
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

O-FORGE: AN LLM + COMPUTER ALGEBRA FRAME-
WORK FOR ASYMPTOTIC ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have recently demonstrated advanced capabilities in solving
IMO and Putnam problems; yet their role in research mathematics has remained
fairly limited. The key difficulty is verification: suggested proofs may look plau-
sible, but cannot be trusted without rigorous checking. We present a framework,
called LLM+CAS, and an associated tool, O-Forge, that couples frontier LLMs
with a computer algebra systems (CAS) in an In-Context Symbolic Feedback loop
to produce proofs that are both creative and symbolically verified. Our focus is on
asymptotic inequalities, a topic that often involves difficult proofs and appropriate
decomposition of the domain into the “right” subdomains. Many mathematicians,
including Terry Tao, have suggested that using AI tools to find the right decom-
positions can be very useful for research-level asymptotic analysis. In this paper,
we show that our framework LLM+CAS turns out to be remarkably effective at
proposing such decompositions via a combination of a frontier LLM and a CAS.
More precisely, we use an LLM to suggest domain decomposition, and a CAS
(such as Mathematica) that provides a verification of each piece axiomatically.
Using this loop, we answer a question posed by Terry Tao: whether LLMs coupled
with a verifier can be used to help prove intricate asymptotic inequalities. More
broadly, we show how AI can move beyond contest math towards research-level
tools for professional mathematicians.

1 INTRODUCTION

Several fields of mathematics and computer science, like Analysis and Partial Differential Equa-
tions Hörmander (1983); Evans (2010), Analytical Number Theory Iwaniec & Kowalski (2004),
and Theoretical Computer Science Cormen et al. (2009), require proving O(·) estimates, otherwise
known as asymptotic inequalities. An asymptotic inequality, denoted by f ≪ g, or equivalently by
f = O(g), implies that there exists a positive constant C > 0 such that f ≤ Cg. In this paper, we
use the notation ≪, also known as Vinogradov notation.

It is widely known that proving asymptotic inequalities can be quite involved. For example, the
well-known Riemann Hypothesis is an asymptotic inequality of the following form: it states that if
π(x) is the number of primes that lie between 1 and x, then

π(x)−
∫ x

2

dt

log t
≪

√
x log x.

As another example, consider the following series:

S(h,m) :=

∞∑
d=0

2d+ 1

2h2
(
1 + d(d+1)

h2

)(
1 + d(d+1)

h2m2

)2 ≪ 1 + log(m2).

Proving such estimates as a key step in a proof is often the bread and butter of analytical number
theorists.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

On the face of it, proving this estimate seems extremely difficult, and the non-specialist may not even
know where to start. However, the old maxim of divide-and-conquer holds true here: if one is able
to find a decomposition of this series into smaller, more manageable components, then proving this
estimate may be trivial for those components Tao (2024). Putting these estimates together allows one
to prove the estimate for the whole series. Hence, the primary difficulty lies in finding such a “nice”
decomposition; once it is found, the proofs become trivial. Sadly, even professional mathematicians
may find it difficult to “guess” these decompositions Tao (2024).

Similarly, consider the following asymptotic inequality, which is as asymptotic version of the famous
Arithmetic Mean- Geometric Mean inequality Wikipedia contributors (2025):

(x1x2 . . . xn)
1/n ≪ x1 + · · ·+ xn

n
,

where each xi ≥ 0. Proving such estimates can be non-trivial for n ≥ 3. However, such proofs
become absolutely trivial if the correct decomposition of the domain D is found. In fact, given the
correct decomposition of D, the proofs become so simple that theorem provers, like SMT solvers and
Mathematica’s Resolve function, are able to complete these proofs using only first-order logic.

Fields medalist Terence Tao has stated that an AI-powered tool that can suggest such appropriate
decompositions, and then also prove the desired asymptotic inequality in each of those desired
subdomains, can be extremely useful for research mathematicians in several fields(Tao, 2025a; 2024).
In this paper, we present a tool aimed at realizing that vision.

In other words, we present an AI-powered tool that can quickly prove tricky estimates that may take
research mathematicians several hours, thereby providing them with a useful research companion
that can save them lots of time and effort.

