
Under review as a conference paper at ICLR 2019

HIGHLY EFFICIENT 8-BIT LOW PRECISION INFERENCE
OF CONVOLUTIONAL NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

High throughput and low latency inference of deep neural networks are critical
for the deployment of deep learning applications. This paper presents a general
technique toward 8-bit low precision inference of convolutional neural network-
s, including 1) channel-wise scale factors of weights, especially for depthwise
convolution, 2) Winograd convolution, and 3) topology-wise 8-bit support. We
experiment the techniques on top of a widely-used deep learning framework. The
8-bit optimized model is automatically generated with a calibration process from
FP32 model without the need of fine-tuning or retraining. We perform a systemat-
ical and comprehensive study on 18 widely-used convolutional neural networks
and demonstrate the effectiveness of 8-bit low precision inference across a wide
range of applications and use cases, including image classification, object detection,
image segmentation, and super resolution. We show that the inference throughput
and latency are improved by 1.6X and 1.5X respectively with minimal within
0.6%1 to no loss in accuracy from FP32 baseline. We believe the methodology
can provide the guidance and reference design of 8-bit low precision inference for
other frameworks. All the code and models will be publicly available soon.

1 INTRODUCTION

While convolutional neural networks (CNN) shows state-of-the-art (SOTA) accuracy for wide range
of computation vision tasks, it still faces challenges during industrial deployment due to its high
computational complexity of inference. Low precision is one of the key techniques being actively
studied recently to conquer the problem Vanhoucke et al. (2011); Hwang & Sung (2014); Rastegari
et al. (2016); Miyashita et al. (2016); Mellempudi et al. (2017). With hardware acceleration support,
low precision inference can compute more operations per second, reduce the memory access pressure
and better utilize the cache, and deliver higher throughput and lower latency.

Convolution is the primary operation in CNN models and it is a common practice to enable 8-bit low
precision (INT8) inference for convolution in deep learning frameworks (e.g., TensorFlow, MXNet,
and TensorRT). To make it work, convolution utilizes INT8 computation, which requires two scale
factors for activation and weight, respectively. It is workable for standard convolution with single
group and two groups Krizhevsky et al. (2012). However, it does not work well for convolution
with large groups, especially for depthwise convolution Howard et al. (2017); Chollet (2016). In
addition to direct convolution, it is worthwhile to explore INT8 Winograd convolution Lavin & Gray
(2016) for better performance, which is absent in previous research 2. Although recent work have
demonstrated INT8 inference with minimal accuracy loss across various models Vanhoucke et al.
(2011); Gysel (2016); Wu et al. (2016); Jacob et al. (2017), INT8 inference is limited due to more
complex topology primarily introduced by sum operation in residual block He et al. (2016) and
concatenation operation in inception block Szegedy et al. (2015; 2016). Existing solutions need to
convert the convolution output from INT8 to FP32, and apply the sum or concatenation operation
on FP32. The sacrifice of memory bandwidth and frequent data conversion lead to considerable
performance overhead and therefore limit the real deployment. Moreover, there is no systematical
study of INT8 inference on various use cases, including image classification Krizhevsky et al. (2012);
Simonyan & Zisserman (2014); Szegedy et al. (2015; 2016); He et al. (2016), object detection Ren

1% denotes percentage point for simplicity in the context of accuracy loss
2http://nvdla.org/primer.html

1



Under review as a conference paper at ICLR 2019

et al. (2015); Dai et al. (2016); Liu et al. (2016), image segmentation Long et al. (2015); Wei et al.
(2016), etc.

In this paper, we present a general technique towards efficient INT8 inference of CNN models.
We experiment the technique on top of a widely-used deep learning framework. To the best of
our knowledge, our work is the first attempt to address the above problems. We summarize our
contributions below:

1. We provide a systematical approach to channel-wise quantization of convolution, which is
essential to keep the accuracy for depthwise convolution. Top1 accuracy of INT8 inference
on MobileNet-V1 and MobileNet-V2 is improved by 1.98% and 70.6%, respectively.

2. We explore the approach of INT8 Winograd convolution and present the calibration details
that cannot be trivially derived from direct convolution. Our experiment on VGG-16 shows
Top1 and Top5 accuracy loss with INT8 Winograd convolution is minimal within 0.30%
and 0.25% from FP32 baseline, reducing from 5.31% and 3.38%, respectively.

