
Challenges of Explaining Control

Adrian Agogino1, Ritchie Lee2, Dimitra Giannakopoulou1

1NASA Ames Research Center
2Stinger Ghaffarian Technologies, Inc. (SGT)

NASA Ames Research Center, MS 269-1
Moffett Field, California 94035

{adrian.k.agogino,ritchie.lee,dimitra.giannakopoulou}@nasa.gov

Abstract

Reinforcement learning and evolutionary algorithms are used
increasingly in the development of sophisticated control so-
lutions for autonomous systems. However, it is challenging
to trust such solutions for safety-critical systems because the
rationale behind the control decisions they produce is ob-
fuscated, and hidden behind parameters that are not directly
related to the problem they target. Several approaches have
been proposed to explain standard supervised learning algo-
rithms, but these approaches cannot be readily applied to con-
trol algorithms due to the time-extended nature of the lat-
ter. This paper experiments with six techniques in order to
develop explanations for autonomous, learning-based con-
trol: 1) Bayesian rule lists, 2) Function analysis, 3) Single
time step integrated gradients, 4) Grammar-based decision
trees, 5) Sensitivity analysis combined with temporal model-
ing with LSTMs, and 6) Explanation templates. These tech-
niques are tested on a simple 2d domain, where a simulated
rover attempts to navigate through obstacles to reach a goal.
For control, this rover uses an evolved multi-layer perception
that maps an 8d field of obstacle and goal sensors to an ac-
tion determining where it should go in the next time step. Re-
sults show that some simple insights in explaining the neural
network are possible, but that good intuitive explanations are
difficult.

Introduction
Explanation of machine learning algorithms is a challenging
and important field of research. Most techniques to date have
focused on supervised learning algorithms, such as image
processing, text processing and medical diagnosis (Letham
et al. 2015; Gunning). Instead of supervised learning, this
paper focuses on reward based machine learning such as re-
inforcement learning and evolutionary algorithms, where re-
wards are given to measure performance instead of using
examples of what is correct. The nature of reward learning
and supervised learning is different in both problem domains
and learning tools used to solve these problems. In this paper
we look at explainability techniques that have been designed
for supervised learning problems and apply them to reward
learning problems.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Reinforcement learning and evolutionary algorithms can
be used to automatically learn high performance control sys-
tems for complex problems (Floreano and Mondada 1994;
Crites and Barto 1996; Agogino, Stanley, and Miikkulainen
2000). This is particularly the case in the context of auton-
omy where control may involve many variables and need to
dynamically adapt to different environments and situations.

A common form of machine learning is to train a set of
weights of a neural network-based control policy. Based on
inputs (such as sensors) the control policy can command
control actions (such as speed and direction of a vehicle).
Training is typically done with a simulator, where the learn-
ing algorithm attempts to improve the performance of the
control policy through a long series of trials. The goal of this
training process is to produce a high-performance non-linear
control policy that takes inputs and produces controls.

While a successful training will produce a control policy
that achieves high performance in simulation, how the con-
trol policy actually works will typically be unclear to its pro-
grammers, let alone its end-users. Due to this fact, machine
learning algorithms are often referred to as “blackbox”: their
inputs and outputs can be viewed, but there is no knowledge
of their internal workings.

Even when machine learning achieves high performance,
it can be difficult to trust for two reasons: 1) coverage, and
2) generalizability. In terms of coverage, while an algorithm
may have performed well in scenarios that were tested, there
may be other likely scenarios where it would have performed
very poorly. In addition since coverage of machine learning
algorithms is largely dependent on the data set, the user may
not even be aware of the algorithm’s coverage and can eas-
ily overlook large gaps in the data sets. In terms of gener-
alizability, while the algorithm performed well in the sim-
ulator it may not perform well in the real world or in envi-
ronments that are slightly different than the simulated one.
These problems can be exacerbated by the blackbox nature
of these learning algorithms, where reward hacking, poorly
defined utility functions or simple errors in the simulator can
lead to unrealistically high levels of performance that cannot
be achieved when deployed. In addition, machine learning
algorithms have many unintuitive parameters that have no
obvious relation to the underlying control problem, such as

number of hidden nodes and learning rates. Yet poor choices
of these parameters can lead to poor generalization.

