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ABSTRACT

Recently there has been much interest in understanding why deep neural networks
are preferred to shallow networks. We show that, for a large class of piecewise
smooth functions, the number of neurons needed by a shallow network to ap-
proximate a function is exponentially larger than the corresponding number of
neurons needed by a deep network for a given degree of function approximation.
First, we consider univariate functions on a bounded interval and require a neural
network to achieve an approximation error of ε uniformly over the interval. We
show that shallow networks (i.e., networks whose depth does not depend on ε)
require Ω(poly(1/ε)) neurons while deep networks (i.e., networks whose depth
grows with 1/ε) require O(polylog(1/ε)) neurons. We then extend these results
to certain classes of important multivariate functions. Our results are derived for
neural networks which use a combination of rectifier linear units (ReLUs) and bi-
nary step units, two of the most popular type of activation functions. Our analysis
builds on a simple observation: the multiplication of two bits can be represented
by a ReLU.

1 INTRODUCTION

Neural networks have drawn significant interest from the machine learning community, especially
due to their recent empirical successes (see the surveys (Bengio, 2009)). Neural networks are used
to build state-of-art systems in various applications such as image recognition, speech recognition,
natural language process and others (see, Krizhevsky et al. 2012; Goodfellow et al. 2013; Wan
et al. 2013, for example). The result that neural networks are universal approximators is one of the
theoretical results most frequently cited to justify the use of neural networks in these applications.
Numerous results have shown the universal approximation property of neural networks in approxi-
mations of different function classes, (see, e.g., Cybenko 1989; Hornik et al. 1989; Funahashi 1989;
Hornik 1991; Chui & Li 1992; Barron 1993; Poggio et al. 2015).

All these results and many others provide upper bounds on the network size and assert that small
approximation error can be achieved if the network size is sufficiently large. More recently, there has
been much interest in understanding the approximation capabilities of deep versus shallow networks.
Delalleau & Bengio (2011) have shown that there exist deep sum-product networks which cannot
be approximated by shallow sum-product networks unless they use an exponentially larger amount
of units or neurons. Montufar et al. (2014) have shown that the number of linear region increases
exponentially with the number of layers in the neural network. Telgarsky (2016) has established
such a result for neural networks, which is the subject of this paper. Eldan & Shamir (2015) have
shown that, to approximate a specific function, a two-layer network requires an exponential number
of neurons in the input dimension, while a three-layer network requires a polynomial number of
neurons. These recent papers demonstrate the power of deep networks by showing that depth can
lead to an exponential reduction in the number of neurons required, for specific functions or specific
neural networks. Our goal here is different: we are interested in function approximation specifically
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and would like to show that for a given upper bound on the approximation error, shallow networks
require exponentially more neurons than deep networks for a large class of functions.

The multilayer neural networks considered in this paper are allowed to use either rectifier linear
units (ReLU) or binary step units (BSU), or any combination of the two. The main contributions of
this paper are

• We have shown that, for ε-approximation of functions with enough piecewise smoothness, a
multilayer neural network which uses Θ(log(1/ε)) layers only needs O(poly log(1/ε)) neurons,
while Ω(poly(1/ε)) neurons are required by neural networks with o(log(1/ε)) layers. In other
words, shallow networks require exponentially more neurons than a deep network to achieve the
level of accuracy for function approximation.

• We have shown that for all differentiable and strongly convex functions, multilayer neural net-
works need Ω(log(1/ε)) neurons to achieve an ε-approximation. Thus, our results for deep net-
works are tight.

The outline of this paper is as follows. In Section 2, we present necessary definitions and the
problem statement. In Section 3, we present upper bounds on network size, while the lower bound
is provided in Section 4. Conclusions are presented in Section 5. Around the same time that our
paper was uploaded in arxiv, a similar paper was also uploaded in arXiv by Yarotsky (2016). The
results in the two papers are similar in spirit, but the details and the general approach are substantially
different.

2 PRELIMINARIES AND PROBLEM STATEMENT

In this section, we present definitions on feedforward neural networks and formally present the
problem statement.

2.1 FEEDFORWARD NEURAL NETWORKS

A feedforward neural network is composed of layers of computational units and defines a unique
function f̃ : Rd → R. Let L denote the number of hidden layers, Nl denote the number of units of
layer l, N =

∑L
l=1 Nl denote the size of the neural network, vector x = (x(1), ..., x(d)) denote the

input of neural network, zlj denote the output of the jth unit in layer l, wl
i,j denote the weight of the

edge connecting unit i in layer l and unit j in layer l + 1, blj denote the bias of the unit j in layer l.
Then outputs between layers of the feedforward neural network can be characterized by following
iterations:

zl+1
j = σ

(
Nl∑
i=1

wl
i,jz

l
i + bl+1

j

)
, l ∈ [L− 1], j ∈ [Nl+1],

with

input layer: z1j = σ

(
d∑

i=1

w0
i,jx

(i) + b1j

)
, j ∈ [N1],

output layer: f̃(x) = σ

(
NL∑
i=1

wL
i,jz

L
i + bL+1

j

)
.

