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ABSTRACT

In this work, we aim to solve data-driven optimization problems, where the goal
is to find an input that maximizes an unknown score function given access to a
dataset of input, score pairs. Inputs may lie on extremely thin manifolds in high-
dimensional spaces, making the optimization prone to falling-off the manifold.
Further, evaluating the unknown function may be expensive, so the algorithm should
be able to exploit static, offline data. We propose model inversion networks (MINs)
as an approach to solve such problems. Unlike prior work, MINs scale to extremely
high-dimensional input spaces and can efficiently leverage offline logged datasets
for optimization in both contextual and non-contextual settings. We show that
MINs can also be extended to the active setting, commonly studied in prior work,
via a simple, novel and effective scheme for active data collection. Our experiments
show that MINs act as powerful optimizers on a range of contextual/non-contextual,
static/active problems including optimization over images and protein designs and
learning from logged bandit feedback.

1 INTRODUCTION

Data-driven optimization problems arise in a range of domains: from protein design (Brookes et al.,
2019) to automated aircraft design (Hoburg & Abbeel, 2012), from the design of robots (Liao et al.,
2019) to the design of neural net architectures (Zoph & Le, 2017) and learning from logged feedback,
such as optimizing user preferences in recommender systems. Such problems require optimizing
unknown reward or score functions using previously collected data consisting of pairs of inputs
and corresponding score values, without direct access to the score function being optimized. This
can be especially challenging when valid inputs lie on a low-dimensional manifold in the space of
all inputs, e.g., the space of valid aircraft designs or valid images. Existing methods to solve such
problems often use derivative-free optimization (Snoek et al.). Most of these techniques require
active data collection where the unknown function is queried at new inputs. However, when function
evaluation involves a complex real-world process, such as testing a new aircraft design or evaluating
a new protein, such active methods can be very expensive. On the other hand, in many cases there
is considerable prior data – existing aircraft and protein designs, and advertisements and user click
rates, etc. – that could be leveraged to solve the optimization problem.

In this work, our goal is to develop an optimization approach to solve such optimization problems that
can (1) readily operate on high-dimensional inputs comprising a narrow, low-dimensional manifold,
such as natural images, (2) readily utilize offline static data, and (3) learn with minimal active data
collection if needed. We can define this problem setting formally as the optimization problem

x? = arg max
x

f(x), (1)

where the function f(x) is unknown, and we have access to a dataset D = {(x1, y1), . . . , (xN , yN )},
where yi denotes the value f(xi). If no further data collection is possible, we call this the data-driven
model-based optimization setting. This can also be extended to the contextual setting, where the aim
is to optimize the expected score function value across a context distribution. That is,

π? = arg max
π

Ec∼p0(·)[f(c, π(c))], (2)

where π? maps contexts c to inputs x, such that the expected score under the context distribution p0(c)
is optimized. As before, f(c,x) is unknown and we have access to a dataset D = {(ci,xi, yi)}Ni=1,
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where yi is the value of f(ci,xi). Such contextual problems with logged datasets have been studied
in the context of contextual bandits (Swaminathan & Joachims, a; Joachims et al., 2018).

A simple way to approach these model-based optimization problems is to train a proxy function fθ(x)
or fθ(c,x), with parameters θ, to approximate the true score, using the dataset D. However, directly
using fθ(x) in place of the true function f(x) in Equation (1) generally works poorly, because the
optimizer will quickly find an input x for which fθ(x) outputs an erroneously large value. This
issue is especially severe when the inputs x lie on a narrow manifold in a high-dimensional space,
such as the set of natural images (Zhu et al., 2016). The function fθ(x) is only valid near the
training distribution, and can output erroneously large values when queried at points chosen by the
optimizer. Prior work has sought to addresses this issue by using uncertainty estimation and Bayesian
models (Snoek et al., 2015) for fθ(x), as well as active data collection (Snoek et al.). However,
explicit uncertainty estimation is difficult when the function fθ(x) is very complex or when x is
high-dimensional.

Instead of learning fθ(x), we propose to learn the inverse function, mapping from values y to
corresponding inputs x. This inverse mapping is one-to-many, and therefore requires a stochastic
mapping, which we can express as f−1θ (y, z) → x, where z is a random variable. We term such
models model inversion networks (MINs). MINs provide us with a number of desirable properties:
they can utilize static datasets, handle high-dimensional input spaces such as images, can handle
contextual problems, and can accommodate both static datasets and active data collection. We discuss
how to design simple active data collection methods for MINs, leverage advances in deep generative
modeling (Goodfellow et al.; Brock et al., 2019), and scale to very high-dimensional input spaces.
We experimentally demonstrate MINs in a range of settings, showing that they outperform prior
methods on high-dimensional input spaces, perform competitively to Bayesian optimization methods
on tasks with active data collection and lower-dimensional inputs, and substantially outperform prior
methods on contextual optimization from logged data (Swaminathan & Joachims, a).

2 RELATED WORK

Bayesian optimization. In this paper, we aim to solve data-driven optimization problems. Most
prior work aimed at solving such optimization problems has focused on the active setting. This
includes algorithms such as the cross entropy method (CEM) and related derivative-free methods Ru-
binstein (1996); Rubinstein & Kroese (2004), reward weighted regression Peters & Schaal, Bayesian
optimization methods based on Gaussian processes Shahriari et al. (2016); Snoek et al.; 2015), and
variants that replace GPs with parametric acquisition function approximators such as Bayesian neural
networks (Snoek et al., 2015) and latent variable models (Kim et al., 2019; Garnelo et al., 2018b;a), as
well as more recent methods such as CbAS (Brookes et al., 2019). These methods require the ability
to query the true function f(x) at each iteration to iteratively arrive at a near-optimal solution. We
show in Section 3.3 that MINs can be applied to such an active setting as well, and in our experiments
we show that MINs can perform competitively with these prior methods. Additionally, we show that
MINs can be applied to the static setting, where these prior methods are not applicable. Furthermore,
most conventional BO methods do not scale favourably to high-dimensional input spaces, such as
images, while MINs can handle image inputs effectively.

Contextual bandits. Equation 2 captures the class of contextual bandit problems. Prior work on batch
contextual bandits has focused on batch learning from bandit feedback (BLBF), where the learner
needs to produce the best possible policy that optimizes the score function from logged experience.
Existing approaches build on the counterfactual risk minimization (CRM) principle (Swaminathan
& Joachims, a;b), and have been extended to work with deep nets (Joachims et al., 2018). In our
comparisons, we find that MINs substantially outperform these prior methods in the batch contextual
bandit setting.

Deep generative modeling. Recently, deep generative modeling approaches have been very suc-
cessful at modelling high-dimensional manifolds such as natural images (Goodfellow et al.; Van
Den Oord et al.; Dinh et al., 2016), speech (van den Oord et al., 2018), text (Yu et al.), alloy compo-
sition prediction (Nguyen et al.), etc. MINs combine the strength of such generative models with
important algorithmic decisions to solve model-based optimization problems. In our experimental
evaluation, we show that these design decisions are important for adapting deep generative models to
model-based optimization, and it is difficult to perform effective optimization without them.
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3 MODEL INVERSION NETWORKS

In this section, we describe our model inversion networks (MINs) method, which can perform both
active and passive model-based optimization over high-dimensional input spaces.

Problem statement. Our goal is to solve optimization problems of the form x? = arg maxx f(x),
where the function f(x) is not known, but we must instead use a dataset of input-output tuples
D = {(xi, yi)}. In the contextual setting described in Equation (2), each datapoint is also associated
with a context ci. For clarity, we present our method in the non-contextual setting, but the contextual
setting can be derived analogously by conditioning all functions on the context. In the active setting,
which is most often studied in prior work, the algorithm is allowed to actively query f(x) one or
more times on each iteration to augment the dataset, while in the static setting, only an initial static
dataset is available. The goal is to obtain the best possible x? (i.e., the one with highest possible
value of f(x?)).