Improving explainability of these blackbox algorithms
can help improve trust that they will behave as expected
when deployed (Gunning). If a control decision is backed up
by a meaningful and understandable rationale, then one can
trust that the decision is not made “by chance”, and therefore
the system can be expected to behave well in other similar
circumstances. Additionally, if we understand a learned con-
trol algorithm, we can see if there are any clear gaps in cov-
erage, or if there are any obvious flaws that would prevent it
from generalizing outside of the simulated environment. On
the other hand, what constitutes a meaningful, understand-
able explanation?

Providing explanations of machine learning is a very ac-
tive research field. Several approaches have been proposed
for standard supervised learning algorithms. Despite this
fact, it is still unclear what types of explanations may be
suitable in practice. Control further complicates the picture,
because control strategies develop over time, and are typi-
cally not evaluated over snapshots. How can such strategies
be captured in explanations and what type of explanations
would those be?

To address this problem, we have experimented with a va-
riety of techniques to provide explanations in the context of
a very simple machine learning algorithm that we developed
for navigating a rover towards a goal while avoiding obsta-
cles. We decided to build the algorithm from scratch in order
to evaluate the pitfalls and errors that may occur in develop-
ing such systems, as well as how/what explanations may as-
sist in detecting those. We used six techniques in order to de-
velop explanations: 1) Bayesian rule lists, 2) Function anal-
ysis, 3) Single time step integrated gradients, 4) Grammar-
based decision trees, 5) Sensitivity analysis combined with
temporal modeling with LSTMs, and 6) Explanation tem-
plates. This set of techniques was chosen as it represents a
diverse set of explanations that could be readily applied to
control data. In particular, it includes both local and global
explanations. These local attempt to explain a single control
action in a particular state. To form a big picture of a con-
trol policy with local explanations, we would want many lo-
cal explanations covering many different states. In contrast
global explanations try to explain an overall action policy
over all states.

The remainder of the paper is organized as follows. We
first present the example obstacle avoidance problem we use
throughout the paper. Then we describe the neural network
controller and the Monte Carlo algorithm used to determine
the weights of the neural network. We subsequently discuss
the need for explainability and how simple analysis of algo-
rithm performance may be insufficient. To address this we
present six different explainability algorithms applied to the
example problem and discuss their relative merits.

Test Problem
We test our explainability methods on a simple test prob-
lem, where a rover moving on a 2d plane tries to navigate
towards a goal while avoiding obstacles. It does this with a
neural network that maps goal and obstacle sensors into a

control action that determines the speed and direction of the
rover for the next time step. The weights of this neural net-
work are determined with an evolutionary algorithm using a
simulation of the environment.

Environment and Utility
In our test domain, a rover attempts to reach a single goal
while avoiding 100 obstacles placed randomly on an x-y
plane (see Figure 1). The rover starts in the middle of the ob-
stacle field and the goal is located above the obstacle field.
At each time step the rover takes a small movement in the
x and y direction. At the end of 70 time steps, the rover’s
performance is evaluated.

Goal	

Start	

Obstacles	
Path	to	Goal	

Figure 1: Obstacle Avoidance Problem. A rover attempts to
navigate towards a goal while avoiding obstacles in a 2-d
plane.

Sensors
At every time step, the rover senses the world through eight
continuous sensors (Agogino and Tumer 2004). From a
rover’s point of view, the world is divided up into four quad-
rants with fixed orientation to the x-y axis, with two sensors
per quadrant (see Figure 2 Left). For each quadrant, the first
sensor returns a function of the obstacles in the quadrant at
time t. Specifically the first sensor for quadrant q returns
the sum of inverse square distances from an obstacle to the
rover:

s1,t =
∑
j∈Jq

1

δj
2 ,

where Jq is the set of obstacles in quadrant q and δj is the
euclidean distance from obstacle j to the rover. The sec-
ond sensor, s2,t, returns the inverse square distance from the
rover to all the goals in each quadrant at time t. In our case
since there is only one goal, only the quadrant that contains
the goal will have a non-zero value, which is 1/d2 where d
is the euclidean distance from the rover to the goal.

