
Kotlin∇
A shape-safe DSL for differentiable programming

Breandan Considine
McGill University

Michalis Famelis
Université de Montréal

Liam Paull
Université de Montréal

Abstract

Kotlin is a statically-typed programming language with support for embedded
domain-specific languages, asynchronous programming, and multi-platform com-
pilation. In this work, we present an algebraically-based implementation of au-
tomatic differentiation (AD) with shape-safe tensor operations, written in pure
Kotlin. Our approach differs from existing AD frameworks in that Kotlin∇ is
the first shape-safe AD library fully compatible with the Java type system, requir-
ing no metaprogramming, reflection or compiler intervention to use. A working
prototype is available: https://github.com/breandan/kotlingrad.

1 Introduction

Many existing AD frameworks are implemented in dynamically-typed languages, like Python. Some
frameworks are written in statically-typed languages, but only consider primitive data types, and do
not attempt to verify the shape of multidimensional arrays. Those which do, either use dynamic
type checking or relatively esoteric languages like Haskell (Piñeyro et al., 2019). In our work, we
demonstrate a shape-safe AD framework which supports static type checking and inference on array
programs in a widely-used programming language called Kotlin.

Differentiable programming has a rich history among dynamic languages like Python, Lua and
JavaScript, with early implementations including projects like Theano (Bergstra et al., 2010),
Torch (Collobert et al., 2002), and TensorFlow (Abadi et al., 2016). Similar ideas have arisen in
statically-typed, functional languages, such as Haskell’s Stalin∇ (Pearlmutter & Siskind, 2008b),
DiffSharp in F# (Baydin et al., 2015) and recently Swift (Lattner & Wei, 2018). However, the major-
ity of existing AD libraries have a loosely- or dynamically- typed DSL, and few support shape-safe
array programming in a widely-adopted programming language. To our knowledge, Kotlin has no
prior AD implementation. However, the language has several useful features for implementing a
native AD framework. Kotlin∇ primarily relies on the following language features:

• Operator overloading and infix functions allow a concise notation for defining arithmetic
operations on algebraic structures, i.e. groups, rings and fields. (Niculescu, 2011)

• λ-functions support functional programming, following Pearlmutter & Siskind (2008a,b);
Siskind & Pearlmutter (2008); Elliott (2009, 2018), et al.

• Extension functions support extending classes with new fields and methods which can be
exposed to external callers without requiring sub-classing or inheritance.

Kotlin∇ is an embedded domain-specific language (eDSL). Embedded programs may appear struc-
turally and behave semantically unlike native code, but are syntactically valid by definition. eDSLs
are often used to implement declarative languages, such as SQL/LINQ (Meijer et al., 2006), Op-
tiML (Sujeeth et al., 2011) and other fluent interfaces (Fowler, 2005). With a sufficiently expressive
host language, one can implement any other language as a library, without needing to write a lexer,
parser, compiler or interpreter. With proper type constraints, users will receive code completion and
static analysis from their favorite development tools, with no further effort required.

Submitted to Program Transformations for Machine Learning workshop at NeurIPS 2019, Vancouver, Canada.

https://github.com/breandan/kotlingrad
http://deeplearning.net/software/theano/
http://torch.ch/
http://tensorflow.org/
https://github.com/Functional-AutoDiff/STALINGRAD
http://diffsharp.github.io/DiffSharp/
https://www.tensorflow.org/swift


Figure 1: Adapted from van Merriënboer et al. (2018). Kotlin∇ models are data structures, constructed by an
eDSL. These are compiled into dataflow graphs at runtime, which are eagerly optimized and lazily evaluated.

2 Usage

Kotlin∇ allows users to implement differentiable programs by composing simple functions to form
more complex ones. Operations on functions with an incompatible output shape will fail to compile.
Valid expressions are lazily evaluated inside a type-safe numerical context at runtime.

with(DoublePrecision) { // Use double-precision numerics
val x = variable("x") // Declare immutable input variables
val y = variable("y") // (these are just symbolic placeholders)
val z = sin(10 * (x * x + pow(y, 2))) / 10 // Lazy expression
val dz_dx = d(z) / d(x) // Leibniz derivative notation
val d2z_dxdy = d(dz_dx) / d(y) // Mixing higher-order partials
val d3z_d2xdy = grad(d2z_dxdy)[x] // Gradient indexing operator
plot3D(d3z_d2xdy, -1.0, 1.0) // Plot in -1 < x,y,z < 1

}

Figure 2: Above, we define a function with two variables and take a series of partial derivatives with respect to
each variable. The function is evaluated on the interval (−1, 1) in each dimension and rendered in 3-space.

z = sin
(
10(x× x+ y2)

)
/10, plot3D

(
∂3z

∂x2∂y

)

Figure 3: Output generated by the program shown in Figure 2.

