

O∗((degAf)degAf) to obtain an optimal solution for I−. Prefixing α to the optimal solution obtained
for I− (assuming a solution exists) results in an optimal solution Sα for I under the constraint
that algorithm α is the first algorithm. Enumeration every algorithm α ∈ A as the first algorithm,
computing Sα, and keeping track of the solution of minimum cost over all enumerations, results in
an optimal solution for I. The running time of the above algorithm is O∗((degAf)degAf).
Proposition 5. CPS[test failure degree] is in FPT.

Proof. Denote by degTf the test failure degree, and let I = (A, T, cost, S) be an instance of CASCA-
DING PORTFOLIO SCHEDULING. Consider an algorithm which (1) loops over each algorithm α ∈ A
and proceeds under the assumption that α is the last algorithm in an optimal valid portfolio τ , and
then (2) loops over every test t in our instance and proceed under the assumption that t is a test that
is solved only by α in τ . For each such choice of t and α, it follows that the algorithms preceding
α in τ do not solve t, and hence there are at most degTf many such algorithms. Therefore, we can
check the validity and compute the cost of every possible ordered selection of a subset from these
algorithms that precede α in τ . After we finish looping over all choices of α and t, we output a valid
portfolio of minimum cost.

5

There are |A| choices for a last algorithm α and |T | choices for a desired test t. For each fixed α
and t, there are at most O∗((degTf)!) many ordered selections of a subset of algorithms preceding α
in τ . It follows that the problem can be solved in time O∗((degTf)!).
Proposition 6. CPS[algorithm success degree], CPS[test success degree], and even CPS[algorithm
success degree + test success degree] are NP-hard already if the algorithm success degree is at most 3
and test success degree is at most 2.
Proof. We reduce from the problem 3-MIN SUM VERTEX COVER, where we are given a graph
H = (V,E) with maximum degree 3, and the task is to find a bijection σ : V → {1,V } that
minimizes

∑
e∈E fσ(e), where fσ(e) = minv∈e σ(v). Feige et al. [5] showed that there exists

ε > 0 such that it is NP-hard to approximate 3-MIN SUM VERTEX COVER within a ratio better
than 1 + ε. Given an instance of this problem, we construct an instance of (A, T, cost, S) of
CASCADING PORTFOLIO SCHEDULING by letting A = V , adding for each edge e ∈ E a test te
to T , setting S = { (α, te) ∈ A× T : α ∈ e }, and setting cost(α, t) = 1 for all α ∈ A and t ∈ T . It
is easy to verify that bijections σ that minimize

∑
e∈E fσ(e) are exactly those that give an ordering τ

of A of minimal cost. It remains to observe that the the algorithm success degree is 3 and the test
success degree is 2.

5 Results for Cover Numbers
In this section we show that CPS[failure cover number] and CPS[success cover number] are both
fixed-parameter tractable.

5.1 Using the Failure Cover Number

The first of the two results follows from an even more general result, the fixed-parameter tractability
of CPS[failure treewidth], where as the parameter we take the treewidth of the failure graph GI
defined as follows.

The failure graph GI is a bipartite graph whose vertices consist of A ∪ T and where there is an edge
between α ∈ A and t ∈ T iff t fails onA. We note that the algorithm (or test) failure degree naturally
corresponds to the maximum degree in the respective bipartition of GI , and that the failure covering
number is actually the size of a minimum vertex cover in GI .

Treewidth [21, 8, 1] is a well-established graph parameter that measures the “tree-likeness” of
instances. Aside from treewidth, we will also need the notion of balanced separators in graphs. We
introduce these technical notions below.

Treewidth and Separators. Let G = (V,E) be a graph. A tree decomposition of G is a pair
(V, T) where V is a collection of subsets of V such that

⋃
Xi∈V = V , and T is a rooted tree whose

node set is V , such that:

1. For every edge {u, v} ∈ E, there is an Xi ∈ V , such that {u, v} ⊆ Xi; and
2. for all Xi, Xj , Xk ∈ V , if the node Xj lies on the path between the nodes Xi and Xk in the tree
T , then Xi ∩Xk ⊆ Xj .