Here, σ(·) denotes the activation function and [n] denotes the index set [n] = {1, ..., n}. In this
paper, we only consider two important types of activation functions:

• Rectifier linear unit: σ(x) = max{0, x}, x ∈ R.
• Binary step unit: σ(x) = I{x ≥ 0}, x ∈ R.

We call the number of layers and the number of neurons in the network as the depth and the size
of the feedforward neural network, respectively. We use the set F(N,L) to denote the function
set containing all feedforward neural networks of depth L, size N and composed of a combination
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Figure 1: An n-layer neural network structure for finding the binary expansion of a number in [0, 1].

of rectifier linear units (ReLUs) and binary step units. We say one feedforward neural network is
deeper than the other network if and only if it has a larger depth. Through this paper, the terms
feedforward neural network and multilayer neural network are used interchangeably.

2.2 PROBLEM STATEMENT

In this paper, we focus on bounds on the size of the feedforward neural network function approx-
imation. Given a function f , our goal is to understand whether a multilayer neural network f̃ of
depth L and size N exists such that it solves

min
f̃∈F(N,L)

∥f − f̃∥ ≤ ε. (1)

Specifically, we aim to answer the following questions:

1 Does there exists L(ε) and N(ε) such that (1) is satisfied? We will refer to such L(ε) and
N(ε) as upper bounds on the depth and size of the required neural network.

2 Given a fixed depth L, what is the minimum value of N such that (1) is satisfied? We will
refer to such an N as a lower bound on the size of a neural network of a given depth L.

The first question asks what depth and size are sufficient to guarantee an ε-approximation. The
second question asks, for a fixed depth, what is the minimum size of a neural network required
to guarantee an ε-approximation. Obviously, tight bounds in the answers to these two questions
provide tight bounds on the network size and depth required for function approximation. Besides,
solutions to these two questions together can be further used to answer the following question. If a
deeper neural network of size Nd and a shallower neural network of size Ns are used to approximate
the same function with the same error, then how fast does the ratio Nd/Ns decay to zero as the error
decays to zero?

3 UPPER BOUNDS ON FUNCTION APPROXIMATIONS

In this section, we present upper bounds on the size of the multilayer neural network which are
sufficient for function approximation. Before stating the results, some notations and terminology
deserve further explanation. First, the upper bound on the network size represents the number of
neurons required at most for approximating a given function with a certain error. Secondly, the
notion of the approximation is the L∞ distance: for two functions f and g, the L∞ distance between
these two function is the maximum point-wise disagreement over the cube [0, 1]d.

3.1 APPROXIMATION OF UNIVARIATE FUNCTIONS

In this subsection, we present all results on approximating univariate functions. We first present a
theorem on the size of the network for approximating a simple quadratic function. As part of the
proof, we present the structure of the multilayer feedforward neural network used and show how the
neural network parameters are chosen. Results on approximating general functions can be found in
Theorem 2 and 4.

3



Published as a conference paper at ICLR 2017

Theorem 1. For function f(x) = x2, x ∈ [0, 1], there exists a multilayer neural network f̃(x)
with O

(
log 1

ε

)
layers, O

(
log 1

ε

)
binary step units and O

(
log 1

ε

)
rectifier linear units such that

|f(x)− f̃(x)| ≤ ε, ∀x ∈ [0, 1].

Proof. The proof is composed of three parts. For any x ∈ [0, 1], we first use the multilayer neural
network to approximate x by its finite binary expansion

∑n
i=0

xi

2i . We then construct a 2-layer neural
network to implement function f

(∑n
i=0

xi

2i

)
.

For each x ∈ [0, 1], x can be denoted by its binary expansion x =
∑∞

i=0
xi

2i , where xi ∈ {0, 1} for
all i ≥ 0. It is straightforward to see that the n-layer neural network shown in Figure 1 can be used
to find x0, ..., xn.

Next, we implement the function f̃(x) = f
(∑n

i=0
xi

2i

)
by a two-layer neural network. Since

f(x) = x2, we then rewrite f̃(x) as follows:

f̃(x) =

(
n∑

i=0

xi

2i

)2

=

n∑
i=0

xi ·

 1

2i

n∑
j=0

xj

2j

 =

n∑
i=0

max

0, 2(xi − 1) +
1

2i

n∑
j=0

xj

2j

 .

The third equality follows from the fact that xi ∈ {0, 1} for all i. Therefore, the function f̃(x) can
be implemented by a multilayer network containing a deep structure shown in Figure 1 and another
hidden layer with n rectifier linear units. This multilayer neural network has O(n) layers, O(n)
binary step units and O(n) rectifier linear units.

Finally, we consider the approximation error of this multilayer neural network,

|f(x)− f̃(x)| =

∣∣∣∣∣∣x2 −

(
n∑

i=0

xi

2i

)2
∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣x−
n∑

i=0

xi

2i

∣∣∣∣∣ = 2

∣∣∣∣∣
∞∑

i=n+1

xi

2i

∣∣∣∣∣ ≤ 1

2n−1
.