One naïve way of solving MBO problems is to learn a proxy score function fθ(x), via standard
empirical risk minimization. We could then maximize this learned function with respect to x via
standard optimization methods. However, naïve applications of such a method would fail for two
reasons. First, the proxy function fθ(x) may not be accurate outside the samples on which it is
trained, and optimization with respect to it may simply lead to values of x for which fθ(x) makes the
largest mistake in the negative direction. The second problem is more subtle. When x lies on a narrow
manifold in very high-dimensional space (such as the space of natural images), the optimizer can
produce invalid values of x, which result in arbitrary outputs when fed into fθ(x). Since the shape
of this manifold is unknown, it is difficult to constrain the optimizer to prevent this. This second
problem is rarely addressed or discussed in prior work, which typically focuses on optimization over
low-dimensional and compact domains with known bounds.

3.1 OPTIMIZATION VIA INVERSE MAPS

Part of the reason for the brittleness of the naïve approach above is that fθ(x) has a high-dimensional
input space, making it easy for the optimizer to find inputs x for which the proxy function produces
an unreasonable output. Can we instead learn a function with a small input space, which implicitly
understands the space of valid, in-distribution values for x? The main idea behind our approach is
to model an inverse map that produces a value of x given a score value y, given by f−1θ : Y → X .
The input to the inverse map is a scalar, making it comparatively easy to constrain to valid values,
and by directly generating the inputs x, an approximation to the inverse function must implicitly
understand which input values are valid. As multiple x values can correspond to the same y, we
design f−1θ as a stochastic map that maps a score value along with a dz-dimensional random vector
to a x, f−1θ : Y × Z → X , where z is distributed according to a prior distribution p0(z).

To define the inverse map objective, let the data distribution be denoted pD(x, y), let pD(y) be the
marginal over y, and let p(y) be an any distribution defined on Y (which could be equal to pD(y)). We
can train the proxy inverse map f−1θ under distribution p(y) by minimizing the following objective:

Lp(D) = Ey∼p(y)[D(pD(x|y), pf−1
θ

(x|y))], (3)

where pf−1
θ

(x|y) is obtained by marginalizing over z, pf−1
θ

(x|y) =
∫
z
p0(z) · 1[[x = f−1θ (z, y)]]dz,

and D is a measure of divergence between the two distributions. Using the Kullback-Leibler
divergence leads to maximum likelihood learning, while Jensen-Shannon divergence motivates
a GAN-style training objective. MINs can be adapted to the contextual setting by pass-
ing in the context as an input and learning f−1θ (yi, z, ci). In standard empirical risk mini-
mization, we would choose p(y) to be the data distribution pD(y), such that the expectation

Algorithm 1 Generic Algorithm for MINs

1: Input: pD(y): distribution of y in D
2: Train inverse map f−1θ : Y × Z → X using

objective (Equation 3) with reweighting, active
data collection if needed

3: x? ← APPROX-INFER(f−1θ , pD(y))
4: return x?

can be approximated simply by sampling train-
ing tuples (xi, yi) from the training set. How-
ever, as we will discuss in Section 3.3, a more
careful choice for p(y) can lead to better perfor-
mance. The MIN algorithm is based on training
an inverse map, and then using it via the infer-
ence procedure in Section 3.2 to infer the x that
approximately optimizes f(x). The structure of
the MIN algorithm is shown in Algorithm 1.
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3.2 INFERENCE WITH INVERSE MAPS (APPROX-INFER)

Once the inverse map is trained, the goal of our algorithm is to generate the best possible x?, which
will maximize the true score function as well as possible under the dataset. Since a score y needs
to be provided as input to the inverse map, we must select for which score y to query the inverse
map to obtain a near-optimal x. One naïve heuristic is to pick the best ymax ∈ D and produce
xmax ∼ f−1θ (y∗max) as the output. However, the method should be able to extrapolate beyond the
best score seen in the dataset, especially in contextual settings, where a good score may not have
been observed for all contexts.

In order to extrapolate as far as possible, while still staying on the valid data manifold, we need to
measure the validity of the generated values of x. One way to do this is to measure the agreement
between the learned inverse map and an independently trained forward model fθ: the values of y for
which the generated samples x are predicted to have a score similar to y are likely in-distribution,
whereas those where the forward model predicts a very different score may be too far outside the
training distribution. Since the latent variable z captures the multiple possible outputs of the one-to-
many inverse map, we can further optimize over z for a given y to find the best, most trustworthy
output x. This can be formalized as the following optimization:

ỹ∗, z̃∗ := arg max
y,z

fθ(f
−1
θ (z, y))− λ1||y − fθ(f−1θ (z, y))||2 + λ2 log p0(z) (4)

This optimization can be motivated as finding an extrapolated score that corresponds to values of
x that lie on the valid input manifold, and for which independently trained forward and inverse
maps agree. Although this optimization uses an approximate forward map fθ(x), we show in our
experiments in Section 4 that it produces substantially better results than optimizing with respect
to a forward model alone. The inverse map substantially constraints the search space, requiring an
optimization over a 1-dimensional y and a (relatively) low-dimensional z, rather than the full space
of inputs. This scheme can be viewed as a special (deterministic) case of a probabilistic optimization
procedure described in Appendix A.

3.3 REWEIGHTING THE TRAINING DISTRIBUTION

A naïve implementation of the training objective in Equation (3) samples y from the data distribution
pD(y). However, as we are most interested in the inverse map’s predictions for high values of y, it
is much less important for the inverse map to predict accurate x values for values of y that are far
from the optimum. We could consider increasing the weights on datapoints with larger values of y.
In the extreme case, we could train only on the best datapoint – either the single datapoint with the
largest y or, in the contextual case, the datapoint with the largest y for each context. More generally,
we can define the optimal y distribution p∗(y), which is simply the delta function centered on the
best y, p∗(y) = δy∗(y), in the deterministic case. If we instead assume that the observed scores have
additive noise (i.e., we observe f(x) + ε, ε ∼ N ), then p∗(y) would be a distribution centered around
the optimal y. Of course, training on p∗(y) is not practical, since it heavily down-weights most of the
training data, leading to a very high-variance training objective, and is not even known in general,
since the optimal data point is likely not in our training set. In this section, we will propose a better
choice for p(y) that trades off the variance due to an overly peaked training distribution and the bias
due to training on the “wrong” distribution (i.e., anything other than p∗(y)).

We can train under a distribution other than the empirical distribution by using importance sampling,
such that we sample from pD and assign an importance weight, given by wi = p(yi)

pD(yi)
, to each

datapoint (xi, yi), where p(yi) is our desired distribution. The reweighted objective is given by
L̂p(D) := 1

|D|
∑
iwi · D̂(xi, f

−1
θ (yi)). By bounding the variance and the bias of the gradient of

L̂p(D) estimate, with respect to the reweighted objective without sampling error under y drawn from
p∗(y), we obtain the following result: (Proof in Appendix B)
Theorem 3.1 ((Informal) Bias + variance bound in MINs). Let L(p∗) be the objective under p∗(y)
without sampling error: L(p∗) = Ey∼p∗(y)[D(p(x|y), f−1(y))]. LetNy be the number of datapoints
with the particular y value observed in D, For some constants C1, C2, C3, with high confidence,

E
[
||∇θL̂p(D)−∇θL(p∗)||22

]
≤ C1Ey∼p(y)

[
1

Ny

]
+ C2

d2(p||pD)

|D|
+ C3 · DTV(p∗, p)2

Theorem 3.1 suggests a tradeoff between being close to the optimal distribution p∗(y) and reducing
variance by covering the full data distribution pD. We observe that the distribution p(y) that minimizes
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the RHS bound in Theorem 3.1 has the following form: p(y) ∝ Ny
Ny+K

· g(p∗(y)), where g(p∗) is a
linear function of p∗(y) that ensures that the distributions p and p∗ are close. Theoretically, g(◦) is
an increasing, piece-wise linear function of ◦. We can interpret the expression for p(y) as a product
of two likelihoods – the optimality of a particular y value and the likelihood of a particular y not
being rare in D. We empirically choose an exponential parameteric form for this function, which we
describe in Section 3.5. This upweights the samples with higher scores, reduces the weight on rare
y-values (i.e., those with low Ny), while preventing the weight on common y-values from growing,
since Ny

Ny+K
saturates to 1 for large Ny. This is consistent with our intuition: we would like to

upweight datapoints with high y-values, provided the number of samples at those values is not too
low. Of course, for continuous-valued scores, we rarely see the same score twice. Therefore, we bin
the y-values into discrete bins for the purpose of weighting, as we discuss in Section 3.5.