The sensor space is broken down into four regions to facil-
itate the input-output mapping. There is a trade-off between
the granularity of the regions and the dimensionality of the
input space. In some domains the tradeoffs may be such that
it is preferable to have more or fewer than four sensor re-
gions.

Rover Control Strategies
With four quadrants and two sensors per quadrant, there are
a total of eight continuous inputs. This eight dimensional

Obstacle	
Sensors	

Obstacles	

Goal	

Goal	Sensors	

Neural	Network	

Figure 2: Rover Sensors. The rover has 8 sensors: 4 obstacle
sensors and 4 goal sensors. Each sensor observes the pres-
ence of objects in its quadrant based on a sum of inverse
squared distances. More objects and closer objects there in-
crease sensor value. Sensors are inputs to a neural network
that produces a control action determining x, y movement in
the next time step.

sensor vector constitutes the state space for a rover. At each
time step the rover uses its state to compute a two dimen-
sional output. This output represents the x, y movement rel-
ative to the rover’s location and orientation.

The mapping from rover state to rover output is done
through a Multi Layer Perceptron (MLP) (Haykin 1998),
with eight input units, ten hidden units and two output units
1. The MLP uses a sigmoid activation function, therefore the
outputs are limited to the range (0, 1). The actual rover mo-
tions dx and dy, are determined by normalizing and scal-
ing the MLP output by the maximum distance the rover can
move in one time step. More precisely, we have:

dx = 2dmax(o1 − 0.5)

dy = 2dmax(o2 − 0.5) ,

where dmax is the maximum distance the rover can move in
one time step, o1 is the value of the first output unit, and o2
is the value of the second output unit.

Monte Carlo Algorithm
We use a simple 2-phase Monte Carlo algorithm to deter-
mine the weights for the neural network controller. In the
first phase, the weights for each Monte Carlo run are set to a
value between -6 and 6 sampled from a uniform distribution.
After the weights are selected the rover is evaluated in a sim-
ulation for 70 time steps, and its performance is recorded.
1000 Monte Carlo runs are performed in this first phase.

In the second phase, for each Monte Carlo run, the
weights are copied from the neural network with the best
performance in the first phase. The weights of this copy are
then mutated by adding noise selected from a uniform dis-
tribution in the range -0.05 to 0.05. 200 Monte Carlo runs
are performed from this second phase and the weights of the

1Note that other forms of continuous reinforcement learners
could also be used instead of evolutionary neural networks. How-
ever neural networks are ideal for this domain given the continuous
inputs and bounded continuous outputs.

best performing rover are saved as the final solution of the
algorithm.

The reward used to evaluate each Monte Carlo run is as
follows:

R =

T∑
t=0

100s2,t − s1,t

where s2,t is the goal sensor value and s1,t is the sum of ob-
stacle sensor values at time t run for T time steps. This util-
ity goes up when the rover gets closer to the goal and down
when it gets close to obstacles. Note that the goal sensor is
scaled since the rover is usually much closer to obstacles
than the goal.

Explainability
At the completion of the Monte Carlo algorithm we have
a neural network capable of controlling a rover in our test
problem. Traditionally we would test this controller by run-
ning it and observing how it performs, such as by looking at
the path it took as shown in Figure 1. We can also look at
how its performance improved during training. For instance
Figure 3 shows that while random neural networks tend to
perform poorly, there are a few that perform much better
than average. The figure also shows that in Phase 2 of train-
ing that performance improves, but not significantly.

Pe
rfo

rm
an

ce

Monte Carlo Number Monte Carlo Number

Monte Carlo Training

Random Weights Weights mutated from previous winner

1000 Samples 200 Samples

Final
winner

Figure 3: Rover Performance during training, displayed as
negative reward. Left: In the first 1000 Monte Carlo runs,
performance varies considerably. Right: The next 200 Monte
Carlo runs are based on the best sample from the first thou-
sand (performance of this sample shown in blue line).