Therefore, in order to achieve ε-approximation error, one should choose n =
⌈
log2

1
ε

⌉
+ 1. In

summary, the deep neural network has O
(
log 1

ε

)
layers, O

(
log 1

ε

)
binary step units and O

(
log
(
1
ε

))
rectifier linear units.

Next, a theorem on the size of the network for approximating general polynomials is given as fol-
lows.
Theorem 2. For polynomials f(x) =

∑p
i=0 aix

i, x ∈ [0, 1] and
∑p

i=1 |ai| ≤ 1, there exists a mul-
tilayer neural network f̃(x) with O

(
p+ log p

ε

)
layers, O

(
log p

ε

)
binary step units and O

(
p log p

ε

)
rectifier linear units such that |f(x)− f̃(x)| ≤ ε, ∀x ∈ [0, 1].

Proof. The proof is composed of three parts. We first use the deep structure shown in Figure 1 to find
the n-bit binary expansion

∑n
i=0 aix

i of x. Then we construct a multilayer network to approximate
polynomials gi(x) = xi, i = 1, ..., p. Finally, we analyze the approximation error.

Using the same deep structure shown in Figure 1, we could find the binary expansion sequence
{x0, ..., xn}. In this step, we used n binary steps units in total. Now we rewrite gm+1(

∑n
i=0

xi

2n ),

gm+1

(
n∑

i=0

xi

2i

)
=

n∑
j=0

[
xj ·

1

2j
gm

(
n∑

i=0

xi

2i

)]
=

n∑
j=0

max

[
2(xj − 1) +

1

2j
gm

(
n∑

i=0

xi

2i

)
, 0

]
.

(2)
Clearly, the equation (2) defines iterations between the outputs of neighbor layers. Therefore, the
deep neural network shown in Figure 2 can be used to implement the iteration given by (2). Further,
to implement this network, one should use O(p) layers with O(pn) rectifier linear units in total. We
now define the output of the multilayer neural network as f̃(x) =

∑p
i=0 aigi

(∑n
j=0

xj

2j

)
. For this

multilayer network, the approximation error is

|f(x)− f̃(x)| =

∣∣∣∣∣∣
p∑

i=0

aigi

 n∑
j=0

xj

2j

−
p∑

i=0

aix
i

∣∣∣∣∣∣ ≤
p∑

i=0

|ai| ·
∣∣∣∣∣∣gi
 n∑

j=0

xj

2j

− xi

∣∣∣∣∣∣
 ≤ p

2n−1
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Figure 2: The implementation of polynomial function

This indicates, to achieve ε-approximation error, one should choose n =
⌈
log p

ε

⌉
+ 1. Besides,

since we used O(n + p) layers with O(n) binary step units and O(pn) rectifier linear units in
total, this multilayer neural network thus has O

(
p+ log p

ε

)
layers, O

(
log p

ε

)
binary step units and

O
(
p log p

ε

)
rectifier linear units.

In Theorem 2, we have shown an upper bound on the size of multilayer neural network for approxi-
mating polynomials. We can easily observe that the number of neurons in network grows as p log p
with respect to p, the degree of the polynomial. We note that both Andoni et al. (2014) and Barron
(1993) showed the sizes of the networks grow exponentially with respect to p if only 3-layer neural
networks are allowed to be used in approximating polynomials.

Besides, every function f with p + 1 continuous derivatives on a bounded set can be approximated
easily with a polynomial with degree p. This is shown by the following well known result of La-
grangian interpolation. By this result, we could further generalize Theorem 2. The proof can be
found in the reference (Gil et al., 2007).
Lemma 3 (Lagrangian interpolation at Chebyshev points). If a function f is defined at points
z0, ..., zn, zi = cos((i+ 1/2)π/(n+ 1)), i ∈ [n], there exists a polynomial of degree not more than
n such that Pn(zi) = f(zi), i = 0, ..., n. This polynomial is given by Pn(x) =

∑n
i=0 f(zi)Li(x)

where Li(x) = πn+1(x)
(x−zi)π′

n+1(zi)
and πn+1(x) =

∏n
j=0(x − zj). Additionally, if f is continuous on

[−1, 1] and n+ 1 times differentiable in (−1, 1), then

∥Rn∥ = ∥f − Pn∥ ≤ 1

2n(n+ 1)!

∥∥∥f (n+1)
∥∥∥ ,

where f (n)(x) is the derivative of f of the nth order and the norm ∥f∥ is the l∞ norm
∥f∥ = maxx∈[−1,1] f(x).

Then the upper bound on the network size for approximating more general functions follows directly
from Theorem 2 and Lemma 3.
Theorem 4. Assume that function f is continuous on [0, 1] and

⌈
log 2

ε

⌉
+ 1 times differentiable in

(0, 1). Let f (n) denote the derivative of f of nth order and ∥f∥ = maxx∈[0,1] f(x). If
∥∥f (n)

∥∥ ≤ n!

holds for all n ∈
[⌈
log 2

ε

⌉
+ 1
]
, then there exists a deep neural network f̃ with O

(
log 1

ε

)
layers,

O
(
log 1

ε

)
binary step units, O

((
log 1

ε

)2)
rectifier linear units such that

∥∥∥f − f̃
∥∥∥ ≤ ε.