3. We add the support of sum in residual block, concatenation in inception block, and con-
volution for classification. We also fuse the memory-bound operation convolution with a
rectified linear unit (ReLU) Nair & Hinton (2010) and fold the parameters of batch normal-
ization Ioffe & Szegedy (2015) into convolution kernels. With topology-wise INT8 support,
inference speed is greatly improved by data conversion reduction and memory saving.

4. To our knowledge, this is the first time such a systematic study is applied to and empirical
result is reported on many CNN use cases and models. We develop a calibration tool
that automatically generates optimized INT8 model from FP32 model without the need of
fine-tuning or retraining for easy and repeatable deployment. We perform a comprehensive
study on 18 widely-used CNN models and demonstrate the effectiveness of INT8 inference
across a wide range of applications, including image classification, object detection, image
segmentation, and super resolution. The inference throughput and latency are improved by
1.6X and 1.5X respectively, while the accuracy loss is minimal within 0.6% to no loss from
FP32 baseline.

We believe our methodology is general for CNN models and can provide the guide and reference on
other frameworks. All the code and models will be publicly available soon.

The rest of the paper is organized as follows, Section 2 discusses related work on low-precision
inference in deep learning. Section 3 describes INT8 inference quantization approach and recipe for
CNN models. Section 4 includes experimental results, comprehensive study, and related discussion.
Finally, Section 5 concludes the summary with results and future directions.

2 RELATED WORK

Computer vision tasks win considerable attentions in deep learning field in recent years. Although
CNN models provide SOTA accuracy for various computer vision tasks, it still faces challenges
during industrial deployment due to its high computational complexity of inference.

NVidia have demonstrated minimal accuracy loss of INT8 inference on several CNN models for
image classification (e.g., ResNet-50, ResNet-152, VGG-16, VGG-19, GoogleNet, AlexNet). With
the emerging of CNN models, more topology structures have been proposed to accelerate the perfor-
mance, e.g., depthwise convolution and inception block. Therefore, it is worthwhile to study INT8
inference on those new structures and understand whether traditional approaches are suitable. Besides
TensorRT INT8 solution, some other open-source deep learning frameworks have started to support
INT8 inference. TensorFlow approaches the conversion of floating-point arrays of numbers into INT8
representations as a compression problem and provides a graph transformation tool for model conver-
sion with INT8 quantization operators inserted into the transformed graph. Similar to TensorFlow,
MXNet also provides a calibration tool to transform FP32 to INT8 model. However, the throughput
and latency is not ideal due to considerable data conversion overhead and lack of computation fusion.
In our work, we add INT8 support of sum in residual block, concatenation in inception block, and
convolution for classification, together with necessary computation folding on convolution and batch
normalization and fusion on convolution and ReLU. On the other hand, Winograd convolution Lavin
& Gray (2016) is a fast algorithm to speed up the convolution performance. Although it has been

2



Under review as a conference paper at ICLR 2019

widely studied and used in FP32 training and inference, INT8 Winograd convolution is still not
available in mainstream deep learning frameworks. Our work is the first attempt to explore INT8
Winograd convolution carefully and deliver the workable solution to keep the accuracy.

In additional to existing inference tools and frameworks from industry, many researchers have
experimented low-precision inference with customized low-bit for activation and weights in deep
learning tasks. INT8 activations and weights have been proposed in Vanhoucke et al. (2011),
while biases and first layer input are kept with FP32 for the task of speech recognition on CPUs.
CNN approximation has been presented Gysel (2016) to perform automatic network quantization
and scoring, using different bit-widths for number representation, to find a good balance between
compression rate and network accuracy. Baidu researchers 3 have successfully used 8-bits of fixed
precision with 1 sign bit, 4-bits for the integer part and 3-bits for the fractional part. Various
quantization techniques have been discussed in Sze et al. (2017), showing minimal to no loss at
reduced precision while keeping FP32 for the first and last layers. Deep compression with pruning,
quantization, and Huffman coding has been worked out to reduce the storage requirement of neural
networks significantly without affecting the accuracy, thus making easy for deployment on edge
device Han et al. (2015). Moreover, we focus on the efficient inference on commodity servers while
others might require special hardware support like FPGA. Of course, some of our insights like
calibrating INT8 Winograd can complement others’ work as well.