While this analysis gives some insight into the perfor-
mance of the neural network controller, it does not tell us
how it actually operates. In particular, it does not tell us if
the controller has any hidden failure modes that we should
be aware of. Machine learning algorithms and neural net-
works in particular can have many subtle failures that not be
apparent in basic testing. A neural network is represented by
a large collection of interconnected weights and inspecting
the values of these weights is usually not helpful in deter-
mining if the network is operating correctly. As an example
of such a failure, when we first trained our neural network on
the obstacle avoidance problem, we accidentally limited the
range of possible weight values to be on too narrow of inter-
val for the neural network to fully approximate non-linear
functions. While the training went smoothly and the algo-
rithm produced a viable control policy, the performance of
this control policy was significantly lower than what it could

have been due to this error. Ultimately a unit test, testing
the ability of the neural network to approximate a sine wave
revealed this issue.

While performance tests and unit tests give some insight
into how a neural network is operating, we would like addi-
tional explanations of how a trained neural network is ac-
tually operating. In this paper we attempt to analyze our
neural network using several different explainability meth-
ods: 1) Bayesian rule lists, 2) Function analysis, 3) Single
time step integrated gradients, 4) Grammar-based decision
trees, 5) Sensitivity analysis combined with temporal mod-
eling with LSTMs, and 6) Explanation templates. This set
of techniques was chosen as it represents a diverse set of
explanations that could be readily applied to control data.
In this set, integrated gradients provides a local explanation
that attempts to explain a single control action in a partic-
ular state. The rest of the explanations are more global in
that they attempt to explain the overall control policy inde-
pendent of state. Another factor is temporal as a control pol-
icy attempts to maximize reward over time. Of our explana-
tions only grammar-based decision trees and modeling with
LSTMs explicitly attempts to reason over time. In general,
the temporal aspect of control makes explanations difficult
and complex, therefore most of our explanations attempt to
explain individual actions rather than an entire sequence of
actions.

Bayesian Rule Lists

Explanations in terms of Bayesian Rule Lists
(BRL) (Letham et al. 2015) consist of a list of if-then
rules predicated on the controller’s inputs. These rules are
generated looking at the input/output data associated with
the controller, not looking at the neural network itself.
Since the domain is continuous and the rules are discrete,
a mapping between the domain and the rules needs to be
created.

For our example problem we created a simple mapping
by hand. For the obstacle sensors, we converted the val-
ues of the four quadrants into one of four categorical labels
(up, down, left and right), signifying which quadrant had the
greatest value. For instance if left quadrant had the greatest
value then the label would be “left.” The outputs of the con-
troller are converted to two binary values corresponding the
x and y values of the output. When the y output has a pos-
itive value then its label is 1, otherwise its value is 0. The
x value is encoded similarly. To simplify the mapping we
ignore the values of the goal sensor and tested the rover in
an area where the obstacle sensors dominated. Given these
mappings we can convert a set of sensor and control action
data into a set of labels.

We performed a BRL extraction using a control run of 70
time steps. Doing this, we can generate four separate rules
for going up, down, left and right. The results for the up rule
were as follows:

if obstacles to left
go up with probability .19

else if obstacles are up
go up with probability .87

else
go up with probability .07

Notice that the second rule is somewhat problematic. The
neural network actually wants to head towards an obstacle
when it is close by. On further inspection, we saw that in-
deed the rover tends to head towards obstacles, but also turns
enough as it is doing so to avoid the obstacle. While effec-
tive, this strategy would not seem satisfactory for safety crit-
ical systems.

While the BRL was able to expose a potential hazard in
the controller, it tended to be hard to use and did not give
much insight into the full behavior of the controller. In ad-
dition, since it treats the controller as a black box, BRL is
only able to characterize observed behavior and could miss
important properties of the controller that were not observed
in the training data.

Activation Analysis
Our next analysis of the neural network controller is to look
at the shape of the input/output functions. For each quadrant
in the sensor field there are three functions. The up sensor
functions are as follows (the other mappings are appropri-
ately rotated according to the sensor orientation) 1) Mapping
from obstacle sensor to Y control action, 2) Mapping from
obstacle sensor to X control action, and 3) Mapping from
goal sensor to Y control action. The plots of these functions
are shown in Figure 4. From the plot we can see that the
goal sensor controller behaves as expected. When the goal
is present in a sensor, the controller tends to move towards
the goal. However the obstacle sensor controllers are a bit
more non-intuitive. When the rover gets close to obstacles
in the up direction, the X controller will move the rover to
the right. However if it gets very close to the obstacles the X
controller will start moving in the left direction. Even more
worrisome is that when obstacles are close the Y controller
will accelerate towards them. This analysis confirms the ex-
planation rules created by the Bayesian Rule List.

