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ABSTRACT

Multi-domain learning (MDL) aims at obtaining a model with minimal average
risk across multiple domains. Our empirical motivation is automated microscopy
data, where cultured cells are imaged after being exposed to known and unknown
chemical perturbations, and each dataset displays significant experimental bias.
This paper presents a multi-domain adversarial learning approach, MULANN,
to leverage multiple datasets with overlapping but distinct class sets, in a semi-
supervised setting. Our contributions include: i) a bound on the average- and
worst-domain risk in MDL, obtained using the H-divergence; ii) a new loss to
accommodate semi-supervised multi-domain learning and domain adaptation; iii)
the experimental validation of the approach, improving on the state of the art on
three standard image benchmarks, and a novel bioimage dataset, CELL.1

1 INTRODUCTION

Advances in technology have enabled large scale dataset generation by life sciences laboratories.
These datasets contain information about overlapping but non-identical known and unknown experi-
mental conditions. A challenge is how to best leverage information across multiple datasets on the
same subject, and to make discoveries that could not have been obtained from any individual dataset
alone.

Transfer learning provides a formal framework for addressing this challenge, particularly crucial
in cases where data acquisition is expensive and heavily impacted by experimental settings. One
such field is automated microscopy, which can capture thousands of images of cultured cells after
exposure to different experimental perturbations (e.g from chemical or genetic sources). A goal is to
classify mechanisms by which perturbations affect cellular processes based on the similarity of cell
images. In principle, it should be possible to tackle microscopy image classification as yet another
visual object recognition task. However, two major challenges arise compared to mainstream visual
object recognition problems (Russakovsky et al., 2015). First, biological images are heavily impacted
by experimental choices, such as microscope settings and experimental reagents. Second, there is no
standardized set of labeled perturbations, and datasets often contain labeled examples for a subset
of possible classes only. This has limited microscopy image classification to single datasets and
does not leverage the growing number of datasets collected by the life sciences community. These
challenges make it desirable to learn models across many microscopy datasets, that achieve both
good robustness w.r.t. experimental settings and good class coverage, all the while being robust to the
fact that datasets contain samples from overlapping but distinct class sets.

† Now at the French Ministry for the Economy and Finance, 75012 Paris.
1Code and data: github.com/AltschulerWu-Lab/MuLANN
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Multi-domain learning (MDL) aims to learn a model of minimal risk from datasets drawn from
distinct underlying distributions (Dredze et al., 2010), and is a particular case of transfer learning (Pan
& Yang, 2010). As such, it contrasts with the so-called domain adaptation (DA) problem (Bickel
et al., 2007; Ben-David et al., 2010; Ganin et al., 2016; Pan & Yang, 2010). DA aims at learning
a model with minimal risk on a distribution called "target" by leveraging other distributions called
"sources". Notably, most DA methods assume that target classes are identical to source classes, or a
subset thereof in the case of partial DA (Cao et al., 2018; Zhang et al., 2018).

The expected benefits of MDL, compared to training a separate model on each individual dataset,
are two-fold. First, MDL leverages more (labeled and unlabeled) information, allowing better
generalization while accommodating the specifics of each domain (Dredze et al., 2010; Xiao et al.,
2016). Thus, MDL models have a higher chance of ab initio performing well on a new domain
− a problem referred to as domain generalization (Muandet et al., 2013) or zero-shot domain
adaptation (Yang & Hospedales, 2015). Second, MDL enables knowledge transfer between domains:
in unsupervised and semi-supervised settings, concepts learned on one domain are applied to another,
significantly reducing the need for labeled examples from the latter (Pan & Yang, 2010).

Learning a single model from samples drawn from n distributions raises the question of available
learning guarantees regarding the model error on each distribution. Kifer et al. (2004) introduced the
notion ofH-divergence to measure the distance between source and target marginal distributions in
DA. Ben-David et al. (2006; 2010) have shown that a finite sample estimate of this divergence can be
used to bound the target risk of the learned model.

The contributions of our work are threefold. First, we extend the DA guarantees to MDL (Sec. 3.1),
showing that the risk of the learned model over all considered domains is upper bounded by the oracle
risk and the sum of theH-divergences between any two domains. Furthermore, an upper bound on
the classifier imbalance (the difference between the individual domain risk, and the average risk over
all domains) is obtained, thus bounding the worst-domain risk. Second, we propose the approach
Multi-domain Learning Adversarial Neural Network (MULANN), which extends Domain Adversarial
Neural Networks (DANNs) (Ganin et al., 2016) to semi-supervised DA and MDL. Relaxing the
DA assumption, MULANN handles the so-called class asymmetry issue (when each domain may
contain varying numbers of labeled and unlabeled examples of a subset of all possible classes),
through designing a new loss (Sec. 3.2). Finally, MULANN is empirically validated in both DA and
MDL settings (Sec. 4), as it significantly outperforms the state of the art on three standard image
benchmarks (Saenko et al., 2010; Le Cun et al., 1998), and a novel bioimage benchmark, CELL,
where the state of the art involves extensive domain-dependent pre-processing.

Notation. Let X denote an input space and Y = {1, . . . , L} a set of classes. For i = 1, . . . , n,
dataset Si is an iid sample drawn from distribution Di on X × Y . The marginal distribution of Di
on X is denoted by DXi . Let H be a hypothesis space; for each h inH (h : X 7→ Y) we define the
risk under distribution Di as εi(h) = Px,y∼Di

(h(x) 6= y). h?i (respectively h?) denotes the oracle
hypothesis according to distribution Di (resp. with minimal total risk over all domains):

ε?i =εi(h
?
i ) = min

h∈H
εi(h) (1)

ε̄(h?) =min
h∈H

ε̄(h) = min
h∈H

1
n

∑
i

εi(h) (2)

In the semi-supervised setting, the label associated with an instance might be missing. In the
following, "domain" and "distribution" will be used interchangeably, and the "classes of a domain"
denote the classes for which labeled or unlabeled examples are available in this domain.

2 STATE OF THE ART

Machine learning classically relies on the iid setting: when training and test samples are independently
drawn from the same joint distribution P (X,Y ) (Vapnik, 1998). Two other settings emerged in
the 1990s, "concept drift" and "covariate shift". They respectively occur when conditional data
distributions P (Y |X) and marginal data distributions P (X) change, either continuously or abruptly,
across training data or between train and test data (Shimodaira, 2000). Since then, transfer learning
has come to designate methods to learn across drifting, shifting or distinct distributions, or even
distinct tasks (Pratt et al., 1991; Pan & Yang, 2010). Restricting ourselves to addressing a single
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task on a common input space, we distinguish two objectives: minimizing the learning risk over all
considered distributions (MDL), or over a single target distribution while exploiting samples from
richer source(s) (DA). MDL is thus distinct from multiple source DA by their respective focus on the
average risk over all distributions, versus target accuracy only. Samples from the different domains
can be all, partially, or not labeled (supervised, semi-supervised and unsupervised settings). Finally,
different domains can involve the same classes, or some domains can involve classes not included in
other domains, referred to as class asymmetry.