The width of the tree decomposition (V, T) is defined to be max{|Xi| | Xi ∈ V} − 1. The treewidth
of the graph G, denoted tw(G), is the minimum width over all tree decompositions of G.

A pair of vertex subsets (A,B) is a separation in graph G if A ∪ B = V (G) and there is no edge
between A \B and B \ A. The separator of this separation is A ∩B, and the order of separation
(A,B) is equal to |A ∩ B|. We say that a separation (A,B) of G is an α-balanced separation if
|A \B| ≤ α|V (G)| and |B \A| ≤ α|V (G)|.
Proof Strategy. Our main aim in this section will be to prove the following theorem:
Theorem 7. CPS[failure treewidth] is in FPT.

It is easy to see that failure treewidth is at most the failure cover number plus 1 (consider, e.g., a tree
decomposition of the failure graph consisting of a sequence of bags, each containing the algorithms
and tests forming the cover and one additional test or algorithm). Hence, once we establish Theorem 7
we obtain the following as an immediate corollary:
Corollary 8. CPS[failure cover number] is in FPT.

6

We first provide below a high-level overview of the proof of Theorem 7.

We solve the problem using dynamic programming on a tree decomposition of GI , by utilizing
the upper bound on the solution length derived in the first step. The running time is O∗(4tw(GI) ·
tw(GI)tw(GI)). To make the dynamic programming approach work, for a current bag in the tree
decomposition, and for each test in the bag, we remember whether the test is solved by an algorithm
in the future or by an algorithm in the past. Moreover, we remember which tests are solved by the
same algorithm. We also remember specifically which algorithm is the “first” from the future and
which is the “first” from the past. Finally, we remember the relative positions of the algorithms in
the bag, the first algorithm from the future, the first algorithm from the past, and the algorithms that
solve the tests in the bag. Note that we do not remember which algorithms solve tests in the bag, only
their relative position and whether they are in the past or future.

We now turn to giving a more detailed proof for Theorem 7.

Lemma 9. A minimum cost schedule for CASCADING PORTFOLIO SCHEDULING can be computed
in time O∗(4tw · twtw).

Proof Sketch. As with virtually all fixed-parameter algorithms parameterized by treewidth, we use
leaf-to-root dynamic programming along a tree decomposition (in this case of the failure graph
GI)—see for instance the numerous examples presented in the literature [4, 3]. However, due to
the specific nature of our problem, the records dynamically computed by the program are far from
standard. This can already be seen by considering the size of our records: while most such dynamic
programming algorithms only store records that have size bounded by a function of the treewidth, in
our case the records will also have a polynomial dependence on m.

As a starting point, we will use the known algorithm of Bodlaender et al. [2] to compute a tree-
decomposition of width at most 5 · tw(GI). We proceed by formalizing the used records. Let Xi be
a bag in the tree decomposition. A configuration w.r.t. Xi is a tuple (αpast, αfuture, σ, δ), where

• αpast is an algorithm that has been forgotten in a descendant of Xi,
• αfuture is an algorithm that has not been introduced yet in Xi,
• σ : Xi ∪ {αpast, αfuture} → [|Xi|+ 2], and
• δ : T ∩Xi → {“past”, “future”}.

Note that there are at most 2|Xi| · (|Xi| + 2)|Xi|+2 · m2 = O∗(2tw · twtw) configurations. The
interpretation of the configuration is that σ tells us the relative positions in the final schedule of the
algorithms in Xi, αpast, αfuture, and for each test in Xi the algorithm that finally solves the test t. The
function δ, for a test t, tells us whether the algorithm that is the first in the schedule that solves t was
already introduced (“past”) or will be introduced (“future”). The entry αpast represents the specific
algorithm that is first in the schedule among all algorithms that have been already forgotten in the
descendant, and αfuture that among the ones that have not been introduced yet.