Sensitivity Analysis
One way to test some of the properties of a neural network
directly is to test the sensitivity of the inputs to the out-
puts (Tulio Ribeiro, Singh, and Guestrin 2016; Sundarara-
jan, Taly, and Yan 2017). This analysis may be able to tell us
for a particular location, which inputs are the most important
to the controller’s decision.

Gradient Analysis The most basic form of sensitivity
analysis is gradient analysis where we measure the gradient
of the input with respect to the outputs. This can be accom-
plished in neural networks using backpropagation. To test
this analysis we created a scenario where a rover is located
right below the location of an obstacle (see Figure 5). In this
scenario we then calculated the gradient of each of the four
obstacle sensors with respect to the controller output. The
results are as follows:

Goal Sensor
To Control Y

Obstacle Sensor
To Control Y Obstacle Sensor

To Control X

Input Value

O
ut

pu
t V

al
ue

Figure 4: Neural Network Controller Functions. Function
analysis shows rover should move towards goal as expected.
However, rover also has a tendency to move towards obsta-
cles. It only avoids them by turning when it gets close.

Up: 0.031
Left: 0.227
Down: 0.120
Right: 0.139

Rover	

Obstacle	
Goal	

Figure 5: Scenario for Sensitivity Analysis.

This result shows the limitation of basic gradient analysis.
We would expect the Up sensor to be the most important to
the control, since there is an obstacle very close in the up di-
rection. However, since the rover is so close to the obstacle
this sensor saturated so any small change in its value causes
almost no change control action. Therefore this sensor actu-
ally has the smallest gradient, which is the opposite of what
we would hope in terms of explainability. Instead of look-
ing at only local changes in its value we need to look at the
effects of larger changes.

Integrated Gradients Integrated gradients attempts to
solve this limitation of local gradients by adding a series of
gradients from the sensor value of interest down to a baseline
sensor value. In this way any important change that happens
along this path will be recorded. To test integrated gradients
we perform a test where the baseline sensor has a value of
zero in all four quadrants and calculate 100 gradients from
rover position in our scenario down to the baseline value.
The results are as follows:

Up: 14.67
Left: 16.40
Down: 11.10
Right: 12.00

These results are somewhat more satisfying as the up sensor
now has the second largest value.

Explanation Template
Our next attempt at explaining the behavior of the neural
network is to model its global properties with respect to an
understandable control algorithm (Chandrasekaran, Tanner,
and Josephson 1989). We call this control algorithm an “ex-
planation template.” This template comprises a simple con-
trol algorithm that is easy to comprehend with free param-
eters that are determined by analyzing the behavior of the
neural network. We tried this technique using a simple lin-
ear policy. Here is the policy template for the upward look-
ing goal and obstacle sensors:

vup = w0so,u + w1sg,u

vright = w2so,u

where vup and vright are the up and right velocities for the
next time step, so,u is the value for the upward looking ob-
stacle sensor, sg,u is the value for the upward looking goal
sensor, and w0, w1, w2 are the free parameters. Using data
from 50 trials of the rover we performed linear regression
and found the values of the free parameters producing the
following explanation of the system:

vup =
so,u
803

+
sg,u
6139

vright =
so,u
1585

This explanation shows that the neural network has a small
tendency to move towards the goal, but a large tendency to
move towards an obstacle. It is able to avoid obstacles as it
also has a tendency to move right when it approaches an ob-
stacle. These findings are consistent with the function anal-
ysis and the Bayesian rule lists.