In MDL, the different domains can be taken into account by maintaining shared and domain-specific
parameters (Dredze et al., 2010), or through a domain-specific use of shared parameters. The domain-
dependent use of these parameters can be learned, e.g. using domain-guided dropout (Xiao et al.,
2016), or based on prior knowledge about domain semantic relationships (Yang & Hospedales, 2015).

Early DA approaches leverage source examples to learn on the target domain in various ways, e.g.
through reweighting source datapoints (Mansour, 2009; Huang et al., 2006; Gong et al., 2013),
or defining an extended representation to learn from both source and target (Daumé III & Marcu,
2006). Other approaches proceed by aligning the source and target representations with PCA-based
correlation alignment (Sun et al., 2016), or subspace alignment (Fernando et al., 2015). In the field
of computer vision, a somewhat related way of mapping examples in one domain onto the other
is image-to-image translation, possibly in combination with a generative adversarial network (see
references in Appendix A).

Intuitively, the difficulty of DA crucially depends on the distance between source and target distribu-
tion. Accordingly, a large set of DA methods proceed by reducing this distance in the original input
space X , e.g. via importance sampling (Bickel et al., 2007) or by modifying the source representation
using optimal transport (Courty et al., 2017; Damodaran et al., 2018). Another option is to map
source and target samples on a latent space where they will have minimal distance. Neural networks
have been intensively exploited to build such latent spaces, either through generative adversarial
mechanisms (Tzeng et al., 2017; Ghifary et al., 2016), or through combining task objective with an
approximation of the distance between source(s) and target. Examples of used distances include
the Maximum Mean Discrepancy due to Gretton et al. (2007) (Tzeng et al., 2014; Bousmalis et al.,
2016), some of its variants (Long et al., 2015; 2016), the L2 contrastive divergence (Motiian et al.,
2017), the Frobenius norm of the output feature correlation matrices (Sun & Saenko, 2016), or
the H-divergence (Ben-David et al., 2006; 2010; Ganin et al., 2016; Pei et al., 2018; Long et al.,
2017) (more in Sec. 3). Most DA methods assume that source(s) and target contain examples from
the same classes; in particular, in standard benchmarks such as OFFICE (Saenko et al., 2010), all
domains contain examples from the same classes. Notable exceptions are partial DA methods, where
target classes are expected to be a subset of source classes e.g. (Zhang et al., 2018; Cao et al., 2018).
DA and partial DA methods share two drawbacks when applied to semi-supervised MDL with
non-identical domain class sets. First, neither generic nor partial DA methods try to mitigate the
impact of unlabeled samples from a class without any labeled counterparts. Second, as they focus on
target performance, (partial) DA methods do not discuss the impact of extra labeled source classes
on source accuracy. However, as shown in Sec. 4.3, class asymmetry can heavily impact model
performance if not accounted for.

Bioinformatics is increasingly appreciating the need for domain adaptation methods (Borgwardt et al.,
2006; Schweikert et al., 2008; Xu & Yang, 2011; Vallania et al., 2017). Indeed, experimentalists
regularly face the issues of concept drift and covariate shift. Most biological experiments that
last more than a few days are subject to technical variations between groups of samples, referred
to as batch effects. Batch effects in image-based screening data are usually tackled with specific
normalization methods (Birmingham et al., 2009). More recently, work by Ando et al. (2017) applied
CorAl (Sun et al., 2016) for this purpose, aligning each batch with the entire experiment. DA has been
applied to image-based datasets for improving or accelerating image segmentation tasks (Becker et al.,
2015; van Opbroek et al., 2015; Bermúdez-Chacón et al., 2016; Kamnitsas et al., 2017). However, to
our knowledge, MDL has not yet been used in Bioimage Informatics, and this work is the first to
leverage distinct microscopy screening datasets using MDL.

3 MULTI-DOMAIN ADVERSARIAL LEARNING

TheH-divergence has been introduced to bound the DA risk (Ben-David et al., 2006; 2010; Ganin
et al., 2016). This section extends the DA theoretical results to the MDL case (Sec. 3.1), supporting
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the design of the MULANN approach (Sec. 3.2). The reader is referred to Appendix B for formal
definitions and proofs.

3.1 H-DIVERGENCE FOR MDL
The distance between source and target partly governs the difficulty of DA. The H-divergence
has been introduced to define such a distance which can be empirically estimated with proven
guarantees (Batu et al., 2000; Kifer et al., 2004). This divergence measures how well one can
discriminate between samples from two marginals. It inspired an adversarial approach to DA (Ganin
et al., 2016), through the finding of a feature space in which a binary classification loss between source
and target projections is maximal, and thus theirH-divergence minimal. Furthermore, the target risk
is upper-bounded by the empirical source risk, the empiricalH-divergence between source(s) and
target marginals, and the oracle DA risk (Ben-David et al., 2006; 2010; Zhang et al., 2012).

Bounding the MDL loss using the H-divergence. A main difference between DA and MDL is
that MDL aims to minimize the average risk over all domains while DA aims to minimize the target
risk only. Considering for simplicity a binary classification MDL problem and taking inspiration from
(Mansour et al., 2008; Ben-David et al., 2010), the MDL loss can be formulated as an optimal convex
combination of domain risks. A straightforward extension of Ben-David et al. (2010) (Theorem 2 in
Appendix B.2) establishes that the compound empirical risk is upper bounded by the sum of: i) the
oracle risk on each domain; ii) a statistical learning term involving the VC dimension ofH; iii) the
divergence among any two domains as measured by theirH-divergence and summed oracle risk. This
result states that, assuming a representation in which domains are as indistinguishable as possible
and on which every 1- and 2-domain classification task is well addressed, then there exists a model
that performs well on all of them. In the 2-domain case, the bound is minimized when one minimizes
the convex combination of losses in the same proportion as samples.

Bounding the worst risk. The classifier imbalance w.r.t. the i-th domain is defined as |εi(h)−ε̄(h)|.
The extent to which marginal Di can best be distinguished by a classifier from H (i.e., the H-
divergence), and the intrinsic difficulty ε?i of the i-th classification task, yield an upper-bound on the
classifier imbalance (proof in Appendix B.3):
Proposition 1. Given an input space X , n distributions Di over X × {0, 1} and hypothesis classH
on X , for any h ∈ H, let εi(h) (respectively ε̄(h)) denote the classification risk of h w.r.t. distribution
Di (resp. its average risk over all Di). The risk imbalance |εi(h)− ε̄(h)| is upper bounded as:

|εi(h)− ε̄(h)| ≤ ε?i +
1

n

∑
j

ε?j +
1

n

∑
j

(
dH(DXi ,DXj ) + ∆ij

)
(3)

with ∆ij = max(EDX
j
|h?i (x)− h?j (x)|, EDX

i
|h?i (x)− h?j (x)|)

Accordingly, every care taken to minimizeH-divergences or ∆ij (e.g. using the class-wise contrastive
losses (Motiian et al., 2017)) improves the above upper bound. An alternative bound of the classifier
imbalance can be obtained by using theH∆H-divergence (proposition 3, and corollaries 4, 5 for the
2-domain case in Appendix).

