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ABSTRACT

While Bayesian optimization (BO) has achieved great success in optimizing
expensive-to-evaluate black-box functions, especially tuning hyperparameters of
neural networks, methods such as random search (Li et al., 2016) and multi-
fidelity BO (e.g. [Klein et al.|(2017)) that exploit cheap approximations, e.g. train-
ing on a smaller training data or with fewer iterations, can outperform standard
BO approaches that use only full-fidelity observations. In this paper, we propose
a novel Bayesian optimization algorithm, the continuous-fidelity knowledge gra-
dient (cfKG) method, that can be used when fidelity is controlled by one or more
continuous settings such as training data size and the number of training itera-
tions. cfKG characterizes the value of the information gained by sampling a point
at a given fidelity, choosing to sample at the point and fidelity with the largest
value per unit cost. Furthermore, cfKG can be generalized, following Wu et al.
(2017), to settings where derivatives are available in the optimization process, €.g.
large-scale kernel learning, and where more than one point can be evaluated si-
multaneously. Numerical experiments show that cfKG outperforms state-of-art
algorithms when optimizing synthetic functions, tuning convolutional neural net-
works (CNNs) on CIFAR-10 and SVHN, and in large-scale kernel learning.

1 INTRODUCTION

In hyperparameter tuning of machine learning models, we seek to find a set of hyperparameters z in
some set A to minimize the validation error f(z), i.e., to solve

i 1.1
min f(x) (1.1)
Evaluating f(x) can take substantial time and computational power (Bergstra & Bengio, [2012)), and
may not provide gradient evaluations. Thus, machine learning practitioners have turned to Bayesian
optimization for solving (I.1)) (Snoek et al., 2012) because it tends to find good solutions with few
function evaluations (Jones et al., [1998)).

As the computational expense of training and testing a modern deep neural network for a single set
of hyperparameters has grown as long as days or weeks, it has become natural to seek ways to solve
more quickly by supplanting some evaluations of f(z) with computationally inexpensive low-
fidelity approximations. Indeed, when training a neural network or most other machine learning
models, we can approximate f(x) by training on less than the full training data, or using fewer
training iterations. Both of these controls on fidelity can be set to achieve either better accuracy or
lower computational cost across a range of values reasonably modeled as continuous.

In this paper, we consider optimization with evaluations of multiple fidelities and costs where the
fidelity is controlled by one or more continuous parameters. We model these evaluations by a real-
valued function g(z, s) where f(z) := g(x,1,,) and s € [0,1]™ denotes the m fidelity-control
parameters. g(x, s) can be evaluated, optionally with noise, at a cost that depends on x and s. In
the context of hyperparameter tuning, we may take m = 2 and let g(x, s1, s2) denote the loss on the
validation set when training using hyperparameters = with a fraction s; of the training data and a
fraction so of some maximum allowed number of training iterations. We may also set m = 1 and let
s index either training data or training iterations. We assume A is a compact connected uncountable
set into which it is easy to project, such as a hyperrectangle.
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This problem setting also appears outside of hyperparameter tuning, in any application where the
objective is expensive to evaluate and we may observe cheap low-fidelity approximations parame-
terized by a continuous vector. For example, when optimizing a system evaluated via a Monte Carlo
simulator, we can evaluate a system configuration approximately by running with fewer replications.
Also, when optimizing an engineering system modeled by a partial differential equation (PDE), we
can evaluate a system configuration approximately by solving the PDE using a coarse grid.

Given this problem setting, we use the knowledge gradient approach (Frazier et al.,[2009)) to design
an algorithm to adaptively select the hyperparameter configuration and fidelity to evaluate, to best
support solving (I.1). By generalizing a computational technique based on the envelope theorem
first developed in Wu et al.[ (2017), our algorithm supports parallel function evaluations, and also
can take advantage of derivative observations when they are available. This algorithm chooses the
point or set of points to evaluate next that maximizes the ratio of the value of information from
evaluation against its cost.

Unlike most existing work on discrete- and continuous-fidelity Bayesian optimization, our approach
considers the impact of our measurement on the future posterior distribution over the full feasi-
ble domain, while existing expected-improvement-based approaches consider its impact at only the
point evaluated. One exception is the entropy-search-based method [10], which also considers the
impact over the full posterior. Our approach differs from entropy search in that it chooses points
to sample to directly minimize expected simple regret, while entropy search seeks to minimize the
entropy of the location or value of the global optimizer, indirectly reducing simple regret.