Grammar-Based Decision Trees
Our next attempts use grammar-based decision trees (GB-
DTs) (Lee et al. 2018). The idea is to learn an interpretable
model from data and then inspect the learned rules to gain
insight into system behavior. GBDT generalizes a traditional
decision tree, where the decision rules are Boolean expres-
sions derived from a context-free grammar. The grammar
allows any logical language to be used and the user can
tune the grammar for explainability. GBDT has been shown
to provide good representational ability while being inter-
pretable (Lee et al. 2018). GBDT can model different types
of data by choosing an appropriate grammar. For example,
a grammar based on first-order logic can be used to model
static data, while a grammar based on temporal logic can be
used to model time series data. We explored two approaches
to applying the GBDT model. The first approach models the
input-output behavior of the neural network policy and the
second approach models the time series data that the policy
and its environment together produces.

GBDT Control Policy Modeling In this first GBDT ap-
proach, we model the input-output behavior of the neural
network policy. We learn an interpretable model that approx-
imates the behavior of the policy and then inspect the learned
rules to gain insight into the decisions of the policy.

To construct the training data for the GBDT, we use the
input-output pairs of the neural network policy seen during
its training. Since the output of the neural network policy is a
relative position in 2d, but GBDT can only produce discrete
output, we take the relative angle of the network output and
round it to the nearest 45 degrees. We use a simple grammar
consisting of comparison operators less than < and greater
than > operating on the input features xid; and logical op-
erators conjunction ∧, disjunction ∨, and negation ¬ that
enable the formation of more complex expressions. The full
grammar is shown in Figure 6.

b 7→ (b ∧ b) | (b ∨ b) | ¬b
b 7→ (X[xid] < X[xid]) | (X[xid] > X[xid])

xid 7→ top | left | bottom | right

Figure 6: GBDT Grammar for Modeling Control Policy.

The GBDT was trained using genetic programming (Koza
1992) to optimize each rule of the tree (Lee et al. 2018).
The resulting GBDT, shown in Figure 7, attained 85.5% ac-
curacy. The GBDT found two rules to distinguish between
three policy outputs up, up left, and up right. The reason
there are only three actions used is because the goal is lo-
cated above the start point, so those are the primary actions
required for successful navigation. In Figure 7, if there are
more obstacles to the left than to the bottom, then go up
and to the left. This behavior can be observed in the two
up left segments in Figure 1 as the agent navigates toward
and around the cluster of the obstacles to the left. The second
rule has two terms. If bottom is greater than right and top is
greater than left, then move up. This behavior is seen in Fig-
ure 1 as the rover moves away from obstacles to the bottom
passing obstacles to the right. As the rover approaches the
goal, there are no obstacles to the top or left, so top equals
left and the second rule becomes false. In this case, the out-
put is up right.

1: left > bottom

2: out = up left 3: (right < bottom) ∧ (top > left)

4: out = up 5: out = up right

true false

true false

Figure 7: GBDT Result from Modeling Control Policy.

Our result reveals that the learned neural network policy
may be overfitted to the scenario because the output relies
on this specific arrangement of the obstacles. The discov-
ered rules are indeed true patterns in the data. However, it
is unclear that these rules provide satisfactory explanations
to humans. For example, humans do not find comparisons
between different axes, such as left> bottom, very intuitive.

GBDT Temporal Modeling The above approach does not
take into account (1) the temporal nature of the problem
and (2) the interactions between the controller and the en-
vironment. In this second GBDT approach, we attempt to
capture the temporal properties of the combined controller-
environment system. We construct a training dataset where
the inputs are multivariate sequences of the obstacle sensor
values, goal sensor values, policy output, and agent position,
and the target outputs are whether the sequence was pro-
duced by the final (optimal) neural network control policy or
another (suboptimal) controller that was considered but ul-
timately discarded during training. We train a GBDT model
on the temporal data and then inspect the learned rules to
gain insight into the temporal properties that distinguish be-
tween paths from the optimal and suboptimal controller.

We specify a grammar based on a simple temporal logic
as shown in Figure 8. The grammar includes temporal op-
erators globally G and eventually F ; elementwise logical
operators conjunction ∧, disjunction ∨, negation ¬; and
comparison functions that perform elementwise compari-
son of a feature sequence to precomputed constants. These
comparison functions are expressed in the grammar in the
form fop(xid, vid), which computes X[xid] op V [xid, vid],
where X[xid] is the temporal sequence of feature xid, op
is a comparison operator, and V [xid, vid] is a precomputed
lookup table that returns the vid’th decile division point of
the range of feature xid in the data.