Proof. Let N =
⌈
log 2

ε

⌉
. From Lemma 3, it follows that there exists polynomial PN of degree N

such that for any x ∈ [0, 1],

|f(x)− PN (x)| ≤
∥∥f (N+1)

∥∥
2N (N + 1)!

≤ 1

2N
.

Let x0, ..., xN denote the first N + 1 bits of the binary expansion of x and define
f̃(x) = PN

(∑N
i=0

xi

2N

)
. In the following, we first analyze the approximation error of f̃ and next
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show the implementation of this function. Let x̃ =
∑N

i=0
xi

2i . The error can now be upper bounded
by

|f(x)− f̃(x)| = |f(x)− PN (x̃)| ≤ |f(x)− f (x̃)|+ |f (x̃)− PN (x̃)|

≤
∥∥∥f (1)

∥∥∥ · ∣∣∣∣∣x−
N∑
i=0

xi

2i

∣∣∣∣∣+ 1

2N
≤ 1

2N
+

1

2N
≤ ε

In the following, we describe the implementation of f̃ by a multilayer neural network. Since PN is
a polynomial of degree N , function f̃ can be rewritten as

f̃(x) = PN

(
N∑
i=0

xi

2i

)
=

N∑
n=0

cngn

(
N∑
i=0

xi

2i

)
for some coefficients c0, ..., cN and gn = xn, n ∈ [N ]. Hence, the multilayer neural network shown
in the Figure 2 can be used to implement f̃(x). Notice that the network uses O(N) layers with O(N)
binary step units in total to decode x0,...,xN and O(N) layers with O(N2) rectifier linear units in
total to construct the polynomial PN . Substituting N =

⌈
log 2

ε

⌉
, we have proved the theorem.

Remark: Note that, to implement the architecture in Figure 2 using the definition of a feedforward
neural network in Section 2, we need the gi, i ∈ [p] at the output. This can be accomplished by
using O(p2) additional ReLUs. Since p = O(log(1/ε)), this doesn’t change the order result in
Theorem 4.

Theorem 4 shows that any function f with enough smoothness can be approximated by a multilayer
neural network containing polylog

(
1
ε

)
neurons with ε error. Further, Theorem 4 can be used to

show that for functions h1,...,hk with enough smoothness, then linear combinations, multiplications
and compositions of these functions can as well be approximated by multilayer neural networks
containing polylog

(
1
ε

)
neurons with ε error. Specific results are given in the following corollaries.

Corollary 5 (Function addition). Suppose that all functions h1, ..., hk satisfy the conditions in
Theorem 4, and the vector β ∈ {ω ∈ Rk : ∥ω∥1 = 1}, then for the linear combination
f =

∑k
i=1 βihi, there exists a deep neural network f̃ with O

(
log 1

ε

)
layers, O

(
log 1

ε

)
binary

step units, O
((

log 1
ε

)2)
rectifier linear units such that |f(x)− f̃ | ≤ ε, ∀x ∈ [0, 1].

Remark: Clearly, Corollary 5 follows directly from the fact that the linear combination f satisfies
the conditions in Theorem 4 if all the functions h1,...,hk satisfy those conditions. We note here that
the upper bound on the network size for approximating linear combinations is independent of k, the
number of component functions.
Corollary 6 (Function multiplication). Suppose that all functions h1,...,hk are continuous on [0, 1]

and
⌈
4k log2 4k + 4k + 2 log2

2
ε

⌉
+ 1 times differentiable in (0, 1). If ∥h(n)

i ∥ ≤ n! holds for all
i ∈ [k] and n ∈

[⌈
4k log2 4k + 4k + 2 log2

2
ε

⌉
+ 1
]

then for the multiplication f =
∏k

i=1 hi,
there exists a multilayer neural network f̃ with O

(
k log k + log 1

ε

)
layers, O

(
k log k + log 1

ε

)
bi-

nary step units and O
(
(k log k)2 +

(
log 1

ε

)2)
rectifier linear units such that |f(x) − f̃(x)| ≤ ε,

∀x ∈ [0, 1].

Corollary 7 (Function composition). Suppose that all functions h1, ..., hk : [0, 1] → [0, 1]
satisfy the conditions in Theorem 4, then for the composition f = h1 ◦ h2 ◦ ... ◦ hk,
there exists a multilayer neural network f̃ with O

(
k log k log 1

ε + log k
(
log 1

ε

)2)
layers,

O
(
k log k log 1

ε + log k
(
log 1

ε

)2)
binary step units and O

(
k2
(
log 1

ε

)2
+
(
log 1

ε

)4)
rectifier lin-

ear units such that |f(x)− f̃(x)| ≤ ε, ∀x ∈ [0, 1].