3.2 MULANN: MULTI-DOMAIN ADVERSARIAL LEARNING

As pointed out by e.g. Pei et al. (2018), when minimizing theH-divergence between two domains,
a negative transfer can occur in the case of class asymmetry, when domains involve distinct sets of
classes. For instance, if a domain has unlabeled samples from a class which is not present in the other
domains, both global (Ganin et al., 2016) and class-wise (Pei et al., 2018) domain alignments will
likely deteriorate at least one of the domain risks by putting the unlabeled samples close to labeled
ones from the same domain. A similar issue arises if a domain has no (labeled or unlabeled) samples
in classes which are represented in other domains. In general, unlabeled samples are only subject to
constraints from the domain discriminator, as opposed to labeled samples. Thus, in the case of class
asymmetry, domain alignment will tend to shuffle unlabeled samples more than labeled ones.

This limitation is addressed in MULANN by defining a new discrimination task referred to as Known
Unknown Discrimination (KUD). Let us assume that, in each domain, a fraction p? of unlabeled
samples comes from extra classes, i.e. classes with no labeled samples within the domain. KUD aims
at discriminating, within each domain, labeled samples from unlabeled ones that most likely belong
to such extra classes. More precisely, unlabeled samples of each domain are ranked according to the
entropy of their classification according to the current classifier, restricted to their domain classes.

4



Published as a conference paper at ICLR 2019

' 0.0 0.3 0.5 0.7 1.0
p

0.00

0.05

0.10

0.15

0.20

0.25

Te
st

 e
rro

r o
n 

M
NI

ST
-M

p =0.3
p =0.5
p =0.7
p =1
Labeled data
Unlabeled data

Figure 1: Left: MULANN architecture. GRL: gradient reversal layer from Ganin et al. (2016). Right:
impact of parameter p in comparison with the groundtruth p? on MNIST → MNIST-M. p = 0
corresponds to DANN: no data flowed through the KUD module (see text for details).

Introducing the hyper-parameter p, the top p% examples according to this classification entropy are
deemed "most likely unknown", and thus discriminated from the labeled ones of the same domain.
The KUD module aims at repulsing the most likely unknown unlabeled samples from the labeled
ones within each domain (Fig. 1), thus resisting the contractive effects of global domain alignment.

Overall, MULANN involves 3+n′ interacting modules, where n′ is the number of domains with
unlabeled data. The first module is the feature extractor with parameters θf , which maps the input
space X to some latent feature space Ω. 2+n′ modules are defined on Ω: the classifier module,
the domain discriminator module, and the n′ KUD modules, with respective parameters θc, θd and
(θu,i)i. All modules are simultaneously learned by minimizing loss L(θf , θc, θd, θu):

L(θf , θc, θd, θu) =
1

n

n∑
i=1

(
Lic(θf , θc)− λ Lid(θf , θd)

)
+

ζ

n′

n′∑
j=1

Lju(θf , θu,j) (4)

where ζ and λ are hyper-parameters, Lic(θf , θc) is the empirical classification loss on labeled exam-
ples in Si, Lid(θf , θd) is the domain discrimination loss (multi-class cross-entropy loss of classifying
examples from Si in class i), and Liu(θf , θu,i) is the KUD loss (binary cross-entropy loss of dis-
criminating labelled samples from Si from the "most likely unknown" unlabelled samples from
Si).

The loss minimization aims to find a saddle point (θ̂f , θ̂y, θ̂d, θ̂u), achieving an equilibrium between
the classification performance, the discrimination among domains (to be prevented) and the dis-
crimination among labeled and some unlabeled samples within each domain (to be optimized). The
sensitivity w.r.t. hyperparameter p will be discussed in Sec. 4.3.

4 EXPERIMENTAL VALIDATION

This section reports on the experimental validation of MULANN in DA and MDL settings on
three image datasets (Sec. 4.2), prior to analyzing MULANN and investigating the impact of class
asymmetry on model performances (Sec. 4.3).

4.1 IMPLEMENTATION

Datasets The DA setting considers three benchmarks: DIGITS, including the well-known MNIST
and MNIST-M (Le Cun et al., 1998; Ganin et al., 2016); Synthetic road signs and German traffic
sign benchmark (Chigorin et al., 2012; Stallkamp et al., 2012) and OFFICE (Saenko et al., 2010).
The MDL setting considers the new CELL benchmark, which is made of fluorescence microscopy
images of cells (detailed in Appendix C). Each image contains tens to hundreds of cells that have been
exposed to a given chemical compound, in three domains: California (C), Texas (T) and England
(E). There are 13 classes across the three domains (Appendix, Fig. 2); a drug class is a group of
compounds targeting a similar known biological process, e.g. DNA replication. Four domain shifts
are considered: C↔T, T↔E, E↔C and C↔T↔E.
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Baselines and hyperparameters. In all experiments, MULANN is compared to DANN (Ganin
et al., 2016) and its extension MADA (Pei et al., 2018) (that involves one domain discriminator
module per class rather than a single global one). For DANN, MADA and MULANN, the same
pre-trained VGG-16 architecture (Simonyan & Zisserman, 2014) from Caffe (Jia et al., 2014) is used
for OFFICE and CELL2; the same small convolutional network as Ganin et al. (2016) is used for
DIGITS (see Appendix D.1 for details). The models are trained in Torch (Collobert et al., 2011) using
stochastic gradient descent with momentum (ρ = 0.9). As in (Ganin et al., 2016), no hyper-parameter
grid-search is performed for OFFICE results - double cross-validation is used for all other benchmarks.
Hyper-parameter ranges can be found in Appendix D.2.

Semi-supervised setting. For OFFICE and CELL, we follow the experimental settings from Saenko
et al. (2010). A fixed number of labeled images per class is used for one of the domains in all cases
(20 for Amazon, 8 for DSLR and Webcam, 10 in CELL). For the other domain, 10 labeled images
per class are used for half of the classes (15 for OFFICE, 4 for CELL). For DIGITS and RoadSigns,
all labeled source train data is used, whereas labeled target data is used for half of the classes only
(5 for DIGITS, 22 for RoadSigns). In DA, the evaluation is performed on all target images from the
unlabeled classes. In MDL, the evaluation is performed on all source and target classes (considering
labeled and unlabeled samples).

Evaluation goals. A first goal is to assess MULANN performance comparatively to the baselines.
A second goal is to assess how the experimental setting impacts model performance. As domain
discriminator and KUD modules can use both labeled and unlabeled images, a major question regards
the impact of seeing unlabeled images during training. Two experiments are conducted to assess
this impact: a) the same unlabeled images are used for training and evaluation (referred to as fully
transductive setting, noted FT) ; b) some unlabeled images are used for training, and others for
evaluation (referred to as non-fully transductive setting, noted NFT). (The case where no unlabeled
images are used during training is discarded due to poor results).