2



In Kotlin∇, all expressions are composed of function(s) in the host language which define a dataflow
graph (DFG), and are themselves functions defined by the same DFG. An expression is only eval-
uated when invoked with numerical values. As shown in Figure 1, Kotlin∇ straddles the boundary
between define-and-run and define-by-run. As an eDSL, it shares properties of both code and data.

3 Type System

Early work in type-safe dimension analysis can be found in Kennedy (1994, 1996) which uses types
to encode dimensionality and prevent common bugs related to dimension mismatch from arising,
and was later realized in the F# language (Kennedy, 2010). Jay & Sekanina (1997), Rittri (1995),
and Zenger (1997) explore the application of dimension types for linear algebra. More recently,
Kiselyov (2005); Kiselyov et al. (2009) and Griffioen (2015), show how to manipulate arrays in
more complex ways. With the resurgence of interest in tensor algebra and array programming, Chen
(2017) and Rink (2018) explore how to encode shape-safety in various type systems.

The problem we attempt to solve can be summarized as follows. Given two values x and y, and
operator $, how do we determine whether the expression z = x $ y is valid, and if so, what is the
result type of z? For matrix multiplication, when x ∈ Rm×n and y ∈ Rn×p, the expression is
well-typed and we can infer z ∈ Rm×p. More generally, we would like to infer the type of z for
some operator @ : (Ra,Rb) → Rc where a ∈ Nq,b ∈ Nr, c ∈ Ns and q, r, s ∈ N. For many

linear algebra operations such as matrix multiplication, T (a,b)
?
= c is computable in O(1) – we

can simply check the inner dimensions for equivalence (a1
?
= b0).

val vecA = Vec(1.0, 2.0) // Inferred type: Vec<Int, ‘2‘>
val vecB = Vec(1.0, 2.0, 3.0) // Inferred type: Vec<Int, ‘3‘>
val vecC = vecB + vecB
val vecD =

::::
vecA

:
+
:::::
vecB // Compile error: Expected Vec<2>, found Vec<3>

Figure 4: Attempting to sum two vectors whose shapes do not match will fail to compile.

val matA = Mat(‘1‘, ‘4‘, 1.0, 2.0, 3.0, 4.0) // Inferred type: Mat<Double, ‘1‘, ‘4‘>
val matB = Mat(‘4‘, ‘1‘, 1.0, 2.0, 3.0, 4.0) // Inferred type: Mat<Double, ‘4‘, ‘1‘>
val matC = matA * matB
val matD =

:::
matA

::
*
::::
matC // Compile error: Expected Mat<4, *>, found Mat<1, 1>

Figure 5: Similarly, multiplying two matrices whose inner dimensions do not match will not compile.

Shape checking operations on multidimensional arrays is not always decidable. For arbitrary type
functions T (a,b), checking T (a,b)

?
= c requires a Turing machine. If T is allowed to use the

multiplication operator, as in the case of convolutional arithmetic (Dumoulin & Visin, 2016), shape
inference becomes equivalent to Peano arithmetic, which is undecidable (Gödel, 1931). Addition,
subtraction, indexing and comparison of integers are all decidable operations (Charlier et al., 2011).
Equality checking is trivially decidable, and can be implemented in most static type systems.

Evaluating an arbitrary T which uses multiplication or division (e.g. convolutional arithmetic) re-
quires a dependently typed language (Xi & Pfenning, 1998; Piñeyro et al., 2019), but checking shape
equality (e.g. ordinary arithmetic) is feasible in Java and its cousins.1 Furthermore, we believe that
shape checking ordinary matrix arithmetic is decidable in any type system loosely based on System
F<: (Cardelli et al., 1994). We propose a type system for enforcing shape-safety which can be im-
plemented in any language with subtyping and generics, such as Java (Naftalin & Wadler, 2007),
Kotlin (Tate, 2013), TypeScript (Bierman et al., 2014) or Rust (Crozet et al., 2019).

4 Evaluation

Kotlin∇ claims to eliminate certain runtime errors, but how do we know the implementation is
not incorrect? One method, called property-based testing (PBT) (Fink & Bishop, 1997), uses
algebraic properties to verify the result of a calculation by constructing semantically equivalent but

1Java’s type system is known to be Turing Complete (Grigore, 2017). Thus, emulation of dependent types
in Java is theoretically possible, but likely intractable due to the practical limitations noted by Grigore.