The GBDT was trained using genetic programming (Koza
1992) to optimize each rule of the tree (Lee et al. 2018). The
resulting GBDT, which attained 99.9% accuracy, is shown
in Figure 9. The GBDT model identified three temporal
properties relevant to distinguishing between whether a se-
quence is optimal or suboptimal. The following properties
need to be simultaneously satisfied for the input sequence to
be classified as optimal: (1) At some point, action x reaches
a value that is greater than 90% of the range of action x in
the data (node 1 in Figure 9); (2) The following statement
must be false: At some point, obs sense right is greater
than 30% of the range of obs sense right in the data (node
2)(In other words, obs sense right must be globally below
30% of its range); and (3) At some point, action y is greater
than or equal to 80% of the range of action y in the data
(node 4).

In summary, the GBDT has discovered that strong right
and strong up actions combined with a weak right obstacle
sensor are correlated with the optimal policy. While these
properties hold true in the data, it did not provide a very
deep insight or satisfying explanation for the control policy.

b 7→ G(~b) | F (~b)
~b 7→ (~b ∧~b) | (~b ∨~b) | ¬~b
~b 7→ (~r < ~r) | (~r ≤ ~r) | (~r > ~r) | (~r ≥ ~r)
~b 7→ f<(xid, vid) | f≤(xid, vid)
~b 7→ f>(xid, vid) | f≥(xid, vid)
~r 7→ X[xid sens] | X[xid pos]

xid 7→ xid sens | xid pos
xid sens 7→ xid obs | xid goal
xid obs 7→ obs sens top | obs sens left
xid obs 7→ obs sens bottom | obs sens right
xid goal 7→ goal sens top | goal sens left
xid goal 7→ goal sens bottom | goal sens right
xid pos 7→ xid action | xid loc

xid action 7→ action x | action y
xid loc 7→ x | y

vid 7→ |(1 : 10)

Figure 8: GBDT Grammar for Temporal Modeling.

1: F (f>(action x, 9))

2: F (f>(obs sens right, 3)

3: label = suboptimal 4: F (f≥(action y, 8)

5: label = optimal 6: label = suboptimal

7: label = suboptimal

true

true false

true false

false

Figure 9: GBDT Result from Temporal Modeling.

Temporal Modeling using LSTMs
This approach combines temporal modeling with attribu-
tions to highlight the most salient sequential inputs. We be-
gin by training a long short-term memory (LSTM) classifier
(Hochreiter and Schmidhuber 1997) to distinguish between
input sequences produced by the final (optimal) neural net-
work controller and sequences produced by another (subop-
timal) controller considered (but ultimately discarded) dur-
ing training. Then we apply integrated gradients (Sundarara-
jan, Taly, and Yan 2017) to evaluate the importance of each
input. Because LSTM is a neural network for sequential
data, attributions highlight not only which features are im-
portant, but also at which time steps. Attributions produce
local explanations in that explanations apply to a particu-
lar example, rather than explaining global patterns over the

dataset.
Figure 10 shows an interesting attributions result that oc-

curs in many examples classified as optimal in the data. In
this example, we see a clear repeating pattern in features 7
and 8 that is highlighted by attributions as being the most
important in classifying this example as being produced by
the optimal controller. Feature 7 is the bottom goal sensor
and feature 8 is the right goal sensor. It is also observed that
the attribution assigns more importance to the latter parts of
the sequence. We investigated the highlighted values in the
data and discovered that there is an interesting phenomenon
in the data. Sequences produced by the optimal controller
reaches the goal much sooner than 70 time steps. To collect
maximum reward, the agent stays near the goal for as long
as possible. However, because a complete stop is difficult to
learn, the controller learned to cycle near the goal, and it is
this cycling that is being highlighted by the attributions. The
controller has learned the following behavior: (1) When the
goal is near and located below, move a small amount down-
wards and to the left; and (2) when the goal moves from
being detected by the bottom sensor to being detected by
the right sensor, then jump up and rightward and restart the
cycle. Indeed, the optimal controller exhibits this cycling be-
havior while the suboptimal ones do not.