4.2 EVALUATION

DA on DIGITS, RoadSigns and OFFICE. Table 1 compares MULANN with DANN and MADA
(Sec. 4.1). Other baselines include: Learning from source and target examples with no transfer loss;
Published results from (Motiian et al., 2017) (legend CCSA), that uses a contrastive loss to penalizes
large (resp. small) distances between same (resp. different) classes and different domains in the
feature space; Published results from (Tzeng et al., 2015), an extension of DANN that adds a loss on
target softmax values ("soft label loss"; legend Tseng15). Overall, MULANN yields the best results,
significantly improving upon the former best results on the most difficult cases, i.e., D→A, A→D
or W→A. As could be expected, the fully transductive results match or significantly outperform the
non-fully transductive ones. Notably, MADA performs similarly to DANN on DIGITS and RoadSigns,
but worse on OFFICE; a potential explanation is that MADA is hindered as the number of classes, and
thus domain discriminators, increases (respectively 10, 32 and 43 classes).

MDL on CELL. A state of the art method for fluorescence microscopy images relies on tailored
approaches for quantifying changes to cell morphology (Kang et al., 2016). Objects (cells) are
segmented in each image, and circa 650 shape, intensity and texture features are extracted for each
object in each image. The profile of each image is defined as the vector of its Kolmogorov-Smirnov
statistics, computed for each feature by comparing its distribution to that of the same feature from
pooled negative controls of the same plate3. Classification in profile space is realized using linear
discriminant analysis, followed by k-nearest neighbor (LDA+k-NN) ("Baseline P" in Table 2). As a
state of the art shallow approach to MDL to be applied in profile space, CORAL (Sun et al., 2016)
was chosen ("P + CORAL" in Table 2). A third baseline corresponds to fine-tuning VGG-16 without
any transfer loss ("Baseline NN").

Table 2 compares DANN, MADA and MULANN to the baselines, where columns 4-7 (resp. 8-9)
consider raw images (resp. the profile representations).4 The fact that a profile-based baseline
generally outperforms an image-based baseline was expected, as profiles are designed to reduce the
impact of experimental settings (column 4 vs. 8). The fact that standard deviations tend to be larger

2Complementary experiments with AlexNet (Krizhevsky et al., 2012) yield worse results, as already noted
by (Koniusz et al., 2016).

3A plate contains between 96 and 384 experiments, realized the same day in exactly the same conditions.
4We could not obtain results with CCSA (Motiian et al., 2017) on unlabeled classes.
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Table 1: Classification results on target test set in the semi-supervised DA setting (average and stdev
on 5 seeds or folds). Bold: results less than 1 stdev from the best in each column. See text.

Source Mnist SynSigns DSLR Amazon Webcam DSLR Webcam Amazon OFFICE
Target Mnist-M GTSRB Amazon DSLR DSLR Webcam Amazon Webcam average

Baseline 35.6 (0.6) 85.1 (1.2) 35.5 (0.5) 58.5 (1.7) 90.9 (1.8) 90.6 (0.6) 34.4 (2.7) 55.8 (1.5) 61.0

Tzeng15 - - 43.1 (0.2) 68.0 (0.5) 97.5 (0.1) 90.0 (0.2) 40.5 (0.2) 59.3 (0.6) 66.4
CCSA - - 42.6 (0.6) 70.5 (0.6) 96.2 (0.3) 90.0 (0.2) 43.6 (1.0) 63.3 (0.9) 67.8

NFT
DANN 90.4 (1.1) 89.8 (1.1) 50.9 (2.4) 68.6 (4.9) 88.8 (3.2) 91.9 (0.7) 48.8 (3.8) 73.0 (2.6) 70.3
MADA 89.9 (0.8) 88.7 (1.0) 44.8 (3.3) 64.0 (3.9) 88.2 (4.2) 89.1 (3.4) 44.7 (4.8) 72.2 (3.1) 67.2
MULANN 91.5 (0.4) 92.1 (1.4) 57.6 (3.9) 75.8 (3.7) 93.3 (2.5) 89.9 (1.6) 54.9 (3.9) 76.8 (3.1) 74.7

FT
DANN 90.6 (1.2) 86.7 (0.8) 52.2 (2.2) 77.4 (2.2) 94.6 (1.2) 90.7 (1.7) 53.0 (1.9) 74.3 (2.7) 73.7
MADA 91.0 (1.1) 84.8 (1.6) 51.6 (2.5) 78.8 (3.6) 91.7 (1.7) 88.8 (2.3) 53.8 (2.6) 73.5 (2.2) 73.0
MULANN 92.7 (0.6) 89.1 (1.5) 63.9 (2.4) 81.7 (1.7) 95.4 (2.4) 89.3 (2.8) 64.2 (2.5) 80.8 (2.7) 79.2

Table 2: CELL test classification accuracy results on all domains (average and stdev on 5 folds), in the
fully transductive setting (see table 5 in Appendix for non-transductive ones, and sections C.4, C.5
for details about image and class selection).

Shift Image set # classes Baseline NN DANN MADA MULANN Baseline P P+Coral

E-C
E 7 63.7 (7.0) 62.9 (7.6) 59.5 (9.5) 64.4 (8.0) 74.1 (3.9) 58.4 (6.1)
C lab. 4 97.0 (1.6) 86.4 (10.3) 86.1 (6.5) 82.4 (10.2) 95.4 (3.2) 86.6 (6.0)
C unlab. 3 0.6 (1.2) 54.4 (18.3) 33.6 (17.5) 58.4 (19.7) 25.5 (5.7) 42.2 (9.5)

C-T
C 10 90.4 (1.8) 90.0 (1.3) 87.2 (2.4) 88.0 (3.6) 96.1 (1.0) 93.8 (0.9)
T lab. 7 93.8 (2.0) 93.6 (1.8) 89.2 (2.4) 90.0 (1.9) 95.2 (3.1) 93.4 (3.0)
T unlab. 3 36.4 (10.7) 68.3 (6.4) 63.7 (10.4) 91.6 (5.7) 68.1 (2.1) 86.0 (7.8)

T-E
T 7 88.9 (6.6) 90.8 (3.9) 87.7 (2.1) 85.7 (6.6) 89.3 (8.7) 90.3 (3.1)
E lab. 4 60.0 (5.3) 59.4 (6.8) 56.5 (12.3) 54.5 (6.5) 59.4 (8.1) 50.3 (6.4)
E unlab. 3 19.0 (14.4) 72.7 (10.1) 56.2 (16.6) 71.7 (21.9) 32.9 (12.3) 48.1 (10.0)