O-FORGE: AN LLM+CAS TOOL FOR ESTABLISHING ASYMPTOTIC INEQUALITIES

We build an end-to-end system that we call O-Forge, that takes as input a conjectured asymptotic
inequality in latex format, and produces two outputs: (i) a decomposition of the domain into
appropriate sub-domains, and (ii) whether Mathematica’s Resolve function was able to prove this
estimate in each subdomains.

(** describe the structure of the prompt**) In more detail, our system works as follows: (i) accepts a
latex input from the user and prompts a frontier LLM to propose an effective decomposition of the
domain into subdomains, and (ii) uses a computer algebra system (CAS) to produce rigorous proofs
and hence certify the inequality over the whole domain. This proof is produced by the Resolve
function in Mathematica via quantifier elimination in first-order logic. The primary benefit of using
the Resolve function is that it is able to reliably prove estimates involving non-linear functions like
log and exp, that SMT Solvers like Z3, CVC5 and MetiTarski are unable to.

At this point in time, the tool is not designed to produce a formal proof (say, in Lean 4). Having
said that, Although the Resolve function only returns a True value if it is able to rigorously prove
the estimate, there is an element of trust involved, as it does not produce a proof object that can be
independently verified.

1.1 CONTRIBUTIONS.

• O-Forge An AI-powered tool that accepts as input a latex formula of an estimate, and
outputs whether the tool has been able to complete a proof of the estimate (cf. Fig. 1). We
have a dedicated website for this tool: o-forge.com.
Frontier LLMs often provide incorrect proofs of these estimates, and manually spotting these
errors can take a lot of time and effort. Our tool does away with this, and returns a “True”
value only when the estimate has been rigorously verified. This can save mathematicians a
lot of time and effort.
Note that being able to simply visit a website, put in a formula in latex, and get as an
output the proof status of the estimate, will be very helpful for mathematicians who are not
comfortable with cloning GitHub repositories and running code from the command line.

2

o-forge.com

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Case study 1: Asymptotic inequalities: Using our tool, we rigorously verify an asymptotic
inequality proposed by Terry Tao.

Such inequalities can often be non-trivial to prove, and standard tricks like Cauchy-Schwarz,
Jensen’s inequality, etc might not directly apply.

We follow a novel algorithm, as proposed by Tao, of first splitting the domain into the correct
subdomains, and then proving the estimate in each of those subdomains. The manner of this
splitting is suggested by a frontier LLM. If the correct splitting is found, then the difficulty
of the proof instantaneously changes from seemingly impossible to almost trivial, and the
Resolve function is able to complete such proofs.

• Case study 2: Series decomposition: Using O-Forge, we rigorously verify a series estimate
proposed by Terry Tao.

We first prompt a frontier LLM to find the correct way of decomposing the series into
manageable components, and then prove the estimate for each component separately. Put
together, this gives us a proof of the estimate for the entire series.

Again, we emphasize that proving such estimates without decomposing the series first would
prove exceedingly difficult, and almost no theorem prover, human or machine, would be
able to complete the proof.

Our primary novelty is in being able to automate proof completion for difficult research problems
that should take most research mathematicians lots of time and effort. No existing AI tools are able to
complete and symbolically verify proofs of this kind. Moreover, although frontier LLMs may be able
to produce some of these proofs, these proofs are often incorrect, and need to be manually verified.
Our tool does away with the need for manual verification.

2 FRAMEWORK: LLM-PROPOSED DECOMPOSITION + CAS VERIFICATION

We now elaborate on the steps mentioned in Fig. 1.

Step 1: Latex input The user inputs the conjectured estimate in the form of a Latex formula. This
is especially useful for mathematicians who may not have prior experience with programming, and
hence may be unable to run code from the command line.

Step 2: Decomposition proposal. The LLM proposes a finite cover D =
⋃k

i=1 Di (or 0 = d0 <
d1 < · · · < dk < ∞ for series) guided by cues such as dominant terms and monotonic regimes. The
proposal aims to localize each subproblem to simple comparisons (e.g., leading term domination,
dyadic thresholds).

Step 3: Regime-wise simplification. For expressions with rational structure, we extract numera-
tor/denominator leading behavior on each Di, enforcing positivity where required to avoid spurious
bounds. When denominators are not sums of positive terms, we guard against singular regions by
refining the split.