3

https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://kotlinlang.org/docs/reference/generics.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://doc.rust-lang.org/1.7.0/book/generics.html


−1,200−1,000−800 −600 −400 −200 0 200 400 600 800 1,000 1,200

−15

−10

−5

0

5

x

lo
g
1
0
(∆

)

Log errors between AD, SD and FD on f(x) = sin(sin(sin(x))))
x + x sin(x) + cos(x) + x

∆(SD, IP) ≈ ∆(AD, IP)
∆(AD, SD)
∆(FD, IP)

Figure 6: We compare numerical drift between three types of computational differentiation: (1) finite precision
automatic differentiation (AD), (2) finite precision symbolic differentiation (SD) and (3) finite precision finite
differences (FD), against infinite precision (IP) symbolic differentiation. AD and SD both exhibit relative errors
(i.e. with respect to each other) several orders of magnitude below their absolute errors (i.e. with respect to IP),
which roughly agree to within numerical precision. FD exhibits significantly higher drift than AD and SD.

syntactically distinct expressions. When evaluated on the same inputs, these should produce the
same answer, to within numerical precision. Two such equivalences are used to to test Kotlin∇:

• Analytical differentiation: manually differentiate selected functions and compare the nu-
merical result of evaluating random chosen inputs from their domain with the numerical
result obtained by evaluating AD on the same inputs.
• Finite difference approximation: sample the space of symbolic differentiable functions,

comparing the numerical results suggested by the finite difference method and the
equivalent AD result, up to a fixed-precision approximation.

We also compare the precision of symbolic differentiation, automatic differentiation and numerical
differentiation, as shown in Figure 6. These results are consistent with the findings of Laue (2019).

5 Conclusion

Unlike most existing AD implementations, Kotlin∇ does not require any template metaprogram-
ming, compiler augmentation or runtime reflection to ensure type safety. Its implementation lever-
ages several features in the Kotlin language including operator overloading, infix functions and ex-
tension functions. It also incorporates various functional programming concepts, like higher order
functions, partial application and currying. The practical advantage of this approach is that it can
be implemented as a simple library or embedded domain-specific language (eDSL), reusing the host
language’s type system to receive code completion and type checking for free. In future work, we
hope to extend Kotlin∇ by compiling to an common intermediate representation (e.g. LLVM IR),
and explore the meaning of differentiation in other calculi (cf. Considine (2019), Section 3.20).

4



References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,

Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker,
P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. TensorFlow: A system for large-
scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, pp. 265–283, Berkeley, CA, USA, 2016. USENIX As-
sociation. ISBN 978-1-931971-33-1. URL http://dl.acm.org/citation.cfm?id=
3026877.3026899.

Baydin, A. G., Pearlmutter, B. A., and Siskind, J. M. DiffSharp: Automatic differentiation library.
CoRR, abs/1511.07727, 2015. URL http://arxiv.org/abs/1511.07727.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., et al. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for scientific computing conference (SciPy), volume 4.
Austin, TX, 2010. URL http://deeplearning.net/software/theano/.

Bierman, G., Abadi, M., and Torgersen, M. Understanding TypeScript. In European Conference on
Object-Oriented Programming, pp. 257–281. Springer, 2014.

Cardelli, L., Martini, S., Mitchell, J. C., and Scedrov, A. An extension of System F with subtyping.
volume 109, pp. 4–56, Duluth, MN, USA, February 1994. Academic Press, Inc. doi: 10.1006/
inco.1994.1013. URL http://dx.doi.org/10.1006/inco.1994.1013.

Charlier, É., Rampersad, N., and Shallit, J. Enumeration and decidable properties of auto-
matic sequences. Lecture Notes in Computer Science, pp. 165–179, 2011. ISSN 1611-
3349. doi: 10.1007/978-3-642-22321-1_15. URL http://dx.doi.org/10.1007/
978-3-642-22321-1_15.

Chen, T. Typesafe abstractions for tensor operations (short paper). pp. 45–50, 2017. doi: 10.1145/
3136000.3136001. URL http://doi.acm.org/10.1145/3136000.3136001.

Collobert, R., Bengio, S., and Mariéthoz, J. Torch: a modular machine learning software library.
Idiap-RR Idiap-RR-46-2002, IDIAP, 2002.

Considine, B. Programming tools for intelligent systems. Master’s thesis, Université de Mon-
tréal, 2019. URL https://github.com/breandan/kotlingrad/blob/master/
latex/thesis/thesis.pdf.

Crozet, S. et al. nalgebra: a linear algebra library for Rust, 2019. URL https://nalgebra.
org.

Dumoulin, V. and Visin, F. A guide to convolution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285, 2016.