3.4 ACTIVE DATA COLLECTION VIA RANDOMIZED LABELING

While the passive setting requires care in finding the best value of y for the inverse map, the active
setting presents a different challenge: choosing a new query point x at each iteration to augment the
dataset D and make it possible to find the best possible optimum. Prior work on bandits and Bayesian
optimization often uses Thompson sampling (TS) (Russo & Van Roy, 2016; Russo et al., 2018;
Srinivas et al.) as the data-collection strategy. TS maintains a posterior distribution over functions
p(ft|D1:t). At each iteration, it samples a function from this distribution and queries the point x?t
that greedily minimizes this function. TS offers an appealing query mechanism, since it achieves
sub-linear Bayesian regret (defined as the expected cumulative difference between the value of the
optimal input and the selected input), given by O(

√
T ), where T is the number of queries.

Maintaining a posterior over high-dimensional parametric functions is generally intractable. However,
we can devise a scheme to approximate Thompson sampling with MINs. To derive this method, first
note that sampling ft from the posterior is equivalent to sampling (x, y) pairs consistent with ft –
given sufficiently many (x, y) pairs, there is a unique smooth function ft that satisfies yi = ft(xi).
For example, we can infer a quadratic function exactly from three points. For a more formal
description, we refer readers to the notion of Eluder dimension (Russo & Van Roy). Thus, instead of
maintaining intractable beliefs over the function, we identify a function by the samples it generates,
and define a way to sample synthetic (x, y) points such that they implicitly define a unique function
sample from the posterior.

To apply this idea to MINs, we train the inverse map f−1θt at each iteration t with an augmented
dataset D′t = Dt ∪ St, where St = {(x̃j , ỹj)}Kj=1 is a dataset of synthetically generated input-score
pairs corresponding to unseen y values in Dt. Training f−1θt on D′t corresponds to training f−1θt
to be an approximate inverse map for a function ft sampled from p(ft|D1:t), as the synthetically
generated samples St implicitly induce a model of ft. We can then approximate Thompson sampling
by obtaining x?t from f−1θt , labeling it via the true function, and adding it to Dt to produce Dt+1.
Pseudocode for this method, which we call “randomized labeling,” is presented in Algorithm 2. In
Appendix C, we further derive O(

√
T ) regret guarantees under mild assumptions. Implementation-

wise, this method is simple, does not require estimating explicit uncertainty, and works with arbitrary
function classes, including deep neural networks.

Algorithm 2 Active Data Collection with Model Inversion Networks via Randomized Labeling

1: Initialize inverse map, f−1
θ : Y × Z → X , dataset D0 = {},

2: for step t in {0, . . . , T-1} do
3: Sample synthetic samples St = {(xi, yi)}Ki=1 corresponding to unseen data points yi (by randomly

pairing noisy observed xi values with unobserved y values.)
4: Train inverse map f−1

t on D′t = Dt ∪ St, using reweighting described in Section 3.3.
5: Query function f at xt = f−1

t (maxD′t y)

6: Observe outcome: (xt, f(xt)) and update Dt+1 = Dt ∪ (xt, f(xt))
7: end for

3.5 PRACTICAL IMPLEMENTATION OF MINS

In this section, we describe our instantiation of MINs for high-dimensional inputs with deep neural
network models. GANs (Goodfellow et al.) have been successfully used to model the manifold of
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high-dimensional inputs, without the need for explicit density modelling and are known to produce
more realistic samples than other models such as VAEs (Kingma & Welling, 2013) or Flows (Dinh
et al., 2016). The inverse map in MINs needs to model the manifold of valid x thus making GANs a
suitable choice. We can instantiate our inverse map with a GAN by choosing D in Equation 3 to be
the Jensen-Shannon divergence measure. Since we generate x conditioned on y, the discriminator is
parameterized as Disc(x|y), and trained to output 1 for a valid (x, y) pair (i.e., where y = f(x) and
x comes from the data) and 0 otherwise. Thus, we optimize the following objective:

min
θ

max
Disc
Lp(D) = Ey∼p(y)

[
Ex∼pD(x|y)[log Disc(x|y)] + Ez∼p0(z)[log(1−Disc(f−1θ (z, y)|y)]

]
This model is similar to a conditional GAN (cGAN), which has been used in the context of modeling
distribution of x conditioned on a discrete-valued label (Mirza & Osindero, 2014). As discussed
in Section 3.3, we additionally reweight the data distribution using importance sampling. To that
end, we discretize the space Y into B discrete bins b1, · · · , bB and, following Section 3.3, weight
each bin bi according to p(bi) ∝

Nbi
Nbi+λ

exp
(
|bi−y∗|

τ

)
, where Nbi is the number of datapoints

in the bin, y∗ is the maximum score observed, and τ is a hyperparameter. (After discretization,
using notation from Section 3.3, for any y that lies in bin b, p∗(y) := p∗(b) = exp

(
|b−y∗|
τ

)
and

p(y) := p(b) ∝ Nb
Nb+λ

exp
(
|b−y∗|
τ

)
.) Experimental details are provided in Appendix C.4.

In the active setting, we perform active data collection using the synthetic relabelling algorithm
described in Section 3.4. In practice, we train two copies of f−1θ . The first, which we call the
exploration model f−1expl, is trained with data augmented via synthetically generated samples (i.e., D′t).
The other copy, called the exploitation model f−1exploit, is trained on only real samples (i.e., Dt). This
improves stability during training, while still performing data collection as dictated by Algorithm 2.
To generate the augmented dataset D′t in practice, we sample y values from p∗(y) (the distribution
over high-scoring ys observed in Dt), and add positive-valued noise, thus making the augmented
y values higher than those in the dataset which promotes exploration. The corresponding inputs
x are simply sampled from the dataset Dt or uniformly sampled from the bounded input domain
when provided in the problem statement. (for example, benchmark function optimization) After
training, we infer best possible x? from the trained model using the inference procedure described in
Section 3.2. In the active setting, the inference procedure is applied on f−1exploit, the inverse map that is
trained only on real data points.

4 EXPERIMENTAL EVALUATION

The goal of our empirical evaluation is to answer the following questions. (1) Can MINs successfully
solve optimization problems of the form shown in Equations 1 and 2, in static settings and active
settings, better than or comparable to prior methods? (2) Can MINs generalize to high dimensional
spaces, where valid inputs x lie on a lower-dimensional manifold, such as the space of natural images?
(3) Is reweighting the data distribution important for effective data-driven model-based optimization?
(4) Does our proposed inference procedure effectively discover valid inputs x with better values than
any value seen in the dataset? (5) Does randomized labeling help in active data collection?

4.1 DATA-DRIVEN OPTIMIZATION WITH STATIC DATASETS

We first study the data-driven model-based optimization setting. This requires generating points
that achieve a better function value than any point in the training set or, in the contextual setting,
better than the policy that generated the dataset for each context. We evaluate our method on a batch
contextual bandit task proposed in prior work (Joachims et al., 2018) and on a high-dimensional
contextual image optimization task. We also evaluate our method on several non-contextual tasks
that require optimizing over high-dimensional image inputs to evaluate a semantic score function,
including hand-written characters and real-world photographs.