‘We summarize our contributions as follows.

Contributions of this paper:

e We develop a novel Bayesian Optimization algorithm, the continuous-fidelity knowledge
gradient (cfKG) method, which chooses the point and fidelity to sample next that maxi-
mizes the ratio of the value of information to its cost;

o After first developing this algorithm in the sequential derivative-free setting, and inspired
by Wu et al.|(2017), we generalize to settings where function evaluations may be performed
in parallel, and where we can access possibly noisy and biased gradient information.

e We show that our algorithm outperforms a number of start-of-art benchmark algorithms
when optimizing common synthetic functions, tuning convolutional neural networks on
CIFAR-10 and SVHN, and in a large-scale kernel learning example.

The rest of the paper is organized as follows. Sect.[2|reviews related work. Sect.[3|presents the cfKG
method. Sect.[d]tests cfKG on benchmarks including synthetic functions and hyperparameter tuning
for deep learning and kernel learning. Sect. [5|concludes.

2 RELATED WORK

Algorithms exploiting inexpensive low-fidelity approximations for hyperparameter tuning have been
proposed both within and outside the field of Bayesian optimization.

Outside of Bayesian optimization, |Li et al.| (2016) develops an early-stopping method called Hyper-
band that can outperform traditional Bayesian optimization when tuning hyperparameters within a
random search framework by adaptively allocating a single predefined resource that can be taken
to be the number of training iterations or the amount of training data. In contrast to Hyperband we
allow more than one fidelity control, support derivative observations, and use one-step optimality in
terms of value vs. cost to select the point or points to sample. We compare against Hyperband in our
numerical experiments, and show improved performance training a convolutional neural network.

Using a modified expected improvement (EI) acquisition function, Huang et al.| (2006) and [Lam
et al.| (2015) develop methods for multi-fidelity settings with a finite discrete set of low-fidelity
approximations. We call this the “discrete-fidelity setting” to contrast it with the continuous-fidelity
setting we consider here. We do not compare against discrete-fidelity methods in our numerical
experiments as both [Kandasamy et al.| (2017) and Klein et al.|(2017) show that continuous-fidelity
methods can find good solutions in continuous-fidelity problems as much as an order of magnitude
faster than discrete-fidelity ones.
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In the specific context of hyperparameter tuning, [Domhan et al.| (2015) proposes a simple early
stopping criterion combined with SMAC (an EI acquisition function with a random forest based
statistical model) in which evaluation of a configuration is stopped if its performance is predicted to
be worse than the current best configuration.

Kandasamy et al.| (2016) generalizes the upper confidence bound (UCB) criteria to the discrete-
fidelity setting, and further generalizes to continuous fidelities in [Kandasamy et al.| (2017). We
compare against|Kandasamy et al.|(2017) in our numerical experiments, finding that cfKG provides
improved performance when the budget is sufficiently large. This may be because the UCB criteria
was originally designed for minimizing the cumulative regret and not simple regret, with the simple
regret bounds resulting from theoretical analysis of cumulative regret being loose enough to be con-
sistent with the empirical performance gap we observe in our experiments. It may also be because
both [Kandasamy et al.| (2016) and |[Kandasamy et al.| (2017)) use a two-stage process in which the
point to evaluate is selected without considering the fidelity, and the fidelity only selecting after-
ward. In contrast, cfKG selects the point and fidelity jointly, and considers the impact of fidelity
choice on the best point to sample.

Entropy search has also been extended to the discrete-fidelity setting by Swersky et al.|(2013)). Con-
sidering training iterations as a one-dimensional continuous fidelity control, Swersky et al.| (2014)
generalizes Swersky et al| (2013)) to this specific continuous-fidelity setting. |Klein et al,| (2017)
adapts entropy search to settings where the size of the training data is a one-dimensional continuous
fidelity control. McLeod et al.|(2017) extends predictive entropy search to settings with one fidelity
control and provides a faster way to compute the acquisition function.