C-T-E
C 7 89.8 (3.5) 87.8 (4.6) 92.8 (1.5) 88.8 (5.2) 96.3 (1.1) 89.3 (5.0)
T 7 92.6 (2.6) 90.2 (1.2) 94.2 (2.3) 92.5 (3.0) 96.8 (2.5) 89.9 (3.1)
E lab. 4 62.3 (5.5) 56.7 (4.2) 53.6 (8.5) 48.1 (5.3) 57.3 (6.1) 44.4 (7.2)
E unlab. 3 19.9 (13.5) 49.4 (6.5) 46.5 (6.9) 79.4 (5.3) 45.5 (13.6) 62.8 (7.2)

here than for OFFICE, RoadSigns or DIGITS is explained by a higher intra-class heterogeneity; some
classes comprise images from different compounds with similar but not identical biological activity.
Most interestingly, MULANN and P+CORAL both improve classification accuracy on unlabeled
classes at the cost of a slighty worse classification accuracy for the labeled classes (in all cases
but one). This is explained as reducing the divergence between domain marginals on the latent
feature space prevents the classifier from exploiting dataset-dependent biases. Overall, MULANN and
P+CORAL attain comparable results on two-domain cases, with MULANN performing significantly
better in the three-domain case. Finally, MULANN matches or significantly outperforms DANN and
MADA.

4.3 ANALYSES

Two complementary studies are conducted to investigate the impact of hyperparameter p and that of
class asymmetry. The tSNE (van der Maaten & Hinton, 2008) visualizations of the feature space for
DANN, MADA and MULANN are displayed in Appendix, Fig. 3.

Sensitivity w.r.t. the fraction p of "known unknowns". MULANN was designed to counter the
negative transfer that is potentially caused by class asymmetry. This is achieved through the repulsion
of labeled examples in each domain from the fraction p of unlabeled examples deemed to belong to
extra classes (not represented in the domain). The sensitivity of MULANN performance to the value
of p and its difference to the ground truth p? is investigated on MNIST↔MNIST-M. A first remark is
that discrepancies between p and p? has no influence on the accuracy on a domain without unlabeled
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Case Dom. 1 Dom. 2
Lab. Lab. Unlab.

1 α, β α β
2 α, β, γ α β
3 α, β α β, δ
4 α, β, γ α β, δ 0.88 0.92 0.96
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MuLANN

Table 3: Class content per case
in the asymmetry experiments

Figure 3: Impact of asymmetry in class content between do-
mains on OFFICE (W→A) for DANN, MADA and MULANN.
See text for details. Better seen in color.

datapoints (Fig. 4 in Appendix). Fig. 1, right, displays the error depending on p for various values
of p?. As could have been expected, it is better to underestimate than to overestimate p?; it is even
better to slightly underestimate it than to get it right, as the entropy ranking of unlabeled examples
can be perturbed by classifier errors.

Impact of class/domain asymmetry. Section 4.2 reports on the classification accuracy when all
classes are represented in all domains of a given shift. In the general case however, the classes
represented by the unlabeled examples are unknown, hence there might exist "orphan" classes, with
labeled or unlabeled samples, unique to a single domain. The impact of such orphan classes, referred
to as class asymmetry, is investigated in the 2-domain case. Four types of samples are considered
(Table 3): A class might have labeled examples in both domains (α), labeled in one domain and
unlabeled in the other domain (β), labeled in one domain and absent in the other one (orphan γ),
and finally unlabeled in one domain and absent in the other one (orphan δ). The impact of the class
asymmetry is displayed on Fig. 3, reporting the average classification accuracy of α, β classes on
domain 1 on the x-axis, and classification accuracy of unlabeled β classes on domain 2 on the y-axis,
for MULANN, DANN and MADA on OFFICE (on CELL in Fig. 5, Appendix).

A clear trend is that adding labeled orphans γ (case "2", Fig. 3) entails a loss of accuracy for all
algorithms compared to the no-orphan reference (case "1"). This is explained as follows: on the one
hand, the γ samples are subject to the classifier pressure as all labeled samples; on the other hand,
they must be shuffled with samples from domain 2 due to the domain discriminator(s) pressure. Thus,
the easiest solution is to shuffle the unlabeled β samples around, and the loss of accuracy on these β
samples is very significant (the "2" is lower on the y-axis compared to "1" for all algorithms). The
perturbation is less severe for the labeled (α, β) samples in domain 1, which are preserved by the
classifier pressure (x-axis).

The results in case "3" are consistent with the above explanation: since the unlabeled δ samples are
only seen by the discriminator(s), their addition has little impact on either the labeled or unlabeled
data classification accuracy (Figs. 3 and 5). Finally, there is no clear trend in the impact of both
labeled and unlabeled orphans (case "4"): labeled (α, β) (resp. unlabeled β) are only affected for
MADA on CELL (resp. MULANN on OFFICE). Overall, these results show that class asymmetry
matters for practical applications of transfer learning, and can adversely affect all three adversarial
methods (Figs. 3 and 5), with asymmetry in labeled class content ("2") being the most detrimental to
model performance.

5 DISCUSSION AND FURTHER WORK

This paper extends the use of domain adversarial learning to multi-domain learning, establishing
how theH-divergence can be used to bound both the risk across all domains and the worst-domain
risk (imbalance on a specific domain). The stress is put on the notion of class asymmetry, that is,
when some domains contain labeled or unlabeled examples of classes not present in other domains.
Showing the significant impact of class asymmetry on the state of the art, this paper also introduces
MULANN, where a new loss is meant to resist the contractive effects of the adversarial domain
discriminator and to repulse (a fraction of) unlabeled examples from labeled ones in each domain.

8
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The merits of the approach are satisfactorily demonstrated by comparison to DANN and MADA on
DIGITS, RoadSigns and OFFICE, and results obtained on the real-world CELL problem establish a
new baseline for the microscopy image community.

A perspective for further study is to bridge the gap between the proposed loss and importance
sampling techniques, iteratively exploiting the latent representation to identify orphan samples and
adapt the loss while learning. Further work will also focus on how to identify and preserve relevant
domain-specific behaviours while learning in a domain adversarial setting (e.g., if different cell types
have distinct responses to the same class of perturbations).
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A EXTENDED STATE-OF-THE-ART: IMAGE TRANSLATION

In the field of computer vision, another way of mapping examples in one domain onto the other
domain is image-to-image translation. In the supervised case (the true pairs made of an image and
its translation are given), Pic2Pix (Isola et al., 2017) trains a conditional GAN to discriminate true
pairs from fake ones. In the unsupervised case, another loss is designed to enforce cycle consistency
(simultaneously learning the mapping φ from domainA toB, ψ fromB toA, and requiring φoψ =Id)
(Zhu et al., 2017; Yi et al., 2017). Note that translation approaches do not per se address domain
adaptation as they are agnostic w.r.t. the classes. Additional losses are used to overcome this
limitation: Domain transfer network (DTN) (Taigman et al., 2016) uses an auto-encoder-like loss
in the latent space; GenToAdapt (Sankaranarayanan et al., 2017) uses a classifier loss in the latent
space; UNIT (Liu et al., 2017) uses a VAE loss.