Batch contextual bandits. We first study the contextual optimization problem described in Equa-
tion 2. The goal is to learn a policy, purely from static data, that predicts the correct bandit arm x
for each context c, such that the policy achieves a high overall score f(c, π(c)) on average across
contexts drawn from a distribution p0(c). We follow the protocol set out by Joachims et al. (2018),
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Dataset & Type BanditNet BanditNet∗ MIN w/o I MIN (Ours) MINs w/o R
MNIST (49% corr.) 36.42± 0.6 − 94.2± 0.13 95.0 ± 0.16 95.0 ± 0.21
MNIST (Uniform) 9.94± 0.0 − 92.21± 0.22 93.67 ± 0.51 92.8 ± 0.01
CIFAR-10 (49% corr.) 42.13± 2.35 87.0 91.35± 0.87 92.21 ± 1.0 89.02 ± 0.05
CIFAR-10 (Uniform) 14.43± 1.43 − 76.31± 0.40 77.12 ± 0.54 74.87 ± 0.12

Table 1: Test accuracy on MNIST and CIFAR-10 with 50k bandit feedback training examples. BanditNet∗ is
the result from Joachims et al. (2018), while the BanditNet column is our implementation; we were unable
to replicate the performance from prior work (details in Appendix D). MINs outperform both BanditNet and
BanditNet∗, both with and without the inference procedure in Section 3.2. MINs w/o reweighting perform at par
with full MINs on MNIST, and slightly worse on CIFAR 10, while still outperforming the baseline.

(a) Thickest stroke (b) Thickest digit (3) (c) Most number of blobs (8)

Figure 1: Results for non-contextual static dataset optimization on MNIST: (a) and (b): Stroke width optimization,
and (c): Maximization of disconnected black pixel blobs. From left to right: MINs, MINs w/o Inference
(Section 3.2), which sample x from the inverse map conditioned on the highest seen value of y, MINs w/o
Reweighting (Section 3.3), and direct optimization of a forward model, which starts with a random dataset
image and optimizes it for the highest score based on the forward model. Observe that MINs can produce
thickest characters which resemble valid digits. Optimizing the forward function often turns non-digit pixels
on, thus going off the valid manifold. Both the reweighting and inference procedure are important for good
results. Quantitative results are provided in Appendix D.3. Different rows (for F) are obtained by optimizing
from different initial points. Scores are listed beneath each figure. The larger score the better, provided the
solution x is the image of a valid digit.

which evaluates contextual bandit policies trained on a static dataset for a simulated classification
tasks. The data is constructed by selecting images from the (MNIST/CIFAR) dataset as the context c,
a random label as the input x, and a binary indicator indicating whether or not the label is correct
as the score y. Multiple schemes can be used for selecting random labels for generating the dataset,
and we evaluate on two such schemes, as described below. We report the average score on a set of
new contexts, which is equal to the average 0-1 accuracy of the learned model on a held out test
set of images (contexts). We compare our method to previously proposed techniques, including the
BanditNet model proposed by Joachims et al. (2018) on the MNIST and CIFAR-10 (Krizhevsky,
2009) datasets. Note that this task is different from regular classification, in that the observed feedback
((ci,xi, yi) pairs) is partial, i.e. we do not observe the correct label for each context (image) ci, but
only whether or not the label in the training tuple is correct or not. We evaluate on two datasets:
(1) data generated by selecting random labels xi for each context ci and (2) data where the correct
label is used 49% of the time, which matches the protocol in prior work (Joachims et al., 2018).
We compare to BanditNet (Joachims et al., 2018) on identical dataset splits. We report the average
0-1 test accuracy for all methods in Table 1. The results show that MINs drastically outperform
BanditNet on both MNIST and CIFAR-10 datasets, indicating that MINs can successfully perform
contextual model-based optimization in the static (data-driven) setting. The results also show that
utilizing the inference procedure in Section 3.2 produces an improvement of about 1.5% and 1.0% in
test-accuracy on MNIST and CIFAR-10, respectively.

Character stroke width optimization. In the next experiment, we study how well MINs optimize
over high-dimensional inputs, where valid inputs lie on a lower-dimensional manifold. We constructed
an image optimization task out of the MNIST (LeCun & Cortes, 2010) dataset. The goal is to optimize
directly over the image pixels, to produce images with the thickest stroke width, such that the image
corresponds either (a) to any valid character or (b) a valid instance of a particular character class. A
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(a) Optimized x (trained on > 15 years) (b) Optimized x (trained on > 25 years)

Figure 2: MIN optimization to obtain the youngest faces when trained on faces older than 15 (left) and older
than 25 (right). Generated faces (bottom) are obtained via inference in the inverse map at different points during
model training. Real faces of varying ages (including ages lower than those used to train the model) are shown
in the top rows. We overlay the actual age (negative of the score function) for each face on the real images,
and the age obtained from subjective user rankings on the generated faces. The score function being optimized
(maximized) in this case is the negative age of the face.

successful algorithm will produce the thickest character that is still recognizable. In Figure 1, we
observe that MINs generate images x that maximize the respective score functions in each case. We
also evaluate on a harder task where the goal is to maximize the number of disconnected blobs of
black pixels in an image of a digit. For comparison, we evaluate a method that directly optimizes the
image pixels with respect to a forward model, of the form fθ(x). In this case, the solutions are far off
the manifold of valid characters. We also compare to MINs without the reweighting scheme and the
inference procedure, where y is the maximum possible y in the dataset to demonstrate the benefits of
these two aspects.

Table 2: Quantitative score-
values for Youngest Face Opti-
mization Task (larger the better)

Task MIN MIN (best)

≥ 15 -13.6 -12.2

≥ 25 -26.2 -23.9

Semantic image optimization. The goal in these tasks is to quan-
tify the ability of MINs to optimize high-level properties that require
semantic understanding of images. We consider MBO tasks on the
IMDB-Wiki faces (Rothe et al., 2015; 2016) dataset, where the func-
tion f(x) is the negative of the age of the person in the image. Hence,
images with younger people have higher scores.

We construct two versions of this task: one where the training data
consists of all faces older than 15 years, and the other where the

model is trained on all faces older than 25 years.This ensures that our model cannot simply copy the
youngest face. To obtain ground truth scores for the generated faces, we use subjective judgement
from human participants. We perform a study with 13 users. Each user was asked to answer a
set of 35 binary-choice questions each asking the user to pick the older image of the two provided
alternatives. We then fit an age function to this set of binary preferences, analogously to Christiano
et al. (2017).

Figure 2 shows the images produced by MINs. For comparison, we also present some sample of
images from the dataset partitioned by the ground truth score. We find that the most likely age for
optimal images produced by training MINs on images of people 15 years or older was 13.6 years,
with the best image having an age of 12.2. The model trained on ages 25 and above produced more
mixed results, with an average age of 26.2, and a minimum age of 23.9. We report these results in
Table 2. This task is exceptionally difficult, since the model must extrapolate outside of the ages seen
in the training set, picking up on patterns in the images that can be used to produce faces that appear
younger than any face that the model had seen, while avoiding unrealistic images.

Table 3: Quantitative score values
for MNIST inpainting (contextual)

Mask MIN Dataset

mask A 223.57 149.0

mask B 234.32 149.0

We also conducted experiments on contextual image optimization
with MINs. We studied contextual optimization over hand-written
digits to maximize stroke width, using either the character category
as the context c, or the top one-fourth or top half of the image.
In the latter case, MINs must learn to complete the image while
maximizing for the stroke width. In the case of class-conditioned
optimization, MINs attain an average score over the classes of
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237.6, while the dataset average is 149.0. In the case where the context is the top half or quarter of the
image, MINs obtain average scores of 223.57 and 234.32, respectively, while the dataset average is
149.0 for both tasks. We report these results in Table 3. We also conducted a contextual optimization
experiment on faces from the Celeb-A dataset, with some example images shown in Figure 3. The
context corresponds to the choice for the attributes brown hair, black hair, bangs, or moustache. The
optimization score is given by the sum of the attributes wavy hair, eyeglasses, smiling, and no beard.
Qualitatively, we can see that MINs successfully optimize the score while obeying the target context,
though evaluating the true score is impossible without subjective judgement on this task. We discuss
these experiments in more detail in Appendix D.1.