Step 4: Symbolic verification via Resolve. For each Di, we attempt

∀x ∈ Di : f(x) ≤ C g(x),

or in the series case, Sdi,di+1 ≤ C g, searching C over a finite grid (e.g., 1 to 104). Verification
succeeds if Resolve returns True; the global inequality holds if all pieces return a “Proved” or
“True” value.

This C = 104 value can of course be changed to an arbitrarily large number by the user. We keep it
at this value because most of the proofs that mathematicians need in their research are completed for
C < 10 (all the examples that we tested were completed for C ≤ 2).

0Mathematica’s Resolve can often decide formulas involving log and exp using quantifier elimination
over the reals, but it does not emit an externally verifiable proof object. SMT solvers like Z3/cvc5 have limited
capabilities for proving lemmas involving transcendental functions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

User input
LaTeX

Frontier LLM
proposes domain
decomposition

CAS (Mathematica): Resolve
verifies the truth value of the

estimate via quantifier elimination

Proof of inequality
f ≤ Cg

Figure 1: Workflow: The user puts in a conjectured estimate in latex notation; a frontier LLM
proposes a domain decomposition; a CAS (Resolve) performs quantifier elimination to rigorously
verify the required inequalities.

3 AN EXPLORATION OF ASYMPTOTIC ANALYSIS WITH O-FORGE

Mathematicians and computer scientists spend lots of time and effort proving asymptotic estimates in
their day-to-day work. We present two case studies below Tao (2024).

CASE STUDY 1: ASYMPTOTIC INEQUALITY

Let us study the following estimate:

xy ≪ x log x+ ey, (1)

where x, y ∈ R, and x ≥ 1, y ≥ 0. This is equivalent to the fact that there exists a positive constant
C such that

xy ≤ C(x log x+ ey),

where the constant of course is independent of x and y.

It is possible, with some analysis, to “guess” that such an estimate must be true. If y goes to ∞ at
roughly a comparable pace as x, then ey must dominate xy. If y stays constant and x → ∞, then
x log x must eventually dominate xy. One may think up other possibilities, like both x and y going
to ∞ but y approaching ∞ much slower than x, and convince themselves that such an estimate must
be true.

However, how does one go about proving this? One cannot prove this by using the standard tricks of
proving inequalities like completing squares, Cauchy-Schwarz, etc. The standard method of proving
this inequality is to find the correct way of decomposing the domain into sub-domains, and then
proving this estimate in each of those sub-domains Tao (2024).

But what sub-domains should we choose? After some trial and error, one may finally find the
following decomposition: y ≤ 2 log x and y > 2 log x. Within these sub-domains, proving this
estimate becomes trivial. We demonstrate an extremely short proof:

y ≤ 2 log x =⇒ y ≪ log x =⇒ xy ≪ x log x ≤ x log x+ ey.

y > 2 log x =⇒ x log x+ ey ≥ ey/2ey/2 ≥ xy.

As can be seen from the above proofs, the only “creative” step was to find the correct decomposition
of the domain into the sub-domains y ≤ 2 log x and y > 2 log x. This decomposition is certainly not
obvious at first, unless one has spent some time playing around with these inequalities. However,
once one is able to correctly identify this decomposition, the math proofs in themselves are trivial, and
can certainly be completed by a powerful computer algebra system without a human in the loop. We
delegate the task of guessing the correct decompositions to frontier LLMs like Gemini and ChatGPT,
which do a commendable job.

This approach is in part inspired from AlphaGeometry Trinh et al. (2024), where a specially trained
LLM is asked to predict the next useful construction in the process of writing an IMO geometry
proof, and then the proof is completed by an intricate proof system designed by the authors. It is our
belief that currently, LLMs are much better at guessing “next steps” and heuristics than generating
full proofs at one shot.

However, our work diverges from AlphaGeometry in two key aspects:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• There is no longer a need to train LLMs from scratch. This is informed by further work in
Alpha Proof, where the Google DeepMind teams simply took an off the shelf LLM, and
were able to perform reinforcement learning on it until it became good enough to win IMO
gold. Frontier LLMs are already extremely powerful at Math, and we can leverage this
prowess to ‘guess” the correct decomposition of the domain.