Remark: Proofs of Corollary 6 and 7 can be found in the appendix. We observe that different from
the case of linear combinations, the upper bound on the network size grows as k2 log2 k in the case
of function multiplications and grows as k2

(
log 1

ε

)2
in the case of function compositions where k

is the number of component functions.
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In this subsection, we have shown a polylog
(
1
ε

)
upper bound on the network size for ε-

approximation of both univariate polynomials and general univariate functions with enough smooth-
ness. Besides, we have shown that linear combinations, multiplications and compositions of uni-
variate functions with enough smoothness can as well be approximated with ε error by a multilayer
neural network of size polylog

(
1
ε

)
. In the next subsection, we will show the upper bound on the

network size for approximating multivariate functions.

3.2 APPROXIMATION OF MULTIVARIATE FUNCTIONS

In this subsection, we present all results on approximating multivariate functions. We first present
a theorem on the upper bound on the neural network size for approximating a product of multi-
variate linear functions. We next present a theorem on the upper bound on the neural network size
for approximating general multivariate polynomial functions. Finally, similar to the results in the
univariate case, we present the upper bound on the neural network size for approximating the linear
combination, the multiplication and the composition of multivariate functions with enough smooth-
ness.
Theorem 8. Let W = {w ∈ Rd : ∥w∥1 = 1}. For f(x) =

∏p
i=1

(
wT

i x
)
, x ∈ [0, 1]d and

wi ∈ W , i = 1, ..., p, there exists a deep neural network f̃(x) with O
(
p+ log pd

ε

)
layers and

O
(
log pd

ε

)
binary step units and O

(
pd log pd

ε

)
rectifier linear units such that |f(x)− f̃(x)| ≤ ε,

∀x ∈ [0, 1]d.

Theorem 8 shows an upper bound on the network size for ε-approximation of a product of multi-
variate linear functions. Furthermore, since any general multivariate polynomial can be viewed as a
linear combination of products, the result on general multivariate polynomials directly follows from
Theorem 8.
Theorem 9. Let the multi-index vector α = (α1, ..., αd), the norm |α| = α1+...+αd, the coefficient
Cα = Cα1...αd

, the input vector x = (x(1), ..., x(d)) and the multinomial xα = x(1)α1
...x(d)αd . For

positive integer p and polynomial f(x) =
∑

α:|α|≤p Cαx
α, x ∈ [0, 1]d and

∑
α:|α|≤p |Cα| ≤ 1,

there exists a deep neural network f̃(x) of depth O
(
p+ log dp

ε

)
and size N(d, p, ε) such that

|f(x)− f(x̃)| ≤ ε, where

N(d, p, ε) = p2
(
p+ d− 1
d− 1

)
log

pd

ε
.

Remark: The proof is given in the appendix. By further analyzing the results on the network size,
we obtain the following results: (a) fixing degree p, N(d, ε) = O

(
dp+1 log d

ε

)
as d → ∞ and

(b) fixing input dimension d, N(p, ε) = O
(
pd log p

ε

)
as p → ∞. Similar results on approximating

multivariate polynomials were obtained by Andoni et al. (2014) and Barron (1993). Barron (1993)
showed that on can use a 3-layer neural network to approximate any multivariate polynomial with
degree p, dimension d and network size dp/ε2. Andoni et al. (2014) showed that one could use the
gradient descent to train a 3-layer neural network of size d2p/ε2 to approximate any multivariate
polynomial. However, Theorem 9 shows that the deep neural network could reduce the network size
from O (1/ε) to O

(
log 1

ε

)
for the same ε error. Besides, for a fixed input dimension d, the size of

the 3-layer neural network used by Andoni et al. (2014) and Barron (1993) grows exponentially with
respect to the degree p. However, the size of the deep neural network shown in Theorem 9 grows
only polynomially with respect to the degree. Therefore, the deep neural network could reduce the
network size from O(exp(p)) to O(poly(p)) when the degree p becomes large.

Theorem 9 shows an upper bound on the network size for approximating multivariate polynomials.
Further, by combining Theorem 4 and Corollary 7, we could obtain an upper bound on the network
size for approximating more general functions. The results are shown in the following corollary.
Corollary 10. Assume that all univariate functions h1, ..., hk : [0, 1] → [0, 1], k ≥ 1, satisfy the
conditions in Theorem 4. Assume that the multivariate polynomial l(x) : [0, 1]d → [0, 1] is of degree
p. For composition f = h1 ◦ h2 ◦ ... ◦ hk ◦ l(x), there exists a multilayer neural network f̃ of depth

O
(
p+ log d+ k log k log 1

ε + log k
(
log 1

ε

)2)
and of size N(k, p, d, ε) such that |f̃(x)−f(x)| ≤ ε

for ∀x ∈ [0, 1]d, where

7
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N(k, p, d, ε) = O

(
p2
(
p+ d− 1
d− 1

)
log

pd

ε
+ k2

(
log

1

ε

)2

+

(
log

1

ε

)4
)
.