4.2 OPTIMIZATION WITH ACTIVE DATA COLLECTION

Figure 3: Optimized x produced
from contextual training on Celeb-
A. Context = (brown hair, black
hair, bangs, moustache and f(x) =
`1(wavy hair, eyeglasses, smiling,
no beard). We show the produced
x? for two contexts. The model op-
timizes score for both observed con-
texts such as brown or black hair and
extrapolates to unobserved contexts
such as brown and black hair.

In the active MBO setting, MINs must select which new datapoints
to query to improve their estimate of the optimal input. In this
setting, we compare to prior model-based optimization methods,
and evaluate the exploration technique described in Section 3.4.

Global optimization on benchmark functions. We first com-
pare MINs to prior work in Bayesian optimization on standard
benchmark problems (DNGO) (Snoek et al., 2015): the 2D Branin
function, and the 6D Hartmann function. As shown in Table 4,
MINs reach within ±0.1 units of the global minimum (minimiza-
tion is performed here, instead of maximization), performing
comparably with commonly used Bayesian optimization meth-
ods based on Gaussian processes. We do not expect MINs to
be as efficient as GP-based methods, since MINs rely on train-
ing parametric neural networks with many parameters, which is
less efficient than GPs on low-dimensional tasks. Exact Gaussian
processes and adaptive Bayesian linear regression (Snoek et al.,
2015) outperform MINs in terms of optimization precision and
the number of samples queried, but MINs achieve comparable
performance with about 4× more samples. We also report the
performance of MINs without the random labeling exploration
method, instead selecting the next query point by greedily maximizing the current model with some
additive noise. We find that the random relabeling method produces substantially better results than
the greedy data collection approach, indicating the importance of effective exploration methods for
MINs.

Function Spearmint DNGO MIN MIN + greedy
Branin (0.398) 0.398± 0.0 0.398± 0.0 0.398± 0.02 0.4± 0.05(800)
Hartmann6 (-3.322) −3.3166± 0.02 −3.319± 0.00 −3.315± 0.05(600) −3.092± 0.12(1200)

Table 4: Active MBO on benchmark functions. The prior methods converge within 200 iterations. MINs require
more iterations on some of the tasks, in which case we indicate the number of iterations in brackets. MINs reach
similar final performance, and typically require 1-4× as much data as efficient GP-based algorithms.

Protein fluorescence maximization. In the next experiment, we study a high-dimensional active
MBO task, previously studied by Brookes et al. (2019). This task requires optimizing over protein
designs by selecting variable length sequences of codons, where each codon can take on one of 20
values. In order to model discrete values, we use a Gumbel-softmax GAN also previously employed
in (Gupta & Zou, 2018), and as a baseline in (Brookes et al., 2019). For backpropagation, we choose
a temperature τ = 0.75 for the Gumbel-softmax operation. This is also mentioned in Appendix
D. The aim in this task is to produce a protein with maximum fluorescence. Each algorithm is
provided with a starting dataset, and then allowed a identical, limited number of score function
queries. For each query made by an algorithm, it receives a score value from an oracle. We use
the trained oracles released by Brookes et al. (2019). These oracles are separately trained forward
models, and can potentially be inaccurate, especially for datapoints not observed in the starting static
dataset. We compare to CbAS (Brookes et al., 2019) and other baselines, including CEM (Cross
Entropy Method), RWR (Reward Weighted Regression) and a method that uses a forward model –
GB (Gómez-Bombarelli et al., 2018) reported by Brookes et al. (2019). For evaluation, we report
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the groundtruth score of the output of optimization (max), and the 50th-percentile groundtruth score
of all the samples produced via sampling (this is without inference in the MIN case) so as to be
comparable to Brookes et al. (2019). In Table 5, we show that MINs are comparable to the best
performing method on this task, and produce samples with the highest score among all the methods
considered.

These results suggest that MINs can perform competitively with previously proposed model-based
optimization methods in the active setting, reaching comparable or better performance when compared
both to Bayesian optimization methods and previously proposed methods for a higher-dimensional
protein design task.

5 DISCUSSION

Method Max 50%ile

MIN (Ours) 3.42 3.24
MIN - R 3.37 3.28
CbAS 3.36 3.28
RWR ∼ 3.00 ∼ 2.97
CEM-PI ∼ 2.92 ∼ 2.9
GB∗ ∼ 3.25 ∼3.25

Table 5: Protein design results, with
maximum fluorescence and the 50th

percentile out of 100 samples. Prior
method results are from Brookes
et al. (2019). MINs perform com-
parably to CbAS. MINs without
reweighting (MIN-R) lead to more
consistent sample quality (higher
50%ile score), while MINs with
reweighting can produce the highest
scoring sample.

In this work, we presented a novel approach towards model-based
optimization (MBO). Instead of learning a proxy forward func-
tion fθ(x) from inputs x to scores y, MINs learn a stochastic
inverse mapping from scores y to inputs. MINs are resistent to
out-of-distribution inputs and can optimize over high dimensional
x values where valid inputs lie on a narrow manifold. By using
simple and principled design decisions, such as re-weighting the
data distribution, MINs can perform effective model-based op-
timization even from static, previously collected datasets in the
data-driven setting without the need for active data collection. We
also described ways to perform active data collection if needed.
Our experiments showed that MINs are capable of solving MBO
optimization tasks in both contextual and non-contextual settings,
and are effective over highly semantic score functions such as age
of the person in an image.

Prior work has usually considered MBO in the active or "on-
policy" setting, where the algorithm actively queries data as it
learns. In this work, we introduced the data-driven MBO problem
statement and devised a method to perform optimization in such
scenarios. This is important in settings where data collection is expensive and where abundant
datasets exist, for example, protein design, aircraft design and drug design. Further, MINs define a
family of algorithms that show promising results on MBO problems on extremely large input spaces.

While MINs scale to high-dimensional tasks such as model-based optimization over images, and
are performant in both contextual and non-contextual settings, we believe there are a number of
interesting open questions for future work. The interaction between active data collection and
reweighting should be investigated in more detail, and poses interesting consequences for MBO,
bandits and reinforcement learning. Better and more principled inference procedures are also a
direction for future work. Another avenue is to study various choices of training objectives in MIN
optimization.
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A PROBABILISTIC INTERPRETATION OF SECTION 3.2

In this section, we show that the inference scheme described in Equation 4, Section 3.2 emerges as a
deterministic relaxation of the probabilistic inference scheme described below. We re-iterate that in
Section 3.2, a singleton x∗ is the output of optimization, however the procedure can be motivated
from the perspective of the following probabilistic inference scheme.

Let p(x|y) denote a stochastic inverse map, and let pf (y|x) be a probabilistic forward map. Consider
the following optimization problem:

arg max
y,p̂

Ex∼p̂(x|y),ŷ∼pf (ŷ|x) [ŷ]

such that H(ŷ|x) ≤ ε1,
D(p̂(x|y), pθ(x|y)) ≤ ε2,

where pθ(x|y) is the probability distribution induced by the learned inverse map (in our case, this
corresponds to the distribution of f−1θ (y, z) induced due to randomness in z ∼ p0(·)), pf (x|y) is
the learned forward map, H is Shannon entropy, and D is KL-divergence measure between two
distributions. In Equation 4, maximization is carried out over the input y to the inverse-map, and
the input z which is captured in p̂ in the above optimization problem, i.e. maximization over z
in Equation 4 is equivalent to choosing p̂ subject to the choice of singleton/ Dirac-delta p̂. The
Lagrangian is given by:

L(y, p̂; p, pf ) = Ex∼p̂(x|y),ŷ∼pf (ŷ|x) [ŷ] + λ1
(
Ex∼p̂(x|y),ŷ∼pf (ŷ|x) [log pf (ŷ|x)] + ε1

)
+

λ2 (ε2 −D(p̂(x|y), pθ(x|y)))

In order to derive Equation 4, we restrict p̂ to the Dirac-delta distribution generated by querying
the learned inverse map f−1θ at a specific value of z. Now note that the first term in the Lagrangian
corresponds to maximizing the "reconstructed" ŷ similarly to the first term in Equation 4. If pf is
assumed to be a Gaussian random variable with a fixed variance, then log pf (ŷ|x) = −||ŷ − µ(x)||22,
where µ is the mean of the probabilistic forward map. With deterministic forward maps, we make the
assumption that µ(x) = y (the queried value of y), which gives us the second term from Equation 4.