Poloczek et al|(2017) develops a knowledge gradient method for the discrete-fidelity setting, but
does not consider the continuous-fidelity setting. Our computational techniques are quite different
from the ones developed there, as necessitated by our consideration of continuous fidelities. As an
advantageous byproduct, our computational techniques also avoid the need to discrete A.

This paper proposes the first knowledge gradient method for continuous-fidelity settings, and show
how to generalize it to the batch and derivative-enabled settings by generalizing the computational
technique developed in|Wu et al.[(2017). To the best of our knowledge, this is the first multi-fidelity
batch Bayesian optimization algorithm. The relationship of this paper to the existing multi-fidelity
BO literature is summarized in Table. [1]

Literature EI/ SMAC Entropy Search UCB Knowledge
summary Gradient
Discrete- Huang et al.| (2000); | |[Swersky et al.[{(2013) | |Kandasamy Poloczek
fidelity Lam et al.|(2015) et al.[(2016) et al.[|(2017)
Continuous- || [Domhan et al[(2015) | [Swersky et al[(2014); | [Kandasamy | | This paper |
fidelity Klein et al.| (2017); | fet al. (2017)

McLeod et al.| (2017)

Table 1: Summary of the multi-fidelity BO literature.

Our method is also related to knowledge gradient methods for single-fidelity BO. In particular,
the way in which we extend cfKG from the sequential (one evaluation at a time) derivative-free
setting to allow batches of points and gradient observations follows work extending single-fidelity
knowledge-gradient methods to the batch and derivative settings in [Wu & Frazier| (2016) and [Wu
et al.[(2017). We also generalize the envelope-theorem based computational technique developed for
the single-fidelity setting in|Wu et al.|(2017)) to continuous fidelities. We compare with single-fidelity
knowledge gradient methods in our numerical experiments, and show that cfKG is able to levarage
inexpensive low-fidelity observations to provide improved performance in both derivative-free and
derivative-enabled settings.

3 CONTINUOUS-FIDELITY KNOWLEDGE GRADIENT

In this section, we propose the continuous-fidelity knowledge gradient (cfKG), a novel Bayesian
optimization algorithm that exploits inexpensive low-fidelity approximations. This algorithm, like
most Bayesian optimization algorithms, consists of a statistical model and an acquisition function.
cfKG proceeds iteratively by fitting the statistical model (described below in Section to all
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previously sampled (point, fidelty) pairs, and then finding and sampling the (point, fidelity) pair
that maximizes the acquisition function. Once the budget is exhausted, at some iteration N, cfKG
returns as its final solution the point with the lowest estimated g(z, 1,,).

To describe cfKG in detail, Sect. first describes Gaussian process regression for modeling both
g(x, s) and its cost of evaluation. This approach is standard, with the novelty arising in cfKG’s
acquisition function and how we optimize it. Then, Sect. [3.2]presents the cfKG acquisition function,
which values sampling a (point, fidelity) pair according to the ratio of the value of the information
gained from sampling that point at that fidelity, to the cost of doing so. Sect. [3.3] generalizes an
envelope-theorem based computational technique developed in Wu et al.| (2017) to efficiently maxi-
mize this acquisition function. We discuss extensions to the derivative-enabled setting in Sect.

3.1 GAUSSIAN PROCESSES

We put a Gaussian process (GP) prior (Rasmussen & Williams| 2006) on the function g or its loga-
rithm. We describe this procedure placing the prior on g directly, and then discuss below when we
recommend instead placing it on (z, s) — log g(z, s). The GP prior is defined by its mean function
p© 0 A x [0,1]™ ~ R and kernel function K(©) : {A x [0,1]™} x {A x [0,1]™} + R. These
mean and kernel functions have hyperparameters, whose inference we discuss below.

We assume that evaluations of g(z, s) are subject to additive independent normally distributed noise
with common variance o2. We treat the parameter o2 as a hyperparameter of our model, and also
discuss its inference below. Our assumption of normally distributed noise with constant variance is
common in the BO literature (Klein et al., [ 2017)).