3 RECIPE OF INT8 INFERENCE

In this section, we first formulate quantization and de-quantization mathematically and then present
the general recipe of INT8 inference.

3.1 QUANTIZATION AND DE-QUANTIZATION

We define a quantization function Q : Rn×R×N 7→ Zn×R in Equation 1 to turn an n-dimensional
rational tensor r into an n-dimensional integer tensor z with the scale factor q and bit-precision p. Here
n could be of arbitrary dimensionality. The function Round is a rounding function approximating a
rational tensor with an integer tensor.

Q(r, q, p) = Qp(r, q) = Qp,q(r) = (z, q), z = max(min(Round(qr), 2p − 1),−2p),
where r ∈ Rn, q ∈ R, p ∈ N+, z ∈ Zn, Round : Rn 7→ Zn (1)

We also define a de-quantization function D : Zn × R 7→ Rn that approximates the rational tensor r
with its quantized form z in Equation 2.

D(z, q) = Dq(z) =
z

q
= r′ ≈ r (2)

We then define + and × arithmetics on (z, q) in Equation 3. Here we assume + and × have already
been defined for tensor r and z, e.g., when they are matrices.

(z1, q1) + (z2, q2) = Qp(Dq1(z1) +Dq2(z2),min(q1, q2))

(z1, q1)× (z2, q2) = (z1 × z2, q1q2) (3)

In practice, we perform sampling for each activation, weight and bias tensor on the given dataset
to get a maximum absolute value max from each tensor and set the scale factor of the tensor as
2p−1
max where p is the precision of quantization. p = 8 is used for all non-negative activation tensors

which are mostly true for popular CNN models after batch normalization operations are folded with
convolution and ReLU with zero negative slope is fused into convolution Xu et al. (2015). For
potentially negative input tensors such as the one for first convolution, the operation falls back to
FP32 since the hardware-accelerated INT8 convolution only supports non-negative activations as
input (more details refer to Rodriguez et al. (2018)). p = 7 is used for weight tensors. Then most
activations and weights can be stored with INT8. We employ round-half-to-even as the Round
function for best statistical accuracy.

3https://cdn.oreillystatic.com/en/assets/1/event/258/Benchmarking deep learning inference Presentation.pptx

3



Under review as a conference paper at ICLR 2019

3.2 GENERAL RECIPE

We present the general INT8 recipe for CNN models, including depthwise convolution, Winograd
convolution, and topology-wise more INT8 support.

3.2.1 DEPTHWISE CONVOLUTION

As a common practice, INT8 convolution uses a single scale factor for each tensor, i.e. one for
activation and one for weight respectively. It is workable for standard convolution with single
group (e.g., VGG-16, GoogleNet-V1, and ResNet-50) and two groups (e.g., AlexNet). However, it
does not perform well for convolution with large groups, especially for depthwise convolution (e.g.,
MobileNet-V1 Howard et al. (2017), MobileNet-V2 Sandler et al. (2018)). Different than standard
convolution, depthwise convolution applies a single filter per each input channel. As a result, a single
tensor-wise scale factor for weight is not capable to represent the dynamic data range of each channel
effectively. Figure 1 indicates the distribution of the first 10 filters per output channel for standard
convolution (a) and depthwise convolution (b). As the partial filter distribution is representative, we
omit the demonstration of entire weight tensor distribution.

(a) Standard Convolution (b) Depthwise Convolution

Figure 1: Distribution of the first 10 filters for standard convolution (a) vs. depthwise convolution
conv2 1/dwise in MobileNet V2 (b). Figure (a) shows the stable dynamic data range for the first 10
filters (also for the entire weight tensor). Figure (b) shows the fluctuant dynamic data range cross
filters. The 6th filter has 50x bigger dynamic range than the other filters.

Based on the above findings, we propose channel-wise scale factors for weight tensor, similar
to Krishnamoorthi (2018). Each scale factor represents the dynamic data range per each filter. The
resulting scale factors are qactivation × qweighti , where qactivation is the scale factor of activation
and qweighti is the scale factor of the ith filter. With channel-wise scaling factors, Top1 accuracy of
INT8 inference on MobileNet-V1 and MobileNet-V2 is improved by 1.98% and 70.6%, respectively.