Finally, in order to obtain the log p0(z) term, note that, D(p̂(x|y), pθ(x|y)) ≤ D(δz(·), p0(·)) =
− log p0(z) (by the data processing inequality for KL-divergence). Hence, constraining log p0(z)
instead of the true divergence gives us a lower bound on L. Maximizing this lower bound (which is
the same as Equation 4) hence also maximizes the true Lagrangian L.

B BIAS-VARIANCE TRADEOFF DURING MIN TRAINING

In this section, we provide details on the bias-variance tradeoff that arises in MIN training. Our
analysis is primarily based on analysing the bias and variance in the `2 norm of the gradient in
two cases – if we had access to infinte samples of the distribution over optimal ys, p∗(y) (this is a
Dirac-delta distribution when function f(x) evaluations are deterministic, and a distribution with
non-zero variance when the function evaluations are stochastic or are corrupted by noise). Let

L̂p(D) = 1
|Y|
∑
yj∼pD(y)

p(yj)
pD(yj)

(
1
|Nyj |

∑|Nyj |
k=1 D̂(xj,k, f

−1(yj))
)

denote the empirical objective
that the inverse map is trained with. We first analyze the variance of the gradient estimator in
Lemma B.2. In order to analyse this, we will need the expression for variance of the importance
sampling estimator, which is captured in the following Lemma.
Lemma B.1 (Variance of IS (Metelli et al., 2018)). Let P and Q be two probability measures on
the space (X ,F) such that d2(P ||Q) <∞. Let x1, · · · ,xN be N randomly drawn samples from Q,
and f : X → R is a uniformly-bounded function. Then for any δ ∈ (0, 1], with probability atleast
1− δ,

Ex∼P [f(x)] ∈

[
1

N

N∑
i=1

wP/Q(xi)f(xi) ± ||f ||∞

√
(1− δ)d2(P ||Q)

δN

]

Equipped with Lemma B.1, we are ready to show the variance in the gradient due to reweighting to a
distribution for which only a few datapoints are observed.
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Lemma B.2 (Gradient Variance Bound for MINs). Let the inverse map be given by f−1θ . Let Ny
denote the number of datapoints observed in D with score equal to y, and let L̂p(D) be as defined
above. Let Lp(pD) = E[L̂p(D)], where the expectation is computed with respect to the dataset D.
Assume that ||∇θD̂(x, f−1(y))||2 ≤ L and var[∇θD̂(x, f−1(y))] ≤ σ2. Then, there exist some
constants C1, C2 such that with a confidence at least 1− δ,

E
[
||∇θL̂p(D)−∇θLp(pD)||22

]
≤ C1Ey∼p(y)

[
σ2 log 1

δ

Ny

]
+ C2L

2 (1− δ)d2(p||pD)

δ
∑
y∈DNy

Proof. We first bound the range in which the random variable∇θL̂p(D) can take values as a function
of number of samples observed for each y. All the steps follow with high probability, i.e. with
probability greater than 1− δ,

∇θL̂p(D) = ∇θ
1

|YD|
∑

yj∼pD(y)

p(yj)

pD(yj)

 1

|Nyj |

|Nyj |∑
k=1

D̂(xj,k, f
−1(yj))


∈ 1

|YD|
∑

yj∼pD(y)

Exij∼p(x|yj)

[
D̂(xij , yj)

]
±

√
var(D̂(x, y)) · (log !

δ )

δ ·Ny


∈Eyj∼p(y)

Exij∼p(x|yj)

[
D̂(xij , yj)

]
±

√
var(D̂(x, y)) · (log !

δ

δ ·Ny

±√ (1− δ) · d2(p(y)||pD(y))

δ ·
∑
yj∈DNyj

(5)
where d2(p||q) is the exponentiated Renyi-divergence between the two distributions p and q, i.e.

d2(p(y)||q(y)) =
∫
y
q(y)

(
p(y)
q(y)

)2
dy. The first step follows by applying Hoeffding’s inequality on

each inner term in the sum corresponding to yj and then bounding the variance due to importance
sampling ys finally using concentration bounds on variance of importance sampling using Lemma B.1.

Thus, the gradient can fluctuate in the entire range of values as defined above with high probability.
Thus, with high probability, atleast 1− δ,

E
[
||∇θL̂p(D)−∇θLp(pD)||22

]
≤ C1Ey∼p(y)

[
σ2 log 1

δ

Ny

]
+ C2L

2 (1− δ)d2(p||pD)

δ
∑
YD Ny

(6)

The next step is to bound the bias in the gradient that arises due to training on a different distribution
than the distribution of optimal ys, p∗(y). This can be written as follows:

||Ey∼p∗(y)[Ex∼p(x|y)[D(x, y)]]− Ey∼p(y)[Ex∼p(x|y)[D(x, y)]]||22 ≤ DTV(p, p∗)2 · L. (7)

where DTV is the total variation divergence between two distributions p and p∗, and L is a constant
that depends on the maximum magnitude of the divergence measure D. Combining Lemma B.2 and
the above result, we prove Theorem 3.1.

C ARGUMENT FOR ACTIVE DATA COLLECTION VIA RANDOMIZED LABELING

In this section, we explain in more detail the randomized labeling algorithm described in Section 3.4.
We first revisit Thompson sampling, then provide arguments for how our randomized labeling
algorithm relates to it, highlight the differences, and then prove a regret bound for this scheme under
mild assumptions for this algorithm. Our proof follows commonly available proof strategies for
Thompson sampling.
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Algorithm 3 Thompson Sampling (TS)

1: Initialize a policy πa : X → R, data so-far D0 = {}, a prior over θ in fθ – P (θ∗|D0)
2: for step t in {0, . . . , T-1} do
3: θt ∼ P (θ∗|Ft) (Sample θt from the posterior)
4: Query xt = argmaxx E[fθt(x) | θ? = θt] (Query based on the posterior probability xt is optimal)
5: Observe outcome: (xt, f(xt))
6: Dt+1 = Dt ∪ (xt, f(xt))
7: end for

Notation The TS algorithm queries the true function f at locations (xt)t∈N and observes true
function values at these points f(xt). The true function f(x) is one of many possible functions that
can be defined over the space R|X |. Instead of representing the true objective function as a point
object, it is common to represent a distribution p∗ over the true function f . This is justified because,
often, multiple parameter assignments θ, can give us the same overall function. We parameterize f
by a set of parameters θ∗.

The T period regret over queries x1, · · · ,xT is given by the random variable

Regret(T ) :=

T−1∑
t=0

[f(x?)− f(xt)]

Since selection of xt can be a stochastic, we analyse Bayes risk (Russo & Van Roy, 2016; Russo et al.,
2018), we define the Bayes risk as the expected regret over randomness in choosing xt, observing
f(xt), and over the prior distribution P (θ∗). This definition is consistent with Russo & Van Roy
(2016).

E[Regret(T )] = E

[
T−1∑
t=0

[f(x?)− f(xt)]

]

Let πTS be the policy with which Thompson sampling queries new datapoints. We do not make any
assumptions on the stochasticity of πTS, therefore, it can be a stochastic policy in general. However,
we make 2 assumptions (A1, A2). The same assumptions have been made in Russo & Van Roy
(2016).

A1: supx f(x)− infx f(x) ≤ 1 (Difference between max and min scores is bounded by 1) – If this
is not true, we can scale the function values so that this becomes true.