The posterior distribution of ¢ after n function evaluations at points z(™) =
{(:C(l),S(l))’ (x(2)’3(2))7... ,(x("),s("))} with observed values y(lzn) — {y(l)’y@)’ - 7y(n)}
remains a Gaussian process (Rasmussen & Williams| [2006), and g | z(l:"), y(lin) ~ GP(p", K("))
with 4" and K (™) evaluated at a point z = (z, s) (or pair of points z, Z = (Z, §)) given as follows

-1
1) = 1 (2) 4 K© (Z7Z(1:n)) (K(o)(z(1:n>7z(1:n)) i 02]) (y(lzn) _ M(z(l:n))) 7

-1
K™ (2,5) = KO(z,3) - K© (Z72<1:n>) (K<o>(z<1:n>7z<1:n>) +021> KO (Zu:n)’g) _
(3.1)

This statistical approach contains several hyperparameters: the variance o2, and any parameters in
the mean and kernel functions. We treat these hyperparameters in a Bayesian way as proposed in
Snoek et al.| (2012)).

When g is the validation error in a hyperparameter optimization problem, we recommend putting a
GP prior on log g(z, s), rather than on g(x, s) directly, because (1) g(x, s) is nonnegative and will
be allowed to be negative after log scaling, better matching the range of values assumed by the GP,
and (2) because g(x, s) can climb steeply over several orders of magnitude as we move away from
the optimal =, making log g(z, s) easier to model.

We analogously train a separate GP on the logarithm of the cost of evaluating g(z, s).

3.2 THE CFKG ACQUISITION FUNCTION

c¢fKG samples the point and fidelity that jointly maximize an acquisition function, which we define
in this section by adopting the knowledge gradient concept (Frazier et al., 2009) in the continuous-
fidelity setting to value the information gained through one additional sample.

If we were to stop sampling after n samples, we would select as our solution to (I.T) a point = with
minimum estimated validation error (") (z,1,,), and this point would have a conditional expected
validation error of minges p(™ (z, 1,,) under the posterior. If instead we took an additional sample
at ("1 with the fidelity s("*1), then the minimum expected validation error under the result-
ing posterior would become min s 1"+ (x, 1,,). This quantity depends on z("+1) and s(*+1)
through the dependence of 1("*t1)(z,1,,) on the point and fidelity sampled, and is random under
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the posterior at iteration n because 1("*1)(z,1,,) depends on the observation y("*+1). We discuss
this dependence explicitly in Sect. [3.3]

The value of the information gained by sampling at z("*1) with the fidelity s(**1) conditioned
on any particular outcome y("*+1) is thus the difference of these two expected validation errors
minges ™ (z,1,,) — mingea ptn) (z,1,,). We then take the expectation of this difference, over
the random outcome y("“), to obtain the (unconditional) value of the information gained, and take
the ratio of this value with the cost of obtaining it to obtain the cfKG acquistion function,

ming M(n) (@', 1) — Ep [minz/eA /~L(n+1)(x/a L) | gt = ) stl) = s]

cfKG(z, s) = :(3.2)

cost(™ (x, s)

where cost(™)(z, s) is the estimated cost of evaluating at 2 with the fidelity s based on the obser-
vations available at iteration n, according to the GP described in Sect. and [E,, indicates the
expectation taken with respect to the posterior given (1™ s(1:1) 4 (1),

The cfKG algorithm chooses to sample at the point and fidelity that jointly maximize the cfKG
acquistion function

et 33
($73)g11§}<)[(0’1]m ¢ ('I7 S) ( )

Although this acquisition function considers the expected value of an improvement due to sam-
pling, it differs from expected improvement approaches such asLam et al.|(2015)) because the point
at which an improvement occurs, argmax,c At (2, 1,,) may differ from the point sampled.
Moreover, this acquisition function allows joint valuation of both the point x and the fidelity s,
while approaches such as [Lam et al.| (2015) require valuing a point x assuming it will be evaluated
at full fidelity and then choose the fidelity in a second stage.

cfKG generalizes naturally to batch settings where we can evaluate multiple (point, fidelity)
pairs at once. We value joint evaluation of ¢ > 1 points 1., at fidelities sq.,, where z1., =
((z1,81), ..+, (g, 54)), bY

ming ep ™ (27, 1) — By [mingrep p0 (27, 1,) | 201040 = 24 ]

q-cfKG(21.4) = e ) ,
(3.4)

We then modify (3.3)) by sampling at the batch of points and fidelities that maximize
-cfKG( 2. 3.5
o2 g TETKOC) @9

Although we have defined the cfKG algorithm’s sampling decision theoretically, (3.3)) or (3.3) are
challenging optimization problems and naive brute-force approaches are unlikely to produce high-
quality results with a reasonable amount of computation. Thus, in the next section, we discuss
efficient computational methods for solving and (3.5).