• We use Mathematica’s Resolve function to verify the truth value of the estimate in each
subdomain. This function returns a True value only if it is able to complete a proof using
quantifier elimination over the reals. Hence, one can be assured that if the Resolve function
returns a True value, then the proof has indeed been completed.
One major drawback of using LLMs for mathematical research is that the proofs that they
present are often incorrect, and verifying them is very time intensive. Coupling a powerful
LLM with a verifier like Mathematica does away with this painful verification process. If
Mathematica returns ”Proved”, then the mathematician may be assured that the estimate is
indeed true.

CASE STUDY 2: SERIES DECOMPOSITION

Let us now analyze the following series proposed by Terry Tao (2024):

S(h,m) :=

∞∑
d=0

2d+ 1

2h2
(
1 + d(d+1)

h2

)(
1 + d(d+1)

h2m2

)2 ≪ 1 + log(m2). (2)

Such estimates come up regularly in analytic number theory. However, proving it directly may seem
almost impossible.

The way that one generally attacks such problems is by breaking this series up into different com-
ponents, such that proving this estimate for each component may be trivial. For instance, a rigor-
ous training in analysis may inform the reader that the natural breaking points for this series are
{⌈h⌉, ⌈hm⌉}. This is for the following reasons:

• if d lies between 0 and ⌈h⌉, then the summand can be approximated as d+1
h2 .

• if d lies between ⌈h⌉ and ⌈hm⌉, then the summand can be approximated as 1
d .

• If d lies between ⌈hm⌉ and ∞, then the summand can be approximated as h4m4

d5 .

In all the above cases, the sum of such approximations over their respective ranges can be trivially
shown to be ≪ 1 + logm2.

Hence, there are two non-trivial creative jumps. The first is to “guess” the correct decomposition of
the series into sub-series, and then the second step is to find the correct simplification of the summand
in each regime, so as to be able to prove the estimate.

We use a frontier LLM to “guess” the correct decomposition, and use elaborate Mathematica code
to find the correct simplification of the summand in each regime. We don’t use LLMs for the latter
purpose for the following reasons:

• Frontier LLMs are not always reliable at finding these simplifications. Making API calls to
Gemini, for example, only sporadically gave us the correct simplifications.

• Finding these simplifications is equivalent first simplifying the summand, and then finding
the leading order term in both the numerator and the denominator. Clearly, if the numerator
and denominator are a sum of finite numbers of terms, then the summand ≪ ratio of these
leading order terms. Because we use the Resolve function to choose the leading order
terms, we can be guaranteed that we’re getting the correct answer.

• The final proof of the estimate is completed by Mathematica anyway.

In a well-defined sense, the accuracy of the LLM output is the bottleneck; and robust design principles
indicate that one must minimize the number of bottlenecks in any workflow. Therefore, we only

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

prompt the LLM once in the entire process, and the rest of the proof completion is carried out by
Mathematica. In fact, we now have a domain o-forge.com, where you can try and prove these
inequalities and series estimates yourself.

CHOICE OF COMPUTER ALGEBRA SYSTEM

We choose the Resolve function in Mathematica for the following reasons:

One may use Lean, and powerful Lean tactics like “aesop” and “simp” to complete proofs of
trivial statements. In fact, there exist powerful technologies like Lin et al. (2025) that can suggest
useful tactics in order to semi-automate proof-generation. However, we found such tactics woefully
inadequate for proof completion when transcendental functions like log and exp are involved. For
example, even in Terry’s attempt to create such a tool Tao (2025b), he is using the linarith tactic in
Lean, which cannot complete proofs for non linear functions.

The Resolve function, on the other hand, is able to complete such proofs with ease.

One may also use SMT solvers for proof completion; however, there are severe limitations in using
those. Z3, which is the most popular SMT solver currently, is unable to handle transcendental
functions. CVC5 and MetiTarski, which are able to handle transcendental functions, were not able to
reliably complete even the simplest proofs. For example, both CVC5 and MetiTarski were unable to
complete the following proof:

log x ≤ log y =⇒ exp(x) ≤ exp(y).