A2: Effective size of X is finite. 1

TS (Alg 3) queries the function value at x based on the posterior probability that x is optimal. More
formally, the distribution that TS queries xt from can be written as: πTS

t = P (x∗ = ·|Dt). When we
use parameters θ to represent the function parameter, and thus this reduces to sampling an input that
is optimal with respect to the current posterior at each iteration: xt ∈ arg max

x∈X
E[fθt(x)|θ∗ = θ̂t].

MINs (Alg 2) train inverse maps f−1θ (·), parameterized as f−1θ (z, y), where y ∈ R. We
call an inverse map optimal if it is uniformly optimal given θt, i.e. ||f−1θt (maxx f(x)|θt) −
δ{arg maxx E[f(x)|θt]}|| ≤ εt, where εt is controllable (usually the case in supervised learning,
errors can be controlled by cross-validation).

Now, we are ready to show that the regret incurred the randomized labelling active data collection
scheme is bounded by O(

√
T ). Our proof follows the analysis of Thompson sampling presented in

Russo & Van Roy (2016). We first define information ratio and then use it to prove the regret bound.

Information Ratio Russo & Van Roy (2016) related the expected regret of TS to its expected
information gain i.e. the expected reduction in the entropy of the posterior distribution of X ∗.

1By effective size we refer to the intrinsic dimensionality of X . This doesn’t necessarily imply that X should
be discrete. For example, under linear approximation to the score function fθ(x), i.e., if fθ(x) = θTx, this
defines a polyhedron but just analyzing a finite set of just extremal points of the polyhedron works out, thus
making |X | effectively finite.
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Information ratio captures this quantity, and is defined as:

Γt :=
Et [f(xt)− f(x?)]

2

It (x∗; (xt, f(xt)))

where I(·, ·) is the mutual information between two random variables and all expectations Et are
defined to be conditioned on Dt. If the information ratio is small, Thompson sampling can only
incur large regret when it is expected to gain a lot of information about which x is optimal. Russo &
Van Roy (2016) then bounded the expected regret in terms of the maximum amount of information any
algorithm could expect to acquire, which they observed is at most the entropy of the prior distribution
of the optimal x.
Lemma C.1 (Bayes-regret of vanilla TS)(Russo & Van Roy, 2016)). For any T ∈ N, if Γt ≤ Γ
(i.e. information ratio is bounded above) a.s. for each t ∈ {1, . . . , T},

E[Regret(T, πTS)] ≤
√

ΓH (X ∗)T

We refer the readers to the proof of Proposition 1 in Russo & Van Roy (2016). The proof presented
in Russo & Van Roy (2016) does not rely specifically on the property that the query made by the
Thompson sampling algorithm at each iteration xt is posterior optimal, but rather it suffices to have a
bound on the maximum value of the information ratio Γt at each iteration t. Thus, if an algorithm
chooses to query the true function at a datapoint xt such that these queries always contribute in
learning more about the optimal function, i.e. I(·, ·) appearing in the denominator of Γ is always more
than a threshold, then information ratio is lower bounded, and that active data collection algorithm
will have a sublinear asymptotic regret. We are interested in the case when the active data collection
algorithm queries a datapoint xt at iteration t, such that xt is the optimum for a function f̂θ̂t , where
θ̂t is a sample from the posterior distribution over θt, i.e. θ̂t lies in the high confidence region of
the posterior distribution over θt given the data Dt seen so far. In this case, the mutual information
between the optimal datapoint x? and the observed (xt, f(xt)) input-score pair is likely to be greater
than 0. More formally,

It(x
?, (xt, f(xt))) ≥ 0 ∀ xt = arg max

x
fθ̂t(x) where P (θ̂t|Dt) ≥ εthreshold (8)

The randomized labeling scheme for active data collection in MINs performs this step. The algorithm
samples a bunch of (x, y) datapoints, sythetically generated, – for example, in our experiments, we
add noise to the values of x, and randomly pair them with unobserved or rarely observed values
of y. If the underlying true function f is smooth, then there exist a finite number of points that
are sufficient to uniquely describe this function f . One measure to formally characterize this finite
number of points that are needed to uniquely identify all functions in a function class is given by
Eluder dimension (Russo & Van Roy).

By augmenting synthetic datapoints and training the inverse map on this data, the MIN algorithm
ensures that the inverse map is implicitly trained to be an accurate inverse for the unique function fθ̂t
that is consistent with the set of points in the dataset Dt and the augmented set St. Which sets of
functions can this scheme represent? The functions should be consistent with the data seen so far Dt,
and can take randomly distributed values outside of the seen datapoints. This can roughly argued to
be a sample from the posterior over functions, which Thompson sampling would have maintained
given identical history Dt.
Lemma C.2 (Bounded-error training of the posterior-optimal xt preserves asymptotic
Bayes-regret). ∀t ∈ N, let x̂t be any input such that f(x̂t) ≥ maxx E[f(x)|Dt] − εt. If MIN
chooses to query the true function at x̂t and if the sequence (εt)t∈N satisfies

∑T
t=0 εt = O(

√
T ),

then, the regret from querying this εt-optimal x̂t which is denoted in general as the policy π̂TS is
given by E[Regret(T, π̂TS)] = O(

√
T ).

Proof. This lemma intuitively shows that if posterior-optimal inputs xt can be "approximately"
queried at each iteration, we can still maintain sublinear regret. To see this, note:

f(x?))− f(x̂t) = f(x?)− f(xt) + f(xt)− f(x̂t).
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=⇒ E[Regret(T, π̂TS)] = E[Regret(T, πTS)] + E[

T∑
t=1

(f(xt)− f(x̂t))]

The second term can be bounded by the absolute value in the worst case, which amounts
∑T
t=0 εt

extra Bayesian regret. As Bayesian regret of TS is O(
√
T ) and

∑T
t=0 εt = O(

√
T ), the new overall

regret is also O(
√
T ).

Theorem C.3 (Bayesian Regret of randomized labeling active data collection scheme proposed
in Section 3.4 is O(

√
T )). Regret incurred by the MIN algorithm with randomized labeling is of the

order O(
√

(Γ̄H(X ∗) + C)T ).

Proof. Simply put, we will combine the insight about the mutual information I(x?, (xt, f(xt))) > 0

and C.2 in this proof. Non-zero mutual information indicates that we can achieve a O(
√
T ) regret if

we query xts which are optimal corresponding to some implicitly defined forward function lying in
the high confidence set of the true posterior given the observed datapoints Dt. Lemma C.2 says that
if bounded errors are made in fitting the inverse map, the overall regret remains O(

√
T ).

More formally, if ||f−1θt (maxx f(x)|θt)− δ{arg maxx E[f(x)|θt]}|| ≤ δt, this means that

||Ext∼f−1
θt

[f(xt)]− Ex′t∼πTS
t

[f(x′t)]|| ≤ ||f(·)||∞ · ||f−1θt − π
TS
t || ≤ δtRmax ≤ εt

and now application of Lemma C.2 gives us the extra regret incurred. (Note that this also provides us
a way to choose the number of training steps for the inverse map)

Further, note if we sample xt at iteration t from a distribution that shares support with the true
posterior over optimal xt (which is used by TS), we still incur sublinear, bounded O(

√
Γ̄H(A∗)T )

regret.

In the worst case, the overall bias caused due to the approximations will lead to an additive cu-
mulative increase in the Bayesian regret, and hence, there is a constant ∃ C ≥ 0, such that
E[Regret(T, f−1)] = O(

√
(Γ̄H(X ∗) + C)T ).

D ADDITIONAL EXPERIMENTS AND DETAILS

D.1 CONTEXTUAL IMAGE OPTIMIZATION

Figure 4: Contextual MBO on MNIST. In (a) and (b), top
one-half and top one-fourth of the image respectively
and in (c) the one-hot encoded label are provided as
contexts. The goal is to produce the maximum stroke
width character that is valid given the context. In (a) and
(b), we show triplets of the groundtruth digit (green),
the context passed as input (yellow) and the produced
images x from the MIN model (purple).