3.2.2 WINOGRAD CONVOLUTION

Winograd is a fast algorithm for convolution and it has been widely-used in FP32 training and
inference Lavin & Gray (2016). However, the study of INT8 Winograd convolution is not publicly
available. Considering the attractive performance gains, it is worthwhile to explore INT8 Winograd
convolution. We select standard algorithm F(2, 3) for discussion, which can leverage INT8 computa-
tion benefit from integer-based input transformation matrix. To make INT8 Winograd convolution
work, the key component is to take the scale factor for activation and weight after transformation.

xa = BT xb B

qxa
= qxb

∗maxxb
/maxxa

(4)

Equation 4 shows the formula to compute the scale factor after transformation, where B and BT are
transformation matrices defined in Lavin & Gray (2016). Before and after transformation, we have the

4



Under review as a conference paper at ICLR 2019

activation tensor for xb and xa, the scale factor for qxb
(for direction convolution by default) and qxa

,
the maximum absolute value for maxxb

and maxxa
, respectively. Similarly, we can compute the

scale factor of weight before and after transformation. The scale factor of activation and weight after
transformation is set for INT8 Winograd convolution finally. We experiment the idea on VGG-16, a
classical model for Winograd convolution. With the scale factor qxa

, Top1 and Top5 accuracy loss is
minimal within 0.30% and 0.25% from FP32 baseline, while with the scale factor qxb

, the accuracy
loss is significant with 5.31% and 3.38%, respectively. Note that our approach is general and can be
applied to other algorithms besides standard algorithm F(2, 3).

3.2.3 TOPOLOGY-WISE INT8 SUPPORT

We extend INT8 computation to other computation types besides convolution and also apply constant
folding and computation fusion to consecutive computations so that almost all input and output
activation tensors use INT8 while accumulators use INT32 or FP32 for best accuracy. In this section,
we discuss these topology-wise INT8 opportunities. We also discuss topology patterns in which
output tensors should be kept in FP32 for good accuracy.

Pooling. Both max pooling and average pooling are computed directly with INT8. The scale factors
of the input and output tensors are same. We use INT32 accumulator for average pooling to avoid
arithmetic overflow.

Concatenation. Tensor concatenation is a common operation such as those in Inception block
Szegedy et al. (2015; 2016). Figure 2 demonstrates the inception block that concatenates convolution
output per filter. Our study shows that the dynamic ranges of the input tensors are quite close. So we
set the scale factor of INT8 output tensor to the smallest scale factor of INT8 input tensors.

Figure 2: Concatenation in inception block. Dynamic data range is pretty stable in activations for
concatenation within the range from 1.6x to 2.0x among the topologies in our work.

Batch Normalization Folding. Computing INT8 batch normalization without losing accuracy is
challenging. Fortunately, in most recent CNN models, batch normalization is usually added after
convolution. Since the computation is essentially an affine transformation during inference, it can be
folded into the convolution kernel as in Equation 5. Both the new convolution weight w′ and bias b′
are affine transformation of the original weight w and bias b. As defined in Ioffe & Szegedy (2015),
µ and σ2 are the learned mini-batch mean and variance respectively, and γ and β are the scale and
shift terms.

w′ = (
γ√
σ2 + ε

)w, b′ = (
γ√
σ2 + ε

)(b− µ) + β. (5)

Fusing Convolution and Element-wise Post-Operations. For the best arithmetic accuracy and
efficient execution, convolution output elements are first accumulated in FP32 and then fused with
the element-wise post-operations immediately after it before being quantized back to INT8. The
post-operations and quantization can be efficiently computed in registers. Examples of these post-
operations are ReLU , Sum, Sum ReLU and Sum BatchNorm ReLU . The latter three are
common patterns of residual networks He et al. (2016). Figure 3 illustrates a residual block from
ResNet-50 and the sum operation (a) is fused into res2a branch2c (b). Then, res2a branch2c accepts
two inputs res2a branch1 and res2a branch2b, and perform the sum operation. Equation 6 explains
the general fused computation INT8 Conv PostOps which computes the INT8 convolution and
the post-operations with the INT8 input tensor zx, INT8 weight tensor zw, FP32 bias tensor b and
optional arguments post op args of post-operations. For Sum ∗ post-operations, the post op args
is the de-quantized input tensor to add to the convolution output. The quantization precision p is 8
if all elements from INT8 Conv PostOps are positive and resulting data type is unsigned INT8,

5



Under review as a conference paper at ICLR 2019

otherwise p is 7 for signed INT8 output.