Taking inspiration from AlphaGeometry, we also tried to write down functions that could carry out
algebraic manipulations in order to complete proofs. However, the space of algebraic manipulations is
much larger than in IMO geometry. Hence, creating such a list would almost certainly be prohibitive.

We then learned about Mathematica’s Resolve function, and it was surprisingly able to prove
almost every simple estimate we threw at it. Moreover, because Resolve uses quantifier elimination
over the reals, it returns True only when it is able to “legally” complete a proof.

One drawback of using a closed source software like Mathematica is that it does not produce a proof
object that can be externally verified. However, based on our experiences of testing O-Forge with
several estimates, we believe that Mathematica’s Resolve function is the superior option for this
particular application.

Note that Maple also has a powerful proof completion tool called QuantifierElimination.
However, it has the same drawback as Mathematica, in that it doesn’t produce a proof term. SageMath
also has something similar called qepcad(...). However, it is nowhere as powerful as Resolve.

4 IMPLEMENTATION

We first make an API call to a frontier LLM to find the correct decomposition. We use a structured
prompt so as to get the correct answer reliably:

<code_editing_rules>
<guiding_principles>
-
</guiding_principles>

<task>
-
</task>

<requirements_for_breakpoints>
-
</requirements_for_breakpoints>

<output_format>

6

o-forge.com

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

-
</output_format>

</code_editing_rules>

We then pass the output from the LLM into Mathematica. The API call to a locally run copy of
Mathematica simply consists of various modules and commands. We provide a short snippet below.

Resolve[ForAll[{series.other_variables},
-
logForm["Resolve results", res2];

If[AllTrue[res2,TrueQ],True,res2]

The result from the Mathematica computation consists of True/False statements for each subdomain
of the decomposition. If “True” is returned for each subdomain, the code prints ”Proof verified”.

The package also includes a simple CLI:
decomp prove question <id> for inequalities
decomp series series <id> for series decompositions.

Internally, llm client.py proposes splits; mathematica export.py invokes
wolframscript to run Resolve. A lightweight overview with examples is provided in
Anonymous (2025).

5 EMPIRICAL EVALUATION

In addition to the above-mentioned case study of hard problems, we tested our tools on an extensive
suite of around 40-50 easier problems, in order to study how well it performs on a diverse set of
inequalities.

This dataset consisted of problems like proving the estimate that
∞∑

n=1

1

np
≪ 1

if p > 1, proving the estimate that
∞∑

n=1
rn ≪ 1 if |r| < 1, etc.

We observe the following:

• Generally, for a 2 or 3 variable function, a small number of decompositions (k ≤ 4) is
sufficient for proof completion by the CAS. This is surprising, as there may be problems
which require a very large number of decompositions. However, our experience was that the
number of decompositions grows linearly with the number of variables, although there is no
a priori reason to expect that.

• Subdivisions based on orderings of the variables are common, and mostly robust, especially
for functions that are symmetric in all variables;

• Regime-wise leading-term replacement is sufficient for the computer algebra system to be
able to complete proofs. Without this simplification, Mathematica’s Resolve function
falters. For example, without this simplification, Mathematica tries to find a closed form
expression for the series in terms of gamma functions, and is then unable to complete proofs
using Resolve.

In summary we observe that our approach is robust, and is able to prove a wide variety of asymptotic
inequalities.

6 RELATED WORK

LLM+CAS framework. AlphaGeometry Trinh et al. (2024) is a pioneering tool that uses LLMs
to come up with the “creative” step in mathematical problem solving, and then using a symbolic

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

verifier to actually complete the proof. The one drawback in AlphaGeometry is that it is prohibitively
difficult to generalize it to domains that are not as constrained in scope as IMO plane geometry. For
instance, generalizing AlphaGeometry to prove asymptotic estimates would be very challenging, as
the space of possible algebraic manipulations is much larger than that of plane geometry calculations.

Key differences: We bypass that problem by using frontier LLMs and versatile computer algebra
systems like Mathematica, which, put together, are able to convincingly solve a wide variety of
problems right out of the box.

Lean tactics. Terence Tao has also contributed to a tool Tao (2025b) via which they are able to
generate Lean proofs for linear estimates; they do so by using several powerful Lean tactics like
“Linarith”. Such approaches have the advantage of being able to generate proofs certificates. On the
other hand, they are unable to deal with functions like log or exp.