In this set of static dataset experiments, we study
contextual MBO tasks on image pixels. Un-
like the contextual bandits case, where x corre-
sponds to an image label, here x corresponds to
entire images. We construct several tasks. First,
we study stroke width optimization on MNIST
characters, where the context is the class of the
digit we wish to optimize. Results are shown in
Figure 4. MINs correctly produce digits of the
right class, and achieve an average score over
the digit classes of 237.6, whereas the average
score of the digits in the dataset is 149.0.

The next task is to test the ability of MINs to
be able to complete/inpaint unobserved patches
of an image given an observed context patch.
We use two masks: mask A: only top half and
mask B: only top one-fourth parts of the image
are visible, to mask out portions of the image
and present the masked image as context c to
the MIN, with the goal being to produce a valid
completion x, while still maximizing score cor-
responding to the stroke width. We present some
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Figure 5: Additional results for non-contextual image optimization. This task is performed on the CelebA dataset.
The aim is to maximize the score of an image which is given by the sum of attributes: eyeglasses, smiling, wavy
hair and no beard. MINs produce optimal x – visually these solutions indeed optimize the score.

sample completions in Figure 4. The quantitative results are presented in Table 6. We find that MINs
are effective as compared completions for the context in the dataset in terms of score while still
producing a visibly valid character.

We evaluate MINs on a complex semantic optimization task on the CelebA (Liu et al., 2015) dataset.
We choose a subset of attributes and provide their one-hot encoding as context to the model. The
score is equal to the `1 norm of the binary indicator vector for a different subset of attributes disjoint
from the context. We present our results in Figure 3. We observe that MINs produce diverse images
consistent with the context, and is also able to effectively infer the score function, and learn features
to maximize it. Some of the model produced optimized solutions were presented in Section 4 in
Figure 3. In this section, we present the produced generations for some other contexts. Figure 7
shows these results.

D.2 ADDITIONAL RESULTS FOR NON-CONTEXTUAL IMAGE OPTIMIZATION

In this section, we present some additional results for non-contextual image optimization problems.
We also evaluated our contextual optimization procedure on the CelebA dataset in a non-contextual
setting. The reward function is the same as that in the contextual setting – the sum of attributes: wavy
hair, no beard, smiling and eyeglasses. We find that MINs are able to sucessfully produce solutions
in this scenario as well. We show some optimized outputs at different iterations from the model in
Figure 5.

cGAN baseline. We compare our MIN model to a cGAN baseline on the IMDB-Wiki faces dataset
for the semantic age optimization task. In general, we found that the cGAN model learned to
ignore the score value passed as input even when trained on the entire dataset (without excluding
the youngest faces) and behaved almost like a regular unconditional GAN model when queried to
produce images x corresponding to the smallest age. We suspect that this could possibly be due to
the fact that age of a person doesn’t have enough direct signal to guide the model to utilize it unless
other tricks like reweighting proposed in Section 3.3 which explicitly enforce the model attention to
datapoints of interest, are used. We present the produced optimized x in Figure 6.

D.3 QUANTITATIVE SCORES FOR NON-CONTEXTUAL MNIST OPTIMIZATION

In Figure 8, we highlight the quantitative score values for the stroke width score function (defined
as the number of pixels which have intensity more than a threshold). Note that MINs achieve the
highest value of average score while still resembling a valid digit, that stays inside the manifold of
valid digits, unlike a forward model which can get high values of the score function (number of pixels
turned on), but doesn’t stay on the manifold of valid digits.

D.4 EXPERIMENTAL DETAILS AND SETUP
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Figure 6: Optimal x solutions produced by a cGAN for the youngest face optimization task on the IMDB-faces
dataset. We note that a cGAN learned to ignore the score value and produced images as an unconditional model,
without any noticeable correlation with the score value. The samples produced mostly correspond to the most
frequently occurring images in the dataset.

Figure 7: Images returned by the MIN optimization for optimization over images. We note that MINs perform
successful optimization over the an objective defined by the sum of desired attributes. Moreover, for unseen
contexts, such as both brown and black hair, the optimized solutions look aligning with the context reasonably,
and optimize for the score as well.

(a) Thickest stroke (b) Thickest digit (3) (c) Most number of blobs (8)

Figure 8: Results for non-contextual static dataset optimization on MNIST annotated with quantitative score
values achieved mentioned below each figure.

Table 6: Average quantitative perfor-
mance for MNIST inpainting

Mask MIN Dataset

mask A 223.57 149.0

mask B 234.32 149.0

In this section, we explain the experimental details and the setup of
our model. For our experiments involving MNIST and optimiza-
tion of benchmark functions task, we used the same architecture
as a fully connected GAN - where the generator and discriminator
are both fully connected networks. We based our code for this
part on the open-source implementation (Linder-Norén). For the
forward model experiments in these settings, we used a 3-layer
feedforward ReLU network with hidden units of size 256 each in this setting. For all experiments
on CelebA and IMDB-Wiki faces, we used the VGAN (Peng et al., 2019) model and the associated
codebase as our starting setup. For experiments on batch contextual bandits, we used a fully con-
nected discriminator and generator for MNIST, and a convolutional generator and Resnet18-like
discriminator for CIFAR-10. The prediction in this setting is categorical – 1 of 10 labels needs to
be predicted, so instead of using reinforce or derivative free optimization to train the inverse map,
we used the Gumbel-softmax Jang et al. (2016) trick with a temperature τ = 0.75, to be able to use
stochastic gradient descent to train the model. For the protein flourescence maximization experiment,
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we used a 2-layer, 256-unit feed-forward gumbel-softmax inverse map and a 2-layer feed-forward
discriminator.

We trained models present in open-source implementations of BanditNet (Sachdeva), but were unable
to reproduce results as reported by Joachims et al. (2018). Thus we reported the paper reported
numbers from the BanditNet paper in the main text as well.

Temperature hyperparameter τ which is used to compute the reweighting distribution is adaptively
chosen based on the 90th percentile score in the dataset. For example, if the difference between ymax
and y90th−percentile is given by α, we choose τ = α. This scheme can adaptively change temperatures
in the active setting. In order to select the constant which decides whether the bin corresponding to a
particular value of y is small or not, we first convert the expression Ny

Ny+λ
to use densities rather than

absolute counts, that is, p̂D(y)
p̂D(y)+λ , where p̂D(y) is the empirical density of observing y in D, and now

we use the same constant λ = 0.003. We did not observe a lot of sensitivity to λ values in the range
[0.0001, 0.007], all of which performed reasonably similar. We usually fixed the number of bins to
20 for the purposed of reweighting, however note that the inverse map was still trained on continuous
y values, which helps it extrapolate.

In the active setting, we train two copies of f−1 jointly side by side. One of them is trained on the
augmented datapoints generated out of the randomized labelling procedure, and the other copy is just
trained on the real datapoints. This was done so as to prevent instabilities while training inverse maps.
Training can also be made more incremental in this manner, and we need to train an inverse map to
optimality inside every iteration of the active MIN algorithm, but rather we can train both the inverse
maps for a fixed number of gradient steps.

21


	Introduction
	Related Work
	Model Inversion Networks
	Optimization via Inverse Maps
	Inference with Inverse Maps (Approx-Infer)
	Reweighting the Training Distribution
	Active Data Collection via Randomized Labeling
	Practical Implementation of MINs

	Experimental Evaluation
	Data-driven Optimization with Static Datasets
	Optimization with Active Data Collection

	Discussion
	Probabilistic Interpretation of Section 3.2
	Bias-Variance Tradeoff during MIN training
	Argument for Active Data Collection via Randomized Labeling
	Additional Experiments and Details
	Contextual Image Optimization
	Additional results for non-contextual image optimization
	Quantitative Scores for Non-contextual MNIST optimization
	Experimental Details and Setup