Elliott, C. The simple essence of automatic differentiation. Proc. ACM Program. Lang., 2(ICFP):
70:1–70:29, July 2018. ISSN 2475-1421. doi: 10.1145/3236765. URL http://doi.acm.
org/10.1145/3236765.

Elliott, C. M. Beautiful differentiation. In Proceedings of the 14th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’09, pp. 191–202, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-332-7. doi: 10.1145/1596550.1596579. URL http://doi.acm.
org/10.1145/1596550.1596579.

Fink, G. and Bishop, M. Property-based testing: A new approach to testing for assurance. SIGSOFT
Softw. Eng. Notes, 22(4):74–80, July 1997. ISSN 0163-5948. doi: 10.1145/263244.263267. URL
http://doi.acm.org/10.1145/263244.263267.

Fowler, M. Fluent interface, 2005. URL http://martinfowler.com/bliki/
FluentInterface.html.

Gödel, K. Über formal unentscheidbare sätze der principia mathematica und verwandter systeme i.
Monatshefte für mathematik und physik, 38(1):173–198, 1931.

5

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
http://arxiv.org/abs/1511.07727
http://deeplearning.net/software/theano/
http://dx.doi.org/10.1006/inco.1994.1013
http://dx.doi.org/10.1007/978-3-642-22321-1_15
http://dx.doi.org/10.1007/978-3-642-22321-1_15
http://doi.acm.org/10.1145/3136000.3136001
https://github.com/breandan/kotlingrad/blob/master/latex/thesis/thesis.pdf
https://github.com/breandan/kotlingrad/blob/master/latex/thesis/thesis.pdf
https://nalgebra.org
https://nalgebra.org
http://doi.acm.org/10.1145/3236765
http://doi.acm.org/10.1145/3236765
http://doi.acm.org/10.1145/1596550.1596579
http://doi.acm.org/10.1145/1596550.1596579
http://doi.acm.org/10.1145/263244.263267
http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html


Griffioen, P. R. Type inference for array programming with dimensioned vector spaces. In
Proceedings of the 27th Symposium on the Implementation and Application of Functional
Programming Languages, IFL ’15, pp. 4:1–4:12, New York, NY, USA, 2015. ACM. ISBN 978-
1-4503-4273-5. doi: 10.1145/2897336.2897341. URL http://doi.acm.org/10.1145/
2897336.2897341.

Grigore, R. Java generics are Turing Complete. pp. 73–85, 2017. doi: 10.1145/3009837.3009871.
URL http://doi.acm.org/10.1145/3009837.3009871.

Jay, C. B. and Sekanina, M. Shape checking of array programs. Technical report, In Computing:
the Australasian Theory Seminar, Proceedings, 1997.

Kennedy, A. Dimension types. In European Symposium on Programming, pp. 348–362. Springer,
1994.

Kennedy, A. Types for Units-of-Measure: Theory and Practice, pp. 268–305. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-17685-2. doi: 10.1007/978-3-642-17685-2_
8. URL https://doi.org/10.1007/978-3-642-17685-2_8.

Kennedy, A. J. Programming languages and dimensions. Technical report, University of Cambridge,
Computer Laboratory, 1996. URL https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-391.pdf.

Kiselyov, O. Number-parameterized types. The Monad Reader, 5:73–118, 2005.

Kiselyov, O., Peyton Jones, S., and Shan, C.-c. Fun with type functions. April
2009. URL https://www.microsoft.com/en-us/research/publication/
fun-type-functions/.

Lattner, C. and Wei, R. Swift for TensorFlow. 2018. URL https://github.com/
tensorflow/swift.

Laue, S. On the equivalence of forward mode automatic differentiation and symbolic differentiation.
CoRR, abs/1904.02990, 2019. URL http://arxiv.org/abs/1904.02990.

Meijer, E., Beckman, B., and Bierman, G. LINQ: reconciling object, relations and XML in the .NET
framework. In Proceedings of the 2006 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’06, pp. 706–706, New York, NY, USA, 2006. ACM. ISBN 1-59593-434-
0. doi: 10.1145/1142473.1142552. URL http://doi.acm.org/10.1145/1142473.
1142552.

Naftalin, M. and Wadler, P. Java generics and collections. O’Reilly Media, 2007.

Niculescu, V. On using generics for implementing algebraic structures. Studia Universitatis
Babes-Bolyai, Informatica, 56(4), 2011.

Pearlmutter, B. A. and Siskind, J. M. Reverse-mode AD in a functional framework: Lambda the ul-
timate backpropagator. ACM Transactions on Programming Languages and Systems (TOPLAS),
30(2):7, 2008a.