Key differences: We extend this work greatly by being able to prove estimates for a much more
general class of functions like transcendental functions, and also being able to verify estimates for
series like Eq. (2).

Autoformalization. LLMs have also been fundamentally useful in autoformalization via tools
like GoedelProver and Kimina-Autoformalizer Lin et al. (2025); AI-MO (Project Numina) (2025).
Autoformalization can certainly be a powerful tool in the near future for proving the estimates
that are currently being proven by the Resolve function. However, the current autoformalization
technologies have primarily focused on contest math, and are unable to reliably generate proofs for
research-level math; we find Mathematica’s Resolve function to be better suited to such tasks.

Positioning our contributions. O-Forge makes several novel contributions relative to other AI for
Math tools:

This is one of the first AI-powered tools that is useful for research-level mathematics today. A lot of
development in the mathematical capabilities of LLMs has focused on making them better at contest
mathematics like the IMO or Putnam. However, those capabilities have not extended to research-level
math. O-Forge is able to prove estimates that research mathematicians spend considerable time and
effort proving on a regular basis.

Using frontier LLMs for research purposes can be frustrating, as they often provide incorrect proofs
with a high degree of confidence, and such proofs need to be painfully checked before they are
recognized to be incorrect. Our LLM+CAS framework avoids this problem by directly verifying the
estimate on every subdomain suggested by the LLM. Hence, a human-in-the-loop is not needed.

The setup itself is completely painless, and suitable for mathematicians who may lack coding and
other computer skills. Being able to just go on to o-forge.com, put in a latex formula, and
check whether their conjectured estimate is correct, will hopefully lead to a rapid adoption by the
mathematical community.

7 LIMITATIONS AND FUTURE WORK

Proof objects. Resolve does not produce proof objects that can be independently verified, but
only carries out symbolic verification. The Resolve function only returns a “True” value if has
been able to complete a proof using quantifier elimination over the reals. However, we acknowledge
that there is still an element of trust involved; that a closed-source company like Wolfram is indeed
performing the correct manipulations “under the hood”.

For our purposes, we are unable to use other technologies because none of them are able to complete
non-trivial proofs like Resolve is. However, we hope that autoformalization becomes powerful
enough in the future that we are able to delegate such proof completions to such a tool.

Summand upper bounds. Currently, we simplify the summand of the series by extracting the
leading order term from both the numerator and the denominator. This may not be valid simplification
for more complex summands, and perhaps performing RLHF on an off-the-shelf LLM would allow
us to obtain correct simplifications more generally.

8

o-forge.com

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY

Code and CLI usage, along with worked examples, are available at Anonymous (2025). The repository
requires Python 3.9+, access to a locally run copy of Mathematica via wolframscript, and access
to a frontier LLM via an API key (details in the README).

We also have a user-friendly website: o-forge.com. This accepts inputs in latex format, and
outputs the truth value of the estimate after producing a rigorous proof using quantifier elimination
over the reals.

9 ETHICS STATEMENT

We gladly acknowledge the ICLR Code of Ethics.

This work requires access to expensive technologies like Mathematica and frontier LLMs. The costs
involved may be prohibitive for researchers outside of university systems with access to such tools.

10 CONCLUSION

Mathematical arguments can often be reduced to verifying routine but time–consuming estimates.
For analysts and theoretical computer scientists, these often take the form of asymptotic inequalities,
and proving these can take several hours and days.

The difficulty here is two-fold: first, the correct decomposition of the domain or series must be
found, which in most cases can be highly non-trivial. Second, the estimate must be verified in each
subdomain, which requires lots of simplification and heuristic arguments.

We present O-FORGE, which prompts a frontier LLM to propose domain decompositions, and
then validates the asymptotic estimate symbolically with Mathematica’s Resolve function. This
provides mathematicians with a useful tool that can do the tedious job of verifying these research-level
estimates for them. In moving beyond contest math, we present a tool that can be genuinely useful
for mathematical research.

REFERENCES

AI-MO (Project Numina). Kimina-autoformalizer-7b, 2025. URL https://huggingface.co
/AI-MO/Kimina-Autoformalizer-7B. Hugging Face model card, Apache-2.0 license.
Accessed: 2025-09-24.