We say that a configuration C = (αpast, αfuture, σ, δ) w.r.t. Xi is admissible if

• for all algorithms α1, α2 ∈ A ∩ (Xi ∪ {αpast, αfuture}), it holds that σ(α1) 6= σ(α2);
• for all t ∈ T ∩Xi if σ(t) = j, then for every j′ < j: if there is α ∈ A ∩ (Xi ∪ {αpast, αfuture})

such that σ(α) = j′ then α does not solve t;
• for all t ∈ T ∩Xi if δ(t) = “past”, then either σ(αpast) ≤ σ(t) or there is α ∈ A ∩Xi such that
σ(α) = σ(t);

• for all t ∈ T ∩Xi if δ(t) = “future”, then σ(αfuture) ≤ σ(t);
• for all j′, j ∈ [|Xi|+ 2] such that j′ < j, if σ−1(j′) = ∅, then σ−1(j) = ∅; and
• if σ(α) = σ(t) for some α ∈ A∩ (Xi ∪ {αpast}) and t ∈ T ∩Xi, then δ(t) = “past” and α solve
t.

Note that if we take any valid schedule, we can project it w.r.t. a bag Xi and obtain a configuration
(αpast, αfuture, σ, δ). Such a configuration will always be admissible and so we can restrict our attention
to admissible configurations only. To simplify the notation we let Γi[C] =∞ ifC is not an admissible
configuration w.r.t. Xi.

Now for each Xi, we will compute a table Γi that contains an entry for each admissible configuration
C such that Γi[C] ∈ N is the best cost, w.r.t. configuration C, of the already introduced tests restricted
to the already introduced algorithms and the algorithm αfuture.

7

Clearly, the minimum cost schedule of the instance gives rise to some admissible configuration C
w.r.t. the root node Xr of the tree decomposition. Hence Γr[C] contains the minimum cost of a
schedule. To complete the proof, it suffices to show how to update the records when traversing the
tree-decomposition in dynamic fashion. Below, we list the sequence of claims (along with some
exemplary proofs) used to this end.
Claim 10. If Xi is a leaf node, then Γi can be computed in O(|Γi|) time.

Proof of Claim. Note that Xi = ∅ and that none of the algorithms has been introduced in any leaf
node. The only admissible configuration looks like (∅, α, {(α, 0)}, ∅), where α ∈ A. Moreover,
since no tests or algorithms were introduced at that point, the cost of all of these configurations is
zero.

Claim 11. If Xi is an introduce node for a test with the only child Xj , then Γi can be computed in
O(|Γi|) time.
Claim 12. If Xi is an introduce node for an algorithm with the only child Xj , then Γi can be
computed in O(|Γi|) time.
Claim 13. If Xi is a forget node, which forgets a test t, with the only child Xj , then Γi can be
computed in O(`|Γi|) time.

Proof of Claim. Let C = (αpast, αfuture, σ, δ) be an admissible configuration w.r.t. Xi. Forgetting
a test does not change the costs of introduced tests w.r.t. introduced algorithms. Hence, we only
need to find a configuration w.r.t. Xj of the lowest cost that after removing t from δ results in
C. Let δp be a function we get from δ by adding δp(t) = “past” and let δf be a function we
get from δ by adding δf (t) = “future”. First let Cf be a configuration (αpast, αfuture, σf , δf) such
that σf (x) = σ(x) for all x ∈ (Xi ∪ {αpast, αfuture}) \ {t} and σf (t) = σ(αfuture). Now, for
k ∈ [|Xi| + 2] and let C1

k be a configuration (αpast, αfuture, σ
1
k, δp) such that σ1

k(x) = σ(x) for all
x ∈ (Xi ∪ {αpast, αfuture}) \ {t} and σ1

k(t) = k and let C2
k be a configuration (αpast, αfuture, σ

2
k, δp)

such that σ2
k(x) = σ(x) for all x ∈ (Xi∪{αpast, αfuture})\{t} such that σ(x) < k, σ2

k(x) = σ(x)+1
for all x ∈ (Xi ∪ {αpast, αfuture}) \ {t} such that σ(x) ≥ k, and σ1

k(t) = k. Note that σ2
k would be

also shifted to σ after removing the entry for t.