StarGAN (Choi et al., 2018) combines image-to-image translation with a GAN, where the discrimina-
tor is trained to discriminate true from fake pairs on the one hand, and the domain on the other hand.
ComboGAN (Anoosheh et al., 2017) learns two networks per domain, an encoder and a decoder.
DIRT-T (Shu et al., 2018) uses a conditional GAN and a classifier in the latent space, with two
additional losses, respectively enforcing the cluster assumption (the classifier boundary should not
cross high density region) and a virtual adversarial training (the hypothesis should be invariant under
slight perturbations of the input).
Interestingly, DA and MDL (like deep learning in general) tend to combine quite some losses; two
benefits are expected from using a mixture of losses, a smoother optimization landscape and a good
stability of the representation (Bousquet & Elisseeff, 2002).

B PROOFS

B.1 DEFINITION OF THE H-DIVERGENCE

Definition. (Kifer et al., 2004; Ben-David et al., 2006; 2010) Given a domain X , two distributions
D and D′ over that domain and a binary hypothesis classH on X , theH-divergence between D and
D′ is defined as:

dH(D,D′) = 2 sup
h∈H
|PD(h(x) = 1)− PD′(h(x) = 1)|

B.2 BOUNDING MDL LOSS USING THE H-DIVERGENCE

Theorem 2. Given an input spaceX , we consider n distributionsDi overX×{0; 1} and a hypothesis
classH on X of VC dimension d. Let α and γ be in the simplex of dimension n. If S is a sample of
size m which contains γim samples from Di, and ĥ is the empirical minimizer of

∑
i αiε̂i on (Si)i,

then for any δ > 0, with probability at least 1− δ, the compound empirical error is upper bounded
as: ∑

i

εi(ĥ) ≤
∑
i

ε?i + 4nB(α) + 2
∑
i≤j

(αi + αj)
(
dH(DXi ,DXj ) + βi,j

)
(5)

with

B(α) =

√√√√∑
j

α2
j

γj

√
2d log(2(m+ 1)) + log( 4

δ )

m

and
βi,j = min

h∈H
(εi(h) + εj(h))

A tighter bound can be obtained by replacing dH(Di,Dj) with 1
2dH∆H(Di,Dj). The H∆H-

divergence (Ben-David et al., 2010) operates on the symmetric difference hypothesis spaceH∆H.
However, divergenceH∆H does not lend itself to empirical estimation: even Ben-David et al. (2010)
fall back onH-divergence in their empirical validation.
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Proof of theorem 2 For i, j we note βi,j = εi(h
?
i,j) + εj(h

?
i,j) = min

h∈H
(εi(h) + εj(h)). For α in

the n-dimensional simplex and h ∈ H, we note εα(h) =
∑
i αiεi(h).

We have for α in the simplex of dimension n, h ∈ H and j ∈ {1, . . . ,m}, using the triangle inequality
(similarly to the proof of Theorem 4 in (Ben-David et al., 2010))

|εα(h)− εj(h)| =

∣∣∣∣∣∑
i

αi
(
Ex,y∼Di

|h(x)− y| − Ex,y∼Dj
|h(x)− y|

)∣∣∣∣∣
≤
∑
i

αi
∣∣Ex,y∼Di |h(x)− y| − Ex,y∼Dj |h(x)− y|

∣∣
≤
∑
i

αi
∣∣Ex,y∼Di

|h(x)− y| − Ex∼Di
|h(x)− h?i,j(x)|

∣∣
+ αi

∣∣Ex∼Di |h(x)− h?i,j(x)| − Ex∼Dj |h(x)− h?i,j(x)|
∣∣

+ αi
∣∣Ex∼Dj

|h(x)− h?i,j(x)| − Ex,y∼Dj
|h(x)− y|

∣∣
≤
∑
i

αi (βi,j + dH(Di,Dj))

The last line follows from the definitions of βi,j andH-divergence. Thus using lemma 6 in (Ben-David
et al., 2010)

εj(ĥ) ≤εα(ĥ) +
∑
i

αi (βi,j + dH(Di,Dj))

≤ε̂α(ĥ) + 2B(α) +
∑
i

αi (βi,j + dH(Di,Dj))

≤ε̂α(h?j ) + 2B(α) +
∑
i

αi (βi,j + dH(Di,Dj))

≤εα(h?j ) + 4B(α) +
∑
i

αi (βi,j + dH(Di,Dj))

≤ε?i + 4B(α) + 2
∑
i

αi (βi,j + dH(Di,Dj))

with

B(α) =

√√√√∑
j

α2
j

βj

√
2d log(2(m+ 1)) + log( 4

δ )

m

Hence the result.�

B.3 BOUNDING DOMAIN IMBALANCE

Proof of proposition 1 We have for h ∈ H and j ∈ [1, . . . ,m], using the triangle inequality and
the definition of ε?i (similarly to the proof of Theorem 1 in (Ben-David et al., 2006))

εj(h) = Px,y∼Dj
(h(x) 6= y)

= Ex,y∼Dj |h(x)− y|
≤ EDX

j
|h(x)− h?j (x)|+ EDj

|h?j (x)− y|

≤ EDX
j
|h(x)− 1

n

∑
i

h?i (x)|+ EDX
j
| 1
n

∑
i

h?i (x)− h?j (x)|+ ε?j

≤ 1

n

∑
i

EDX
j
|h(x)− h?i (x)|+ 1

n

∑
i

EDX
j
|h?i (x)− h?j (x)|+ ε?j
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We have for i

EDX
j
|h(x)− h?i (x)| ≤ EDX

i
|h(x)− h?i (x)|+ |EDX

i
|h(x)− h?i (x)| − EDX

j
|h(x)− h?i (x)||

≤ εi(h) + ε?i + dH(DXi ,DXj )

The second line follows from the triangle inequality and the definition of theH-divergence. Thus

εj(h) ≤ 1

n

∑
i

(
εi(h) + ε?i + dH(DXi ,DXj ) + EDX

j
|h?i (x)− h?j (x)|

)
+ ε?j (6)

By symmetry we obtain
1

n

∑
i

εi(h) ≤ εj(h) +
1

n

∑
i

(
ε?i + dH(DXi ,DXj ) + EDX

i
|h?i (x)− h?j (x)|

)
+ ε?j

Thus the result.�
Proposition 3. Given a domain X , m distributions Di over X × {0; 1} and a hypothesis classH on
X , we have for h ∈ H and j ∈ [1, . . . ,m]

|εj(h)− 1

n

∑
i

εi(h)| ≤ 2

(
ε?j +

1

n

∑
i

ε?i

)
+ εj(h

?) + β +
1

n

∑
i

dH(DXi ,DXj ) + 1
2dH∆H(Di,Dj)

(7)
where

β =
∑
j

εj(h
?) = min

h∈H

∑
j

εj(h)