Anonymous. Decompositions project (anonymized repository), 2025. URL https://github.c
om/mathleancas/iclr-repo-2026. Accessed 2025-09-20.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, 3rd edition, 2009. ISBN 978-0-262-03384-8.

Lawrence C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, 2nd edition, 2010. ISBN 978-0821849743.

Lars Hörmander. The Analysis of Linear Partial Differential Operators I. Springer, 1983. ISBN
978-3540123266.

Henryk Iwaniec and Emmanuel Kowalski. Analytic Number Theory, volume 53 of American
Mathematical Society Colloquium Publications. American Mathematical Society, 2004. ISBN
978-0821836330.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou
Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover: A frontier model for open-source
automated theorem proving, 2025. URL https://arxiv.org/abs/2502.07640. Project
page: https://goedel-lm.github.io/.

9

o-forge.com
https://huggingface.co/AI-MO/Kimina-Autoformalizer-7B
https://huggingface.co/AI-MO/Kimina-Autoformalizer-7B
https://github.com/mathleancas/iclr-repo-2026
https://github.com/mathleancas/iclr-repo-2026
https://arxiv.org/abs/2502.07640

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Terence Tao. What mathematical problems can be attacked using deepmind’s recent mathematical
breakthroughs? (mo answer), 2024. URL https://mathoverflow.net/questions/4
63937/what-mathematical-problems-can-be-attacked-using-deepmin
ds-recent-mathematical/463940. Accessed 2025-09-20.

Terence Tao. A proof of concept tool to verify estimates, May 2025a. URL https://terrytao
.wordpress.com/2025/05/01/a-proof-of-concept-tool-to-verify-est
imates/. Accessed 2025-09-20.

Terence Tao. estimates: Code to automatically prove or verify estimates in analysis. https://gith
ub.com/teorth/estimates, 2025b. Commit version as of <insert-hash-or-date>;
Apache-2.0 License.

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625:476–482, Jan 2024. doi: 10.1038/s41586-023-06747
-5. URL https://www.nature.com/articles/s41586-023-06747-5. Accessed
2025-09-21.

Wikipedia contributors. Am–gm inequality — Wikipedia, the free encyclopedia, 2025. URL
https://en.wikipedia.org/wiki/AM%E2%80%93GM_inequality. Accessed:
2025-09-24.

A USE OF LLMS IN PAPER PREPARATION

We have used LLMs to collect .bib references of papers, help make a TikZ diagram, and to discuss
the structure of the paper. We have also used it to troubleshoot some issues in our code, as well as
polish some portions of the writing.

B APPENDIX: MINIMAL USAGE

pip install -r requirements.txt
export WOLFRAMSCRIPT=/path/to/wolframscript # if needed
Add a Gemini API key in the .env file Add a problem to examples.py, then run decomp prove
question X or decomp series series Y.

You may also use the website o-forge.net

10

https://mathoverflow.net/questions/463937/what-mathematical-problems-can-be-attacked-using-deepminds-recent-mathematical/463940
https://mathoverflow.net/questions/463937/what-mathematical-problems-can-be-attacked-using-deepminds-recent-mathematical/463940
https://mathoverflow.net/questions/463937/what-mathematical-problems-can-be-attacked-using-deepminds-recent-mathematical/463940
https://terrytao.wordpress.com/2025/05/01/a-proof-of-concept-tool-to-verify-estimates/
https://terrytao.wordpress.com/2025/05/01/a-proof-of-concept-tool-to-verify-estimates/
https://terrytao.wordpress.com/2025/05/01/a-proof-of-concept-tool-to-verify-estimates/
https://github.com/teorth/estimates
https://github.com/teorth/estimates
https://www.nature.com/articles/s41586-023-06747-5
https://en.wikipedia.org/wiki/AM%E2%80%93GM_inequality
o-forge.net

	Introduction
	Contributions.

	Framework: LLM-proposed decomposition + CAS verification
	An exploration of asymptotic analysis with O-Forge
	Implementation
	Empirical Evaluation
	Related Work
	Limitations and Future Work
	Reproducibility
	Ethics Statement
	Conclusion
	Use of LLMs in Paper preparation
	Appendix: Minimal Usage