Remark: Corollary 10 shows an upper bound on network size for approximating compositions of
multivariate polynomials and general univariate functions. The upper bound can be loose due to the
assumption that l(x) is a general multivariate polynomials of degree p. For some specific cases, the
upper bound can be much smaller. We present two specific examples in the Appendix H and I.

In this subsection, we have shown that a similar polylog
(
1
ε

)
upper bound on the network size for

ε-approximation of general multivariate polynomials and functions which are compositions of uni-
variate functions and multivariate polynomials.

The results in this section can be used to find a multilayer neural network of size polylog
(
1
ε

)
which

provides an approximation error of at most ε. In the next section, we will present lower bounds on the
network size for approximating both univariate and multivariate functions. The lower bound together
with the upper bound shows a tight bound on the network size required for function approximations.

While we have presented results in both the univariate and multivariate cases for smooth functions,
the results automatically extend to functions that are piecewise smooth, with a finite number of
pieces. In other words, if the domain of the function is partitioned into regions, and the function
is sufficiently smooth (in the sense described in the Theorems and Corollaries earlier) in each of
the regions, then the results essentially remain unchanged except for an additional factor which will
depend on the number of regions in the domain.

4 LOWER BOUNDS ON FUNCTION APPROXIMATIONS

In this section, we present lower bounds on the network size in function for certain classes of func-
tions. Next, by combining the lower bounds and the upper bounds shown in the previous section, we
could analytically show the advantages of deeper neural networks over shallower ones. The theorem
below is inspired by a similar result (DasGupta & Schnitger, 1993) for univariate quadratic func-
tions, where it is stated without a proof. Here we show that the result extends to general multivariate
strongly convex functions.
Theorem 11. Assume function f : [0, 1]d → R is differentiable and strongly convex with parameter
µ. Assume the multilayer neural network f̃ is composed of rectifier linear units and binary step
units. If |f(x)− f̃(x)| ≤ ε, ∀x ∈ [0, 1]d, then the network size N ≥ log2

(
µ
16ε

)
.

Remark: The proof is in the Appendix F. Theorem 11 shows that every strongly convex function
cannot be approximated with error ε by any multilayer neural network with rectifier linear units and
binary step units and of size smaller than log2(µ/ε) − 4. Theorem 11 together with Theorem 1 di-
rectly shows that to approximate quadratic function f(x) = x2 with error ε, the network size should
be of order Θ

(
log 1

ε

)
. Further, by combining Theorem 11 and Theorem 4, we could analytically

show the benefits of deeper neural networks. The result is given in the following corollary.
Corollary 12. Assume that univariate function f satisfies conditions in both Theorem 4 and The-
orem 11. If a neural network f̃s is of depth Ls = o

(
log 1

ε

)
, size Ns and |f(x) − f̃s(x)| ≤ ε,

for ∀x ∈ [0, 1], then there exists a deeper neural network f̃d(x) of depth Θ
(
log 1

ε

)
, size Nd =

O(L2
s log

2 Ns) such that |f(x)− f̃d(x)| ≤ ε, ∀x ∈ [0, 1].

Remarks: (i) The strong convexity requirement can be relaxed: the result obviously holds if the
function is strongly concave and it also holds if the function consists of pieces which are strongly
convex or strongly concave. (ii) Corollary 12 shows that in the approximation of the same function,
the size of the deep neural network Ns is only of polynomially logarithmic order of the size of
the shallow neural network Nd, i.e., Nd = O(polylog(Ns)). Similar results can be obtained for
multivariate functions on the type considered in Section 3.2.

5 CONCLUSIONS

In this paper, we have shown that an exponentially large number of neurons are needed for function
approximation using shallow networks, when compared to deep networks. The results are estab-
lished for a large class of smooth univariate and multivariate functions. Our results are established
for the case of feedforward neural networks with ReLUs and binary step units.

8
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APPENDIX A PROOF OF COROLLARY 5

Proof. By Theorem 4, for each hi, i = 1, ..., k, there exists a multilayer neural network h̃i such that
|hi(x)− h̃(x)| ≤ ε for any x ∈ [0, 1]. Let

f̃(x) =

k∑
i=1

βih̃i(x).

Then the approximation error is upper bounded by

|f(x)− f̃(x)| =

∣∣∣∣∣
k∑

i=1

βihi(x)

∣∣∣∣∣ ≤
k∑

i=1

|βi| · |hi(x)− h̃(x)| = ε.

Now we compute the size of the multilayer neural network f̃ . Let N =
⌈
log 2

ε

⌉
and

∑N
i=0

xi

2i be the
binary expansion of x. Since h̃i(x) has a form of

h̃i(x) =

N∑
j=0

cijgj

(
N∑
i=0

xi

2i

)
,

where gj(x) = xj , then f̃ should has a form of

f̃(x) =

k∑
i=1

βi

 N∑
j=0

cijgj

(
N∑
i=0

xi

2i

)
and can be further rewritten as

f̃(x) =

N∑
j=0

[(
k∑

i=1

cijβi

)
· gj

(
N∑
i=0

xi

2i

)]
≜

N∑
j=0

c′jgj

(
N∑
i=0

xi

2i

)
,

where c′j =
∑

i cijβi. Therefore, f̃ can be implemented by a multilayer neural network shown in

Figure 2 and this network has at most O
(
log 1

ε

)
layers, O

(
log 1

ε

)
binary step units, O

((
log 1

ε

)2)
rectifier linear units.