Proof For i, j ∈ [i, . . . ,m] we have

EDi
|h?i (x)− h?j (x)| ≤ EDi

|h?j (x)− h?(x)|+ EDi
|h?(x)− h?i (x)|

≤ EDj
|h?j (x)− h?(x)|+ 1

2dH∆H(Di,Dj) + εi(h
?) + ε?i

≤ εi(h?) + εj(h
?) + ε?i + ε?j + 1

2dH∆H(Di,Dj)
The second line follows from Lemma 3 from (Ben-David et al., 2010), and the third from the triangle
inequality. From this and proposition 1 we obtain the result. �

Corollaries for the 2-domain case
Corollary 4. Given a domain X , two distributions DS and DT over X × {0, 1} and a hypothesis
classH on X , we have for h ∈ H

|εS(h)− εT (h)| ≤ ε?T + ε?S + ∆ + dH(DXS ,DXT ) (8)

with ∆ = max(EDX
T
|h?S(x)− h?T (x)|, EDX

S
|h?S(x)− h?T (x)|)

Corollary 5. Given a domain X , two distributions DS and DT over X × {0; 1} and a hypothesis
classH on X , we have for h ∈ H

|εS(h)− εT (h)| ≤ 2(ε?T + ε?S) + β + 1
2dH∆H(DS ,DT ) + dH(DXS ,DXT ) (9)

where
β = εS(h?) + εT (h?) = min

h∈H
εS(h) + εT (h)

C CELL DATASET

C.1 TEXAS DOMAIN

This dataset is extracted from that published in (Kang et al., 2016). It contains 455 biologically
active images, in 11 classes, on four 384-well plates, in three channels: H2B-CFP, XRCC5-YFP
and cytoplasmic-mCherry. Our analysis used 10 classes: ’Actin’, ’Aurora’, ’DNA’, ’ER’, ’HDAC’,
’Hsp90’, ’MT’, ’PLK’, ’Proteasome’, ’mTOR’.

On top of the quality control from the original paper, a visual quality control was implemented to
remove images with only apoptotic cells, and XRCC5-YFP channel images were smoothed using a
median filter of size 2 using SciPy (Jones et al., 2001–).
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Figure 2: Examples from six classes in the Bio dataset (red: cell nuclei, blue: cell cytoplasm,
magnification: 10X). Empty squares: the domain does not contain any known examples from this
class. Best seen in color.

C.2 CALIFORNIA DOMAIN

This dataset is designed to be similar to the Texas domain (Kang et al., 2016), generated using the
same cell line, but in a different laboratory, by a different biologist, and using different equipment. It
contains 1,077 biologically active images, in 10 classes, on ten 384-well plates, in three channels:
H2B-CFP, XRCC5-YFP and cytoplasmic-mCherry. The classes are: ’Actin’, ’Aurora’, ’DNA’, ’ER’,
’HDAC’, ’Hsp90’, ’MT’, ’PLK’, ’Proteasome’, ’mTOR’.

Cell culture, drug screening and image acquisition Previously (Kang et al., 2016), retroviral
transduction of a marker plasmid "pSeg" was used to stably express H2B-CFP and cytoplasmic-
mCherry tags in A549 human lung adenocarcinoma cells. A CD-tagging approach (Sigal et al., 2006)
was used to add an N-terminal YFP tag to endogenous XRCC5.

Cells were maintained in RPMI1640 media containing 10% FBS, 2 mM glutamine, 50 units/ml
penicillin, and 50 µg/ml streptomycin (all from Life Technologies, Inc.), at 37◦C, 5% CO2 and
100% humidity. 24h prior to drug addition, cells were seeded onto 384-well plate at a density of
1200 cells/well. Following compound addition, cells were incubated at 37◦C for 48 hours. Images
were then acquired using a GE InCell Analyzer 2000. One image was acquired per well using a 10x
objective lens with 2x2 binning.

Image processing Uneven illumination was corrected as described in (Stoeger et al., 2015). Back-
ground noise was removed using the ImageJ RollingBall plugin (Schneider et al., 2012). Images were
segmented, object features extracted and biological activity determined as previously described (Kang
et al., 2016). A visual quality control was implemented to remove images with obvious anomalies
(e.g. presence of a hair or out-of-focus image) and images with only apoptotic cells. YFP-XRCC5
channel images were smoothed using a median filter of size 2.

C.3 ENGLAND DOMAIN

This dataset was published by Caie et al. (2010) and retrieved from (Ljosa et al., 2012). It contains
879 biologically active images of MCF7 breast adenocarcinoma cells, in 15 classes on 55 96-well
plates, in 3 channels: Alexa Fluor 488 (Tubulin), Alexa Fluor 568 (Actin) and DAPI (nuclei). Classes
with fewer than 15 images and absent from the other datasets ("Calcium regulation", "Cholesterol",
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"Epithelial", "MEK", "mTOR") were not used, which leaves 10 classes: ’Actin’, ’Aurora’, ’DNA’,
’ER’, ’Eg5 inhibitor’, ’HDAC’, ’Kinase’, ’MT’, ’Proteasome’, ’Protein synthesis’.

Image processing As the images were acquired using a 20X objective, they were stitched using
ImageJ plugin (Preibisch et al., 2009) and down-scaled 2 times. Cells thus appear the same size as in
the other domains. Images were segmented, object features extracted and biological activity obtained
as previously described (Kang et al., 2016). A visual quality control was implemented to remove
images with obvious anomalies and images with only apoptotic cells. Images with too few cells were
also removed: an Otsu filter (Otsu, 1979) was used to estimate the percentage of pixels containing
nuclei in each image, and images with less than 1% nuclear pixels were removed. Tubulin channel
images were smoothed using a median filter of size 2.

C.4 COMMON IMAGE PRE-PROCESSING

Images which were not significantly distinct from negative controls were identified as previ-
ously (Kang et al., 2016) and excluded from our analysis. Previous work on the England dataset
further focused on images which "clearly [have] one of 12 different primary mechanims of ac-
tion" (Ljosa et al., 2012). We chose not to do so, since it results in a simpler problem (90% accuracy
easy to reach) with much less room for improvement.

Images from all domains were down-scaled 4 times and flattened to form RGB images. Images were
normalized by subtracting the intensity values from negative controls (DMSO) of the same plate in
each channel. England, Texas and California share images for cell nucleus and cytoplasm, but their
third channel differs: Texas and California shows the protein XRCC5, whereas England shows the
Actin protein. Therefore, the experiments which combine Texas and England, and California and
England used only the first two channels, feeding an empty third channel into the network. Similarly,
profiles contain 443 features which are related to the first two channels, and 202 features which are
related to the third channel. Only the former were used in experiments which involve the England
dataset.