We let Γi[C] be minimum among Cf and mink∈[|Xi|+2],`∈{1,2} Γj [C
`
k].

Claim 14. If Xi is a forget node, which forgets an algorithm α, with the only child Xj , then Γi can
be computed in O((`+m)|Γi|) time.

Proof of Claim. Let C = (αpast, αfuture, σ, δ) be an admissible configuration w.r.t. Xi. Clearly, when
we forget an algorithm, the cost of schedule given by σ w.r.t. already introduced algorithms and tests
does not change. Hence, we just need to choose the best configuration of Xj that can result in C.

We distinguish two cases depending on whether αpast = α or not.

First, if αpast = α, then for an already forgotten algorithm α′, k ∈ [|Xi|+ 2] such that σ(αpast) ≥ k,
and ` ∈ {0, 1} let us denote byCα′,k,` the configuration (α′, αfuture, σ

`
α′,k, δ) such that σ`α′,k(α′) = k,

for all x ∈ Xi ∪ {αpast, αfuture} σ`α′,k(x) = σ(x) if σ(x) < k and σ`α′,k(x) = σ(x) + ` otherwise.
Note that in order for σ0

α′,k to be admissible, σ−1(k) contains at least one test and no algorithm. In
this case we let Γi[C] = minα′,k,` Γj [Cα′,k,`].

If αpast 6= α, then for k ∈ [|Xi|+ 2] such that σ(αpast) < k, and ` ∈ {0, 1} let us denote by Ck,` the
configuration (αpast, αfuture, σ

`
k, δ) such that σ`k(α) = k, for all x ∈ Xi∪{αpast, αfuture} σ`k(x) = σ(x)

if σ(x) < k and σ`k(x) = σ(x) + ` otherwise. Note that again in order for σ0
k to be admissible,

σ−1(k) contains at least one test and no algorithm. In this case we let Γi[C] = mink,` Γj [Ck,`].

Claim 15. If Xi is a join node with children Xj1 and Xj2 , then Γi can be computed from Γj1 and
Γj2 in O(2`m|Γi|) time.
To conclude, the last four claims show that it is possible to dynamically compute our records from the
leaves of a nice tree decomposition to its root; once the records are known for the root, the algorithm
has all the information it needs to output with the solution.

It follows that CPS[failure treewidth] is fixed-parameter tractable, hence establishing Theorem 7.

8

5.2 Using the Success Cover Number

The aim of this section is to establish the fixed-parameter tractability of CPS[success cover number],
which can be viewed as a dual result to Corollary 8. The techniques used to obtain this result are
entirely different from those used in the previous subsection; in particular, the proof is based on a
significant extension of the ideas introduced in the proof of Proposition 1.
Theorem 16. CPS[success cover number] is in FPT.
Proof Sketch. Let I be an instance of CPS[covs]. Our first step is to compute a witness for the
success cover number covs, i.e., a set of algorithms A′ and tests T ′ such that |A′ ∪ T ′| = covs and
each pair in S has a non-empty intersection with A′ ∪ T ′; as discussed in Subsection 2, this can be
done in polynomial time [7, Proposition 1]. Let V = 2A

′∪T ′ be the set of all subsets of covs. We will
construct a directed arc-weighted graph D with vertex set V ∪ {x}, and with the property that each
shortest path from ∅ to x precisely corresponds to a minimum-cost schedule for the input instance I.
Intuitively, reaching a vertex v in D which corresponds to a certain set of algorithms A0 and tests T0
means that the schedule currently contains the algorithms in A0 plus an optimal choice of algorithms
which can process the remaining tests in T0; information about the ordering inside the schedule is not
encoded by the vertex v itself, but rather by the path from ∅ to v.