APPENDIX B PROOF OF COROLLARY 6

Proof. Since f(x) = h1(x)h2(x)...hk(x), then the derivative of f of order n is

f (n) =
∑

α1+...+αk=n

α1≥0,...,αk≥0

n!

α1!α2!...αk!
h
(α1)
1 h

(α2)
2 ...h

(αk)
k .

By the assumption that
∥∥∥h(αi)

i

∥∥∥ ≤ αi! holds for i = 1, ..., k, then we have∥∥∥f (n)
∥∥∥ ≤

∑
α1+...+αk=n

α1≥0,...,αk≥0

n!

α1!α2!...αk!

∥∥∥h(α1)
1 h

(α2)
2 ...h

(αk)
k

∥∥∥ ≤
(
n+ k − 1
k − 1

)
n!.

Then from Theorem 4, it follows that there exists a polynomial of PN degree N that

∥RN∥ = ∥f − PN∥ ≤
∥∥f (N+1)

∥∥
(N + 1)!2N

≤ 1

2N

(
N + k
k − 1

)
.

Since(
N + k
k − 1

)
≤ (N + k)N+k

(k − 1)k−1(N + 1)N+1
=

(
N + k

k − 1

)k−1(
1 +

k − 1

N + 1

)N+1

≤
(
e(N + k)

k − 1

)k−1

10



Published as a conference paper at ICLR 2017

then the error has an upper bound of

∥RN∥ ≤ (eN)k

2N
≤ 22k+k log2 N−N . (3)

Since we need to bound
∥RN∥ ≤ ε

2
,

then we need to choose N such that

N ≥ k log2 N + 2k + log2
2

ε
.

Thus, N can be chosen such that

N ≥ 2k log2 N and N ≥ 4k + 2 log2
2

ε
.

Further, function l(x) = x/ log2 x is monotonically increasing on [e,∞) and

l(4k log2 4k) =
4k log2 4k

log2 4k + log2 log2 4k
≥ 4k log2 4k

log2 4k + log2 4k
= 2k.

Therefore, to suffice the inequality (3), one should should choose

N ≥ 4k log2 4k + 4k + 2 log2
2

ε
.

Since N =
⌈
4k log2 4k + 4k + 2 log2

2
ε

⌉
by assumptions, then there exists a polynomial PN of

degree N such that
∥f − PN∥ ≤ ε

2
.

Let
∑N

i=0
xi

2i denote the binary expansion of x and let

f̃(x) = PN

(
N∑
i=0

xi

2i

)
.

The approximation error is

|f̃(x)− f(x)| ≤

∣∣∣∣∣f(x)− f

(
N∑
i=0

xi

2i

)∣∣∣∣∣+
∣∣∣∣∣f
(

N∑
i=0

xi

2i

)
− PN

(
N∑
i=0

xi

2i

)∣∣∣∣∣
≤ ∥f(1)∥

∣∣∣∣∣x−
N∑
i=0

xi

2i

∣∣∣∣∣+ ε

2
≤ ε

Further, function f̃ can be implemented by a multilayer neural network shown in Figure 2 and this
network has at most O(N) layers, O(N) binary step units and O(N2) rectifier linear units.

APPENDIX C PROOF OF COROLLARY 7

Proof. We prove this theorem by induction. Define function Fm = h1 ◦ ... ◦ hm, m = 1, ..., k.
Let T1(m) log3

3m

ε , T2(m) log3
3m

ε and T3(m)
(
log3

3m

ε

)2
denote the number of layers, the number

of binary step units and the number of rectifier linear units required at most for ε-approximation
of Fm, respectively. By Theorem 4, for m = 1, there exists a multilayer neural network F̃1 with
at most T1(1) log3

3
ε layers, T2(1) log3

3
ε binary step units and T3(1)

(
log3

3
ε

)2
rectifier linear units

such that
|F1(x)− F̃1(x)| ≤ ε, for x ∈ [0, 1].

Now we consider the cases for 2 ≤ m ≤ k. We assume for Fm−1, there exists a multilayer neural
network F̃m−1 with not more than T1(m− 1) log3

3m

ε layers, T2(m− 1) log3
3m

ε binary step units

and T3(m− 1)
(
log3

3m

ε

)2
rectifier linear units such that

|Fm−1(x)− F̃m−1(x)| ≤
ε

3
, for x ∈ [0, 1].