While this approach using temporal modeling has demon-
strated that it can help identify interesting patterns in the
data, the algorithm merely highlights parts of the data and
does not elaborate on why those parts are important. Ulti-
mately, a human must perform additional analysis to try to
understand the relevance, which may be very challenging.

Figure 10: Attributions Result on LSTM Model.

Discussion
While several explanation algorithms have been successfully
used on supervised learning problems, direct application to
reward based controls learning is somewhat illusive. A large
part of this is due to the time-extended property of control
policies. An action taken at a particular time step may seem
sub-optimal at that particular time step but has benefits for
future time steps. This limits a lot of direct application of
supervised learning explanation as these explanations will
tend to explain the superficial benefit of the action for the
immediate time step and will likely miss the explanations of
the future benefits. Our use of grammar-Based decision trees

and temporal modeling attempt to address this issue, but they
also lead to another problem: Control policies that need to
optimize for future time steps are performing operations that
are inherently complex and are difficult to summarize with
simple explanations. In our test-domain the explanation al-
gorithms are able to expose a major flaw in the operation of
our learned neural network controller. However, it seems un-
likely that they would be able to reveal more subtle issues or
would be able to scale to more complex learned controllers.
In addition the explanations do not seem as convincing or as
useful as the explanations the same algorithms provide for
their original supervised learning domain.

Conclusion
Explaining a control algorithm based on machine learning
is difficult due to the black-box nature of machine learn-
ing algorithms and the time-extended properties of control
problems. In this paper we attempt to explain such a con-
troller used on a simple obstacle avoidance problem: a neu-
ral network trained using a Monte Carlo algorithm. We do
this by applying a number of explainability algorithms to
this problem. These algorithms look at the inputs and out-
puts of the controller and based on these values attempt to
explain what the controller is trying to do. The explanation
algorithms proved useful in revealing a potential hazard in
the controller, where it tries to head towards an obstacle and
then turn to avoid it. However beyond this flaw it was diffi-
cult to gain deep insights into these explanations.

Acknowledgments
This work was supported by the ATTRACTOR project
within NASA’s Convergent Aeronautics Solutions (CAS)
program.

References
Agogino, A., and Tumer, K. 2004. Efficient evaluation func-
tions for multi-rover systems. In The Genetic and Evolution-
ary Computation Conference, 1–12.
Agogino, A.; Stanley, K.; and Miikkulainen, R. 2000. On-
line interactive neuro-evolution. Neural Processing Letters
11:29–38.
Chandrasekaran, B.; Tanner, M. C.; and Josephson, J. R.
1989. Explaining control strategies in problem solving.
IEEE Expert 4(1):9–15.
Crites, R. H., and Barto, A. G. 1996. Improving elevator per-
formance using reinforcement learning. In Touretzky, D. S.;
Mozer, M. C.; and Hasselmo, M. E., eds., Advances in Neu-
ral Information Processing Systems - 8, 1017–1023. MIT
Press.
Floreano, D., and Mondada, F. 1994. Automatic creation of
an autonomous agent: Genetic evolution of a neural-network
driven robot. In Proc. of Conf. on Simulation of Adaptive
Behavior.
Gunning, D. Explainable artificial intelligence (xai).
Haykin, S. 1998. Neural Networks: A Comprehensive Foun-
dation. Prentice Hall PTR, 2nd edition.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Koza, J. R. 1992. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. Cam-
bridge, MA: MIT Press.
Lee, R.; Kochenderfer, M. J.; Mengshoel, O. J.; and Silber-
mann, J. 2018. Interpretable categorization of heteroge-
neous time series data. In sdm. SIAM.
Letham, B.; Rudin, C.; H. McCormick, T.; and Madigan, D.
2015. Interpretable classifiers using rules and bayesian anal-
ysis: Building a better stroke prediction model. The Annals
of Applied Statistics 9:1350–1371.
Sundararajan, M.; Taly, A.; and Yan, Q. 2017. Axiomatic
attribution for deep networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70,
3319–3328. JMLR. org.
Tulio Ribeiro, M.; Singh, S.; and Guestrin, C. 2016. why
should i trust you?: Explaining the predictions of any classi-
fier. 97–101.