In order to implement this idea, we will add the following arcs to D. To simplify the description, let
A∗ be an arbitrary subset ofA′ and T ∗ be an arbitrary subset of T ′. First of all, for eachA∗ such that
for every test t ∈ T \ T ′ there is some α ∈ A∗ satisfying (α, t) ∈ S, we add the arc (A∗ ∪ T ′, x)
and assign it a weight of 0. This is done to indicate that A∗ ∪ T ′ corresponds to a valid schedule.

Second, for each A∗ that is a proper subset of A′, α0 ∈ A′ \ A∗, and T ∗, we add the arc e from
A∗ ∪ T ∗ to A∗ ∪ {α0} ∪ T ∗ ∪ T0, where T0 contains every test t0 ∈ T ′ such that (α0, t0) ∈ S. In
order to compute the weight of this arc e, we first compute the set Te of all tests outside of T ∗ where
α0 will be queried (assuming α0 is added to the schedule at this point); formally, t ∈ Te if t 6∈ T ∗
and for each α′ ∈ A∗ it holds that (α′, t) 6∈ S. For clarity, observe that T0 ⊆ Te. Now, we set the
weight of e to

∑
t∈Te cost(α0, t).

To add our third and final set of edges, we first pre-compute for each Tλ ⊆ T ′ \ T ∗ an algorithm
αλ ∈ A \ A′ such that:
1. for each tλ 6∈ T ∗, (αλ, tλ) ∈ S iff tλ ∈ Tλ (i.e., αλ successfully solves exactly Tλ), and

2. among all possible algorithms satisfying the above condition, αλ achieves the minimum
cost for all as-of-yet-unprocessed tests. Formally, αλ minimizes the term price(αλ) =(∑

t∈(T ′\T∗) cost(αλ, t)
)

+
(∑

t 6∈T ′:∀α∈A∗:(α,t)6∈S cost(αλ, t)
)
.

Now, we add an arc e from each A∗ ∪ T ∗ to each A∗ ∪ T ∗ ∪ Tλ, where Tλ is defined as above and
associated with the test αλ. The weight of e is precisely the value price(αλ).

Note that since the graph D has 2cov
s + 1 many vertices, a shortest path P from ∅ to x in D can be

computed in time 2O(covs). Moreover, it is easy to verify that D can be constructed from an instance
I in time at most 2O(covs) · |I|2. At this point, it remains to verify that a shortest ∅-x path P in D
can be used to obtain a solution for I.

6 Conclusion
We studied the parameterized complexity of the CASCADING PORTFOLIO SCHEDULING problem
under various parameters. We identified several settings where the NP-hardness of the problem can
be circumvented via exact fixed-parameter algorithms, including cases where (i) the algorithms have
a small failure degree, (ii) the tests have a small failure degree, (iii) the evaluation matrix has a small
failure cover, and (iv) the evaluation matrix has a small success cover. The first three cases can be
seen as settings in which most algorithms succeed on most of the tests, whereas case (iv) can be seen
as a setting where most algorithms fail.

We have complemented our algorithmic results with hardness results which allowed us to draw a
detailed complexity landscape of the problem. We would like to point out that all our hardness results
hold even when all costs are unit costs. This finding is significant, as it reveals that the complexity of
the problem mainly depends on the success relation and not on the cost mapping.

For future work, it would be interesting to extend our study to the more complex setting where up to
p algorithms from the portfolio can be run in parallel. Here, the number p could be seen as a natural
additional parameter.

9

Acknowledgments

Robert Ganian acknowledges the support by the Austrian Science Fund (FWF), Project P 31336, and
is also affiliated with FI MUNI, Brno, Czech Republic. Stefan Szeider acknowledges the support by
the Austrian Science Fund (FWF), Project P 32441.