11
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Further we assume the derivative of Fm−1 has an upper bound
∥∥F ′

m−1

∥∥ ≤ 1. Then for Fm, since
Fm(x) can be rewritten as

Fm(x) = Fm−1(hm(x)),

and there exists a multilayer neural network h̃m with at most T1(1) log3
3
ε layers, T2(1) log3

3
ε binary

step units and T3(1)
(
log3

3
ε

)2
rectifier linear units such that

|hm(x)− h̃m(x)| ≤ ε

3
, for x ∈ [0, 1],

and
∥∥∥h̃m

∥∥∥ ≤ (1 + ε/3). Then for cascaded multilayer neural network F̃m = F̃m−1 ◦
(

1
1+ε/3 h̃m

)
,

we have

∥ Fm − F̃m ∥ =

∥∥∥∥∥Fm−1(hm)− F̃m−1

(
h̃m

1 + ε/3

)∥∥∥∥∥
≤

∥∥∥∥∥Fm−1(hm)− Fm−1

(
h̃m

1 + ε/3

)∥∥∥∥∥+
∥∥∥∥∥Fm−1

(
h̃m

1 + ε/3

)
− F̃m−1

(
h̃m

1 + ε/3

)∥∥∥∥∥
≤
∥∥F ′

m−1

∥∥ · ∥∥∥∥∥hm − h̃m

1 + ε/3

∥∥∥∥∥+ ε

3

≤
∥∥F ′

m−1

∥∥ · ∥∥∥hm − h̃m

∥∥∥+ ∥∥F ′
m−1

∥∥ · ∥∥∥∥ ε/3

1 + ε/3
h̃m

∥∥∥∥+ ε

3

≤ ε

3
+

ε

3
+

ε

3
= ε

In addition, the derivative of Fm can be upper bounded by
∥F ′

m∥ ≤
∥∥F ′

m−1

∥∥ · ∥h′
m∥ = 1.

Since the multilayer neural network F̃m is constructed by cascading multilayer neural networks
F̃m−1 and h̃m, then the iterations for T1, T2 and T3 are

T1(m) log3
3m

ε
=T1(m− 1) log3

3m

ε
+ T1(1) log3

3

ε
, (4)

T2(m) log3
3m

ε
=T2(m− 1) log3

3m

ε
+ T2(1) log3

3

ε
, (5)

T3(m)

(
log3

3m

ε

)2

=T3(m− 1)

(
log3

3m

ε

)2

+ T3(1)

(
log3

3

ε

)2

. (6)

From iterations (4) and (5), we could have for 2 ≤ m ≤ k,

T1(m) = T1(m− 1) + T1(1)
1 + log3(1/ε)

m+ log3(1/ε)
≤ T1(m− 1) + T1(1)

1 + log3(1/ε)

m

T2(m) = T2(m− 1) + T2(1)
1 + log3(1/ε)

m+ log3(1/ε)
≤ T2(m− 1) + T2(1)

1 + log3(1/ε)

m

and thus

T1(k) = O
(
log k log

1

ε

)
, T2(k) = O

(
log k log

1

ε

)
.

From the iteration (6), we have for 2 ≤ m ≤ k,

T3(m) = T3(m− 1) + T3(1)

(
1 + log3(1/ε)

m+ log3(1/ε)

)2

≤ T3(m− 1) +
(1 + log3(1/ε))

3

m2
,

and thus

T3(k) = O

((
log

1

ε

)2
)
.

Therefore, to approximate f = Fk, we need at most O
(
k log k log 1

ε + log k
(
log 1

ε

)2)
layers,

O
(
k log k log 1

ε + log k
(
log 1

ε

)2)
binary step units and O

(
k2
(
log 1

ε

)2
+
(
log 1

ε

)4)
rectifier lin-

ear units.

12
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APPENDIX D PROOF OF THEOREM 8

Proof. The proof is composed of two parts. As before, we first use the deep structure shown in
Figure 1 to find the binary expansion of x and next use a multilayer neural network to approximate
the polynomial.

Let x = (x(1), ..., x(d)) and wi = (wi1, ..., wid). We could now use the deep structure shown in

Figure 1 to find the binary expansion for each x(k), k ∈ [d]. Let x̃(k) =
∑n

r=0
x(k)
r

2r denote the binary
expansion of x(k), where x(k)

r is the rth bit in the binary expansion of x(k). Obviously, to decode all
the n-bit binary expansions of all x(k), k ∈ [d], we need a multilayer neural network with n layers
and dn binary units in total. Besides, we let x̃ = (x̃(1), ..., x̃(d)). Now we define

f̃(x) = f(x̃) =

p∏
i=1

(
d∑

k=1

wikx̃
(k)

)
.

We further define

gl(x̃) =

l∏
i=1

(
d∑

k=1

wikx̃
(k)

)
.

Since for l = 1, ..., p− 1,

gl(x̃) =

l∏
i=1

(
d∑

k=1

wikx̃
(k)

)
≤

l∏
i=1

∥wi∥1 = 1,

then we can rewrite gl+1(x̃), l = 1, ..., p− 1 into

gl+1(x̃) =

l+1∏
i=1

(
d∑

k=1

wikx̃
(k)

)
=

d∑
k=1

[
w(l+1)kx̃

(k) · gl(