(zy, qy) = Qp,qy(INT8 Conv PostOps((zx, qx), (zw,qw),b, post op args)) (6)

(a) Default Residual Block (b) Fused Residual Block

Figure 3: Default residual block (a) and fused residual block (b).

FP32 Tensor for Classification. Convolution and global average pooling becomes the new operator
combination for image classification, which evolves from typical fully-connected operator. Mo-
bileNet Howard et al. (2017); Sandler et al. (2018) and SqueezeNet Iandola et al. (2016) are two
CNN models with such structure (shown in Figure 4). Our practice shows FP32 tensor output for
convolution is essential to keep the accuracy, while using INT8 computation inside convolution.
It improves INT8 Top1 accuracy by 6.4% and 1.4% for SqueezeNet-V1 0 and SqueezeNet-V1 1,
respectively.

(a) Classification in SqueezeNet (b) Classification in MobileNet

Figure 4: Classification using convolution and global average pooling.

4 EXPERIMENTAL RESULTS

With the general recipe of INT8 inference, we experiment the techniques and develop the calibration
tool on top of a widely-used deep learning framework . We next discuss the experimental configura-
tions and perform a systematical study on 18 classical CNN models. We demonstrate the effectiveness
of INT8 inference across a wide range of applications and use cases.

4.1 CALIBRATION TOOL FOR INT8 INFERENCE

We develop the calibration tool that automatically generates the optimized INT8 model from FP32
model without the need of fine-tuning or retraining. The calibration process has two inputs, CNN
model with pre-trained FP32 weights and calibration dataset. Besides, the tool provides the additional
items to facilitate the calibration process:

Iteration number. It allows user to define the iteration number for sampling on activation.

Scale factor mode. It allows user to define scale factor mode single or multiple (channel-wise).

Calibration strategy. It allows users to define the calibration algorithm (Direct or KL) to compute the
scale factor by 2p−1

max , where p is the quantization precision. Direct selects the maximum absolute value
of the tensor as max directly, while KL computes max in terms of the entropy loss of quantization
following the work in TensorRT.

6



Under review as a conference paper at ICLR 2019

Accuracy tuning. It allows users to define the accuracy loss tolerance on INT8 model. Calibration
process makes some operations fall back to FP32 to meet the accuracy goal.

4.2 EXPERIMENTAL SETUPS

We select totally 18 CNN models in our experiments in Table 1. Basically, we have three rules for
model selection: 1) it is classical and representative; 2) it comes from various use cases; and 3) it is
publicly available with pre-trained weight or is easy to train with existing hyper-parameters.

Table 1: Selected CNN Models

Topology Use Case Weight Topology Use Case Weight

VGG-16 IC
√

VGG-19 IC
√

ResNet-50 IC
√

ResNet-101 IC
√

ResNet-152 IC
√

ResNet-50 (FB) IC ×
MobileNet-V1 IC

√
MobileNet-V2 IC

√

Inception-V3 IC
√

Inception-ResNet-V2 IC
√

SqueezeNet-V1 0 IC
√

SqueezeNet-V1 1 IC
√

SSD (VGG-16) OD
√

SSD (MobileNet-V1) OD
√

Faster-RCNN (VGG-16) OD × R-FCN (ResNet-101) OD ×
FCN IS

√
FSRCNN SR ×

Topology column shows the selected CNN model. On ResNet-50, we use two versions, default one
from He et al. (2016) and variant one from FaceBook (with FB) Goyal et al. (2017). Use case column
shows the model category, IC (image classification), OD (object detection), IS (image segmentation),
and SR (super resolution). Weight column shows whether the pre-trained weight is publicly available.

With respect to calibration dataset, we use ImageNet-1k Russakovsky et al. (2015) for image classifi-
cation, PASCAL VOC Everingham et al. (2015) for object detection and image segmentation, and
internal gaming images for super resolution.