3.3 ENVELOPE-THEOREM-BASED COMPUTATIONAL METHOD

In this section, we describe computational methods for solving (3.3) and (3.5). We describe our
method in the context of (3.3)), and observe that (3.3) is a special case.

We generalize a recently proposed envelope-theorem based computational method developed for
single-fidelity optimization in|Wu et al.[(2017)), which is used to provide unbiased estimators of both
g-cfKG and its gradient. We then use stochastic gradient ascent to optimize the q-cfKG acquistion
function, optionally with multiple starts.

3.3.1 ESTIMATING Q-CFKG

To support computation, we express M("J”J)(z, 1,,,) that results from a chosen batch of points and
fidelities (" 1+ = 2, as

;L(”J“?)(x,lm) - M(n)($71m)+
(n) () 20\ ([ (ntlmta) _ (n)
K (@, 1n), 210) (KO Grigr 21) +0°1) (30709 = 1 (1))
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Because y("t1mta) — u(”)(zltq) is normally distributed with zero mean and covariance ma-
trix (K (")(21;(17 Z1:9) + o2l ) with respect to the posterior after n observations, we can rewrite
,u(nJrq) (z,1,,) as

M(n+q) (.%'7 1m) = ,U/(n) (LL', 1m) + &n (xa Zl:q) Wq7 (36)
where W, is a standard ¢-dimensional normal random vector, and
-1
oule2g) = K (0 1n)21) (D) (1))
where D) (z,.,) is the Cholesky factor of the covariance matrix K™ (214, 21.4) + o21.

Thus, to provide an unbiased Monte Carlo estimator of the expectation within (3.4), we may sample
W,, and then calculate min, s p" 9 (2',1,,) = mingep ™ (2, 1,,) + 65 (, 21.4) Wy To do
this optimization, we use a second-order continuous optimization method, where the gradient and
Hessian of p("*9) (2, 1,,) with respect to z in can be computed by calculating the gradient

and Hessian of u(™ (z,1,,) and &,, (z, 21.,). We can then compute the q-cfKG acquistion function
to arbitrary accuracy by averaging many such independent Monte Carlo estimates.

3.3.2 ESTIMATING THE GRADIENT OF Q-CFKG

To solve (B.5), we generalize a recently proposed computational method based on the envelope
theorem from [Wu et al.| (2017) to provide an unbiased estimator of the gradient of the q-cfKG
acquisition function, and then use stochastic gradient ascent.

Exploiting (3.6), the q-cfKG acquisition function can be expressed as

minwEA M(n) (1‘7 1m) - En [minwEA (/J'(n) (Z‘, 1m) + 5'71 ('ra Zl:q) Wq)}

maxj<i<gq cost(™) (SCZ', Sl)

q-cfKG(z1.4) =

where W, is a standard g¢-dimensional normal random vector, G, (Z,2(1.q)) =
K™ ((2,1,), 21.4) (D™ (zlzq)T)_l, and D (z.,) is the Cholesky factor of the
covariance matrix K (™) (21.,21:q) + o2I. Vq-cfKG(z1.4) can be computed from
—VE, [mingea (1™ (2, 1) + 60 (2, 21,4) Wy)]  and  Vmax;<i<qcost™ (2("F9), where
differentiability of cost(™)(-) implies max; <;<, cost™ (z;, s;) is differentiable almost everywhere.
To compute the first term, under sufficient regularity conditions (L’Ecuyer, |{1990) that we con-

jecture hold in most applications to hyperparameter tuning, one can interchange the gradient and
expectation operators,

VE, |:1;:n€l£ (M(”) (@, 1) + 0n (2, 21:) Wq)] -E, {V rwnég (M(”)(x, 1) + 05 (2, 21.4) Wqﬂ .(3.7)

This technique is called infinitesimal perturbation analysis (IPA) (L’Ecuyer, [1990).