Pearlmutter, B. A. and Siskind, J. M. Using programming language theory to make auto-
matic differentiation sound and efficient. pp. 79–90, 2008b. ISSN 1439-7358. doi: 10.
1007/978-3-540-68942-3_8. URL http://www.bcl.hamilton.ie/~barak/papers/
sound-efficient-ad2008.pdf.

Piñeyro, L., Pardo, A., and Viera, M. Structure verification of deep neural networks at compilation
time using dependent types. In Proceedings of the XXIII Brazilian Symposium on Programming
Languages, SBLP 2019, pp. 46–53, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-7638-
9. doi: 10.1145/3355378.3355379. URL http://doi.acm.org/10.1145/3355378.
3355379.

Rink, N. A. Modeling of languages for tensor manipulation. CoRR, abs/1801.08771, 2018. URL
http://arxiv.org/abs/1801.08771.

6

http://doi.acm.org/10.1145/2897336.2897341
http://doi.acm.org/10.1145/2897336.2897341
http://doi.acm.org/10.1145/3009837.3009871
https://doi.org/10.1007/978-3-642-17685-2_8
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf
https://www.microsoft.com/en-us/research/publication/fun-type-functions/
https://www.microsoft.com/en-us/research/publication/fun-type-functions/
https://github.com/tensorflow/swift
https://github.com/tensorflow/swift
http://arxiv.org/abs/1904.02990
http://doi.acm.org/10.1145/1142473.1142552
http://doi.acm.org/10.1145/1142473.1142552
http://www.bcl.hamilton.ie/~barak/papers/sound-efficient-ad2008.pdf
http://www.bcl.hamilton.ie/~barak/papers/sound-efficient-ad2008.pdf
http://doi.acm.org/10.1145/3355378.3355379
http://doi.acm.org/10.1145/3355378.3355379
http://arxiv.org/abs/1801.08771


Rittri, M. Dimension inference under polymorphic recursion. In Proceedings of the Seventh
International Conference on Functional Programming Languages and Computer Architecture,
FPCA ’95, pp. 147–159, New York, NY, USA, 1995. ACM. ISBN 0-89791-719-7. doi:
10.1145/224164.224197. URL http://doi.acm.org/10.1145/224164.224197.

Siskind, J. M. and Pearlmutter, B. A. Nesting forward-mode AD in a functional framework.
Higher-Order and Symbolic Computation, 21(4):361–376, Dec 2008. ISSN 1573-0557. doi: 10.
1007/s10990-008-9037-1. URL https://doi.org/10.1007/s10990-008-9037-1.

Sujeeth, A., Lee, H., Brown, K., Rompf, T., Chafi, H., Wu, M., Atreya, A., Odersky, M., and
Olukotun, K. OptiML: an implicitly parallel domain-specific language for machine learning. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 609–616,
2011.

Tate, R. Mixed-site variance. In FOOL ’13: Informal Proceedings of the 20th International
Workshop on Foundations of Object-Oriented Languages, 2013. URL http://www.cs.
cornell.edu/~ross/publications/mixedsite/.

van Merriënboer, B., Moldovan, D., and Wiltschko, A. Tangent: Automatic differentiation using
source-code transformation for dynamically typed array programming. In Advances in Neural
Information Processing Systems 31, pp. 6256–6265, 2018. URL https://arxiv.org/abs/
1711.02712.

Xi, H. and Pfenning, F. Eliminating array bound checking through dependent types. In Proceedings
of the ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation,
PLDI ’98, pp. 249–257, New York, NY, USA, 1998. ACM. ISBN 0-89791-987-4. doi: 10.1145/
277650.277732. URL http://doi.acm.org/10.1145/277650.277732.

Zenger, C. Indexed types. Theoretical Computer Science, 187(1-2):147–165, November 1997. ISSN
0304-3975. doi: 10.1016/S0304-3975(97)00062-5. URL http://dx.doi.org/10.1016/
S0304-3975(97)00062-5.

7

http://doi.acm.org/10.1145/224164.224197
https://doi.org/10.1007/s10990-008-9037-1
http://www.cs.cornell.edu/~ross/publications/mixedsite/
http://www.cs.cornell.edu/~ross/publications/mixedsite/
https://arxiv.org/abs/1711.02712
https://arxiv.org/abs/1711.02712
http://doi.acm.org/10.1145/277650.277732
http://dx.doi.org/10.1016/S0304-3975(97)00062-5
http://dx.doi.org/10.1016/S0304-3975(97)00062-5

	Introduction
	Usage
	Type System
	Evaluation
	Conclusion