4.3 ACCURACY AND PERFORMANCE

We perform calibration on training dataset with sampling iteration from 1, 2, 5, 10, 20, to 30, scale
factor mode single or multiple, and different algorithm Direct or KL. The total calibration cost is
affordable since it takes seconds to minutes to complete each calibration. We measure the accuracy
on validation dataset independently from calibration dataset. Table 2 shows the best accuracy of CNN
models under INT8 inference. Note that we use standard metrics to measure the accuracy, Top1 and
Top5 for image classification, mAP (mean Average Precision) for object detection, mean accuracy
and IoU (Intersection of Union) for image segmentation, and SSIM (Structural SIMilarity) and PSNR
(Peak Signal-to-Noise Ratio) for super resolution. Our experiments demonstrate the effectiveness
across a wide range of use cases, keeping the accuracy loss from FP32 baseline, within 0.6% for Top1
and 0.3% for Top5 on image classification, 0.5% for mAP on object detection, 0.2% for mean IoU on
image segmentation, and 0.1% for PSNR on super resolution. Moreover, INT8 inference recipe also
works well for models ResNet-50/101/152 with sparsity removal Rodriguez et al. (2018).

On the other hand, we evaluate the errors of 50k images from ImageNet validation set for FP32 and
INT8 inference and find that there is no obvious bias at image class based on empirical analysis
on incorrectly-predicted images. With further analysis on typical images, we figure out that it is
more difficult for INT8 model to distinguish the objects with small differences. As an example,
INT8 model can recognize the dog (ILSVRC2012 val 00046423) correctly, but fails to figure out
the accurate breed. Moreover, we find that the information loss from FP32 to INT8 model may lead
to potential misclassification (e.g., ILSVRC2012 val 00031193). We also compute the entropy of
Softmax output for both FP32 and INT8 model. The results show the probability is average for INT8
model, which indicates the entropy increases and Top1 classification capability decreases.

On performance side, we measure the performance of INT8 inference and speedup over FP32
using dummy data, as shown in Table 2. We can see that the throughput and latency are improved

7



Under review as a conference paper at ICLR 2019

Table 2: Accuracy and Performance: FP32 VS. INT8

Topology Top1 Top5 Throughput Latency

VGG-16 68.18% (-0.16%) 88.32% (-0.05%) 156 (1.5X) 11.43 (1.3X)
VGG-19 68.28% (-0.17%) 88.27% (-0.11%) 126 (1.5X) 13.24 (1.3X)
ResNet-50 72.71% (-0.05%) 90.97% (-0.04%) 671 (1.7X) 2.50 (1.9X)
ResNet-101 73.92% (-0.10%) 91.72% (0.00%) 349 (1.6X) 6.48 (1.5X)
ResNet-152 74.48% (-0.27%) 92.00% (-0.11%) 234 (1.6X) 10.44 (1.5X)
ResNet-50 (FB) 76.40% (0.04%) 93.17% (-0.10%) 575 (1.7X) 2.72 (2.1X)
MobileNet-V1 69.58% (-0.29%) 89.14% (-0.22%) 2618 (1.9X) 0.81 (1.4X)
MobileNet-V2 71.07% (-0.53%) 90.00% (-0.24%) 2042 (2.0X) 1.43 (1.1X)
Inception-V3 77.15% (-0.06%) 93.31% (0.00%) 393 (1.7X) 5.33 (1.5X)
Inception-ResNet-V2 80.11% (-0.49%) 95.14% (-0.06%) 163 (1.6X) 15.27 (1.3X)
SqueezeNet-V1 0 57.32% (-0.24%) 80.04% (-0.26%) 1700 (1.9X) 0.82 (1.3X)
SqueezeNet-V1 1 57.85% (-0.19%) 80.68% (-0.12%) 2651 (1.8X) 0.74 (1.0X)
SSD (VGG-16)† 77.75% (0.03%) N/A 71 (1.5X) 23.91 (1.6X)
SSD (MobileNet-V1)† 72.07% (-0.47%) N/A 1038 (1.8X) 3.69 (2.1X)
Faster-RCNN† 71.05% (-0.42%) N/A 14 (1.5X) 72.72 (1.5X)
R-FCN† 78.87% (-0.29%) N/A 20 (1.6X) 50.43 (1.6X)
FCN‡ 82.00% (-0.21%) 69.73% (-0.11%) 8 (1.3X) 128.81 (1.3X)
FSRCNN§ 0.9000 (-0.0066) 29.65 (-0.11) 115 (1.3X) 27.76 (1.1X)

Top1 and Top5 shows the accuracy for image classification with (INT8, INT8 - FP32). The models
with †, ‡, and § use different accuracy metrics that are shown in Section 4.3. Throughput and latency
shows INT8 inference performance and speedup over FP32. Throughput is measured by images per
second on large batch size and latency is measured by milliseconds on single batch size.

by 1.6X and 1.5X in average and 2.0X and 2.1X as maximum, respectively. Please note that the
convolution improvement on INT8 over FP32 is 1.3X based on HW instructions support Rodriguez
et al. (2018) and therefore the latency improvement might be smaller for those non-computation-
intensive topologies (e.g., MobileNetV2).