Since multiplication, matrix inversion (when the inverse exists), and Cholesky factorization (Smith
1995) preserve continuous differentiability, (2, z1.4) — (1™ (2, 1) + G (, 21.4) W) is continu-
ously differentiable under mild regularity conditions. When this function is continuously differen-
tiable and A is compact, the envelope theorem (Milgrom & Segal, |2002], Corollary 4) implies

E, [V Iglel}g (N(n)(xa Lin) 4 Gn (7, 21:) Wq)]
=E, [ (1) (" (W), L) + G (2" (W), 210) - Wi )]
=K, [V&,, (z*(Wy), z1:9) - Wyl

where z*(W,) € argmingea (u(™ (2, 1,,) + Gn(x, 21.4)Wy). We can use this unbiased gradient
estimator within stochastic gradient ascent (Harold et al., 2003) to solve the optimization problem

(3.5).
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3.4 EXTENSIONS TO DERIVATIVE-ENABLED SETTINGS

Following [Wu et al.| (2017), which developed single-fidelity BO methods for use when gradient
information is available, we develop a version of the cfKG algorithm, called derivative-enabled
cfKG, that can be used when gradients are available in the continuous-fidelity setting. This can be
used to reduce the number of function evaluations required to find a high-quality solution to (1.IJ.

First, observe that a GP(u", K™) prior on g(z,s) implies a multi-output GP (4", K™) prior on
(9, V.g). Then, observe that the same reasoning we used to develop the cfKG acquistion function
in (3.2) can be used when when we observe gradients to motivate the acquisition function,

mingeca ﬂgn)(aj, 1) — E, [minwEA ﬂgnﬂ)(:z:, L) | 2t = g s(0HD)) = s}
cf-d-KG(z, s) =

)

cost(™ (z, 5)

where cost(")(x, s) is now our estimate after n samples of the cost of evaluating both g and its

gradient with respect to x, and ﬂgn)(z, s) is the posterior mean on g(z, s) in the multi-output GP.

The conditional expectation is taken with respect to both the observed function value and gradient.
A batch version of the derivative-enabled cfKG acquistion function can be defined analogously. We
use techniques similar to those described in Sect. [3.3]to optimize these acquisition functions.

4 NUMERICAL EXPERIMENTS

In this section, we compare sequential, batch, and derivative-enabled cfKG with several bench-
mark algorithms on four synthetic functions, tuning convolutional neural networks on CIFAR-10
and SVHN, and on large-scale kernel learning. Our benchmarks include the traditional Bayesian
optimization algorithms KG (Wu & Frazier, [2016) and EI (Jones et al.,|1998)), and the multi-fidelity
Bayesian optimization with continuous approximation algorithm (BOCA) (Kandasamy et al.,[2017).
We also compare with Hyperband (Li et al.|[2016) in the CIFRA-10 experiment, and with derivative-
enabled KG (Wu et al.||2017) in the kernel-learning experiment. We use squared-exponential kernels
with constant mean functions and integrate out the GP hyperparameters by sampling M = 10 sets
of hyperparameters using the emcee package (Foreman-Mackey et al.,[2013).

4.1 OPTIMIZING SYNTHETIC FUNCTIONS

Inspired by numerical experiments in [Kandasamy et al.| (2017, we modify four standard synthetic
test functions, 2-d Branin, 3-d Rosenbrock, 3-d Hartmann, and 6-d Hartmann, by adding 1 fi-
delity control, as described in detail in Appendix. @ We use cost cost(z, s) = [[i~,(0.01 + s;)
to mimic the linear cost of training a neural network with more data and longer iterations, and
cost(21.q) := maxi<;<q cost(z;) to mimic wall-clock time for training ¢ neural networks in paral-
lel. Fig. [[]summarizes the results. cfKG achieves lower simple regret than competitors at the same
cost.