C.5 SEMI-SUPERVISED MDL EXPERIMENTS

Shift Dom. 2, labeled classes Domain 2, unlabeled classes

E-C HDAC, Proteasome, Actin, Aurora DNA, MT, ER
C-T DNA, HDAC, MT, ER, Aurora, mTOR, PLK Actin, Proteasome, Hsp90
T-E DNA, MT, Proteasome, Actin, ER Aurora, HDAC, Actin

C-T-E DNA, MT, Proteasome, Actin, ER Aurora, HDAC, Actin

Table 3: Class content for the CELL experiments in table 2. In all cases, the first domain contains the
same classes as domain 2, though with labeled examples from all classes. These classes were picked
as those with best classification accuracy in an unsupervised setting; results are similar when picking
the classes with worst classification accuracy. 10 labeled images per class were used for training.
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D EXPERIMENTAL SETTINGS

D.1 ARCHITECTURE

As in (Ganin et al., 2016; Tzeng et al., 2014), a bottleneck fully connected layer is added after the
last dense layer of VGG-16. Learning rates on weights (resp. biases) from "from scratch" layers is
ten (resp, twenty) times that on parameters of fine-tuned layers. Instance normalization is used on
DIGITS, whereas global normalization is used on OFFICE and CELL.

OFFICE and CELL DIGITS

Feature extractor

VGG-16, layers Conv1 to FC7 5x5 conv. 32; ReLU; 2x2 max pool, 2x2 stride
Fully connected 256 5x5 conv. 48; ReLU; 2x2 max pool, 2x2 stride

Classifier

Output of feature extractor Output of feature extractor
Fully connected 100; ReLU
Fully connected 100; ReLU

Fully connected L; Softmax Fully connected L; Softmax
Domain discriminator

Output of feature extractor Output of feature extractor
Gradient reversal layer Gradient reversal layer

Fully connected 1,024; ReLU; Dropout (0.5) Fully connected 100; ReLU
Fully connected 1,024; ReLU; Dropout (0.5)

Fully connected i; Activation Fully connected i; Activation

Table 4: Architectures. In the case when considering only two domains, i = 1 and the last activation
of domain discriminators is a sigmoid. When considering three domains, i = 3 and the activation is a
softmax. Knowledge discriminator architecture is identical to that of domain discriminators without
the gradient reversal layer.

D.2 HYPER-PARAMETER SEARCH

Parameter DIGITS and Signs CELL

Learning rate (lr) 10−3, 10−4 10−4 (+ 10−5 for 3-dom.)
Individual lr NA True, False
Lr schedule Exponentially decreasing, constant
λ 0.1, 0.8
λ schedule Exponentially increasing, constant
ζ 0.1, 0.8

Table 5: Range of hyper-parameters which were evaluated in cross-validation experiments. Exponen-
tially decreasing schedule, exponentially increasing schedule, indiv. lr (learning rates from layers
which were trained from scratch are multiplied by 10), as in (Ganin et al., 2016).
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E ADDITIONAL RESULTS

E.1 3-DOMAIN RESULTS ON OFFICE

Table 6: Classification results on target test set in the semi-supervised DA setting (average and stdev
on 5 seeds or folds)

Sources D, W A, W A, D
Target Amazon DSLR Webcam

Baseline 41.7 (1.0) 90.9 (1.3) 89.4 (1.5)

FT
DANN 57.5 (1.6) 92.3 (1.8) 91.2 (0.7)
MADA 37.5 (6.8) Not conv. 88.3 (0.7)
MULANN 54.5 (3.8) 92.1 (2.6) 92.0 (1.0)
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DANN MADA MuLANN

Figure 3: Visualization of class features on Webcam (red) > Amazon (blue). Dimmer colors indicate
classes for which labeled examples are available in both domains.

E.2 TSNE VISUALIZATION

We use tSNE (van der Maaten & Hinton, 2008) to visualize the common feature space in the example
of Webcam→ Amazon. Fig. 3 shows that classes are overall better separated with MULANN. In
particular, when using MULANN, unlabeled examples (blue) are both more grouped and closer to
labeled points from the other domain.
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E.3 SEMI-SUPERVISED MDL ON THE BIO DATASET

Table 5: CELL average test classification results on all domain (average and stdev on 5 folds). P
stands for "profiles", "lab." for labeled and "unlab." for unlabeled. Baselines are obtained by training
MULANN with λ = 0 (NN) and LDA+k-NN (P) on both domains. Results were obtained in the
non-fully transductive setting, without hyper-parameter optimization.

Shift Image set # classes Baseline NN DANN MADA MULANN Baseline P P+Coral

E-C
E 7 74.1 (5.4) 71.6 (5.8) 63.6 (6.1) 72.7 (4.0) 78.1 (8.0) 66.4 (2.4)
C lab. 4 98.3 (0.6) 96.1 (1.5) 92.3 (5.2) 89.1 (6.4) 98.2 (2.4) 94.1 (2.3)
C unlab. 3 0.4 (0.7) 34.8 (20.7) 14.5 (7.4) 25.7 (12.3) 21.5 (8.4) 36.8 (3.7)

C-T
C 10 91.4 (1.8) 87.0 (2.2) 87.9 (3.9) 89.3 (1.8) 96.1 (1.1) 93.3 (1.8)
T lab. 7 93.7 (1.3) 91.0 (4.4) 86.7 (7.5) 89.2 (1.2) 96.2 (2.4) 92.8 (3.2)
T unlab. 3 24.4 (10.0) 61.4 (7.7) 56.2 (14.0) 77.7 (4.0) 59.6 (11.3) 87.6 (8.2)

T-E
T 7 95.2 (2.2) 90.3 (5.4) 93.7 (3.0) 88.2 (6.4) 94.2 (6.3) 92.6 (4.0)
E lab. 4 75.2 (9.7) 61.9 (8.5) 71.0 (12.7) 72.8 (14.2) 81.1 (8.8) 61.2 (4.0)
E unlab. 3 5.7 (6.6) 31.4 (17.5) 26.0 (19.4) 51.3 (13.5) 16.1 (9.5) 25.7 (12.6)

C-T-E
C 7 94.7 (2.0) 91.7 (1.4) 82.7 (3.8) 93.9 (1.7) 94.1 (2.0) 89.4 (2.2)
T 7 94.8 (2.1) 93.7 (4.7) 86.5 (4.2) 94.9 (2.1) 97.8 (0.5) 89.6 (8.0)
E lab. 4 74.1 (9.8) 67.7 (12.8) 48.2 (11.7) 66.6 (9.0) 74.7 (10.5) 55.6 (7.5)
E unlab. 3 10.7 (9.7) 48.6 (21.9) 22.6 (11.3) 69.3 (21.1) 36.3 (6.6) 52.5 (22.5)

E.4 IMPACT OF p− p? ON A DOMAIN WITHOUT UNLABELED DATAPOINTS

E.5 ASYMMETRY RESULTS ON CELL
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Figure 4: Impact of parameter p in comparison with p? on MNIST↔MNIST-M. p = 0 corresponds
to DANN (see text for details): no data flowed through the KUD module. We can see that different
values of (p, p?) do not influence the accuracy on a domain which did not have any unlabaled
datapoints from extra classes (MNIST in this case).
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Figure 5: Impact of asymmetry in class content between domains on CELL (T↔E) for DANN, MADA
and MULANN.
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