References
[1] H. L. Bodlaender. Discovering treewidth. In Proceedings of the 31st Conference on Current

Trends in Theory and Practice of Computer Science (SOFSEM’05), volume 3381 of Lecture
Notes in Computer Science, pages 1–16. Springer Verlag, 2005.

[2] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.,
45(2):317–378, 2016.

[3] M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

[4] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, 2013.

[5] Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover. Algorithmica,
40(4):219–234, 2004.

[6] Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

[7] Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. Parameterized algorithms
for the matrix completion problem. In Proceeding of ICML, the Thirty-fifth International
Conference on Machine Learning, Stockholm, July 10–15, 2018, pages 1642–1651. JMLR.org,
2018. ISSN: 1938-7228.

[8] Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a key to tractability of
knowledge representation and reasoning. Artificial Intelligence, 174(1):105–132, 2010.

[9] Georg Gottlob and Stefan Szeider. Fixed-parameter algorithms for artificial intelligence,
constraint satisfaction, and database problems. The Computer Journal, 51(3):303–325, 2006.
Survey paper.

[10] Holger H. Hoos, Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Portfolio-based algorithm
selection for circuit QBFs. In John N. Hooker, editor, Proceedings of CP 2018, the 24rd
International Conference on Principles and Practice of Constraint Programming, volume
11008 of Lecture Notes in Computer Science, pages 195–209. Springer Verlag, 2018.

[11] Shinji Ito, Daisuke Hatano, Hanna Sumita, Akihiro Yabe, Takuro Fukunaga, Naonori Kakimura,
and Ken-ichi Kawarabayashi. Regret bounds for online portfolio selection with a cardinality
constraint. In Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada., pages 10611–10620, 2018.

[12] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Automated algorithm
selection: Survey and perspectives. Evolutionary Computation, pages 1–47, 2018.

[13] Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI Magazine,
35(3):48–60, 2014.

[14] Marius Lindauer, Holger Hoos, Frank Hutter, and Kevin Leyton-Brown. Selection and configu-
ration of parallel portfolios. In Handbook of Parallel Constraint Reasoning., pages 583–615.
2018.

[15] Marius Lindauer, Frank Hutter, Holger H. Hoos, and Torsten Schaub. Autofolio: An automati-
cally configured algorithm selector (extended abstract). In Carles Sierra, editor, Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, August 19-25, 2017, pages 5025–5029. ijcai.org, 2017.

10

[16] Haipeng Luo, Chen-Yu Wei, and Kai Zheng. Efficient online portfolio with logarithmic regret.
In Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada.,
pages 8245–8255, 2018.

[17] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathe-
matics and its Applications. Oxford University Press, Oxford, 2006.

[18] Luca Pulina and Armando Tacchella. A self-adaptive multi-engine solver for quantified boolean
formulas. Constraints, 14(1):80–116, 2009.

[19] John R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.

[20] Mattia Rizzini, Chris Fawcett, Mauro Vallati, Alfonso Emilio Gerevini, and Holger H. Hoos.
Static and dynamic portfolio methods for optimal planning: An empirical analysis. International
Journal on Artificial Intelligence Tools, 26(1):1–27, 2017.

[21] Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width. J. Comb. Theory,
Ser. B, 36(1):49–64, 1984.

[22] Olivier Roussel. Description of ppfolio 2012. In et al. A. Balint, editor, Proceedings of SAT
Challenge 2012, page 47. University of Helsinki, 2012.

[23] Matthew Streeter. Approximation algorithms for cascading prediction models. In Jennifer G.
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of
JMLR Workshop and Conference Proceedings, pages 4759–4767. JMLR.org, 2018.

11

	Introduction
	Preliminaries
	Results for Basic Parameters
	Results for Degree Parameters
	Results for Cover Numbers
	Using the Failure Cover Number
	Using the Success Cover Number

	Conclusion