4.4 DISCUSSION

To align the model with best accuracy, the above performance in Table 2 does not include INT8
Winograd convolution. We expect to deliver similar performance improvement of Winograd on INT8
as FP32 Lavin & Gray (2016) during our development. Different from previous work Vanhoucke
et al. (2011); Sze et al. (2017), we also experiment the first convolution using INT8 than FP32, which
shows reasonable accuracy within 1% loss.

Our experimental results also demonstrate the impact of calibration process on accuracy with different
sampling iteration, different calibration algorithm, or different scale factor mode. We summarize
our findings: (1) Channel-wise scaling factors can always deliver better accuracy than single scale
factor, especially for depthwise convolution; (2) Direct algorithm is more effective in most cases than
KL, while KL algorithm can deliver better accuracy than FP32 baseline in some cases; and (3) More
sampling iterations show more stable dynamic data rage and therefore better accuracy. How to select
the optimal calibration strategy is an interesting topic as one of our future directions.

5 CONCLUSION

In this paper, we propose the general recipe of INT8 inference and experiment the techniques on a
widely-used deep learning framework. We develop an automatic calibration tool for optimized INT8
model generation and demonstrate the effectiveness on 18 CNN models across a wide range of use
cases. The inference throughput and latency are improved by 1.6X and 1.5X respectively, while the
accuracy loss is minimal within 0.6% to no loss from FP32 baseline. We believe our methodology is
general for CNN models and can provide the guide and reference on other frameworks.

8



Under review as a conference paper at ICLR 2019

REFERENCES

François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint,
2016.

Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based fully
convolutional networks. In Advances in neural information processing systems, pp. 379–387, 2016.

Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes challenge: A retrospective. International journal of
computer vision, 111(1):98–136, 2015.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Philipp Gysel. Ristretto: Hardware-oriented approximation of convolutional neural networks. arXiv
preprint arXiv:1605.06402, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Kyuyeon Hwang and Wonyong Sung. Fixed-point feedforward deep neural network design using
weights+ 1, 0, and- 1. In Signal Processing Systems (SiPS), 2014 IEEE Workshop on, pp. 1–6.
IEEE, 2014.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. arXiv preprint arXiv:1712.05877, 2017.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4013–4021, 2016.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In European conference on computer vision,
pp. 21–37. Springer, 2016.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

9



Under review as a conference paper at ICLR 2019

Naveen Mellempudi, Abhisek Kundu, Dheevatsa Mudigere, Dipankar Das, Bharat Kaul, and Pradeep
Dubey. Ternary neural networks with fine-grained quantization. arXiv preprint arXiv:1705.01462,
2017.

Daisuke Miyashita, Edward H Lee, and Boris Murmann. Convolutional neural networks using
logarithmic data representation. arXiv preprint arXiv:1603.01025, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pp. 525–542. Springer, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
pp. 91–99, 2015.

Andres Rodriguez, Eden Segal, Etay Meiri, Evarist Fomenko, Young Kim, Haihao Shen, and Zach
Bamberger. Lower numerical precision deep learning inference and training. Intel AI Academy,
2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Inverted
residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation.
arXiv preprint arXiv:1801.04381, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. Going deeper with convolutions. Cvpr,
2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2818–2826, 2016.

Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of neural networks on
cpus. In Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop, volume 1, pp.
4. Citeseer, 2011.

Xiu-Shen Wei, Chen-Wei Xie, and Jianxin Wu. Mask-cnn: Localizing parts and selecting descriptors
for fine-grained image recognition. arXiv preprint arXiv:1605.06878, 2016.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolutional
neural networks for mobile devices. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4820–4828, 2016.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015.

10


	Introduction
	Related Work
	Recipe of INT8 Inference
	Quantization and De-quantization
	General Recipe
	Depthwise Convolution
	Winograd Convolution
	Topology-wise INT8 Support


	Experimental Results
	Calibration Tool for INT8 Inference
	Experimental Setups
	Accuracy and Performance
	Discussion

	Conclusion