4.2 TUNING CONVOLUTIONAL NEURAL NETWORKS ON CIFAR-10 AND SVHN

We use sequential and batch ¢cfKG to tune convolution neural networks (CNNs) on CIFAR-10 and
SVHN. Our CNN consists of 3 convolutional blocks and a softmax classification layer. Each con-
volutional block consists of two convolutional layers with the same number of filters followed by
a max-pooling layer. There is no dropout or batch-normalization layer. We split the CIFAR-10
dataset into 40000 training samples, 10000 validation samples and 10000 test samples. We split
the SVHN training dataset into 67235 training samples and 6000 validation samples, and use the
standard 26032 test samples. We apply standard data augmentation: horizontal and vertical shifts,
and horizontal flips. We optimize 5 hyperparameters to minimize the classification error on the vali-
dation set: the learning rate, batch size, and number of filters in each convolutional block. cfKG and
q-cfKG use two fidelity controls: the size of the training set and the number of training iterations.
Hyperband uses the size of the training set as its resource (it can use only one resource or fidelity),
using a bracket size of sy.x = 4 as in[Li et al.| (2016) and the maximum resource allowed by a
single configuration set to 40000. We set the maximum number of training epochs for all algorithms
to 50 for CIFAR-10 and 40 for SVHN. Fig. |2 shows the performance of cfKG relative to several
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Figure 1: Optimizing 4 synthetic functions: 2-d Branin, 3-d Rosenbrock, 3-d Hartmann, and 6-d Hartmann
with 20 independent runs. Fidelity is 1-d.

benchmarks. cfKG successfully exploits the cheap approximations and find a good solution much
faster than KG and Hyperband. When we train using optimized hyperparameters on the full training
dataset for 200 epochs, test data classification error is ~ 12% for CIFAR-10 and ~ 5% for SVHN.

4.3 LARGE-SCALE KERNEL LEARNING

We use derivative-enabled cfKG (cf-d-KG) in a large-scale kernel learning example obtained by
modifying the 1-d demo example for KISS-GP (Wilson & Nickisch, 2015) on the GPML website
(Rasmussen & Nickisch, [2016). In this example, we optimize 3 hyperparameters (the alpha, the
length scale and the variance of the noise) of a GP with an RBF kernel on 1 million training points
to maximize the log marginal likelihood. We evaluate both the log marginal likelihood and its
gradient using the KISS-GP framework. We use two fidelity controls: the number of training points
and the number of inducing points in the KISS-GP framework. We set the maximum number of
inducing points to m = 1000. We compare cf-d-KG to the derivative-enabled knowledge gradient
(d-KG) (Wu et al., [2017) both with batch size ¢ = 8. Fig. |Z| shows that cf-d-KG successfully utilizes
the inexpensive function and gradient evaluations to find a good solution more quickly.

Convolutional Neural Network on CIFAR10 5d SVHN 3d KISSGP

*~ KG ¢ 8-dKG
3% kG B AL 3
a < fKG ':;ox 5
3 06| R f20
H »— 8-cfKG 2 3
H | :
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H H £
soat |f 2

negative log

th
the aver

G <

0 0 00 30 40 50 600 0 50 00 10 20 50 30 0 5 10 15 0 5 0 B 4 &
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Figure 2: From left to right: Tuning convolutional neural networks on CIFAR-10 and SVHN with 6 indepen-
dent runs, and kernel learning under the KISS-GP framework with 10 independent runs.



Under review as a conference paper at ICLR 2018

5 CONCLUSION

We propose a novel continuous-fidelity BO algorithm, cfKG, which generalizes naturally to batch
and derivative settings. This algorithm can find good solutions to global optimization problems with
less cost than state-of-art algorithms in applications including deep learning and kernel learning.
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A ADDITIONAL EXPERIMENTAL DETAILS

Here we define in detail the synthetic test functions on which we perform numerical experiments

described in Sect.[4.1] The test functions are:

2
5.1 )

augmented-Branin(x, s) = (:I:g - (42 —0.001 % (1 — 51)> 2+ Sy — 6)
7 m

1
+10 = <1 - 877) cos(z1) + 10

d
augmented-Hartmann(z,s) = (a1 —0.01 (1 —s1))exp | — » Aij(z; — Pij)?
j=1
4 d
+Zaiexp 72Aij(.f[jfpi')2
i=2 j=1

2
augmented-Rosenbrock(z, s) = (100 * (zi41 — 7 4 0.001 % (1 — 51))* + (z; — 1)?)..

i=1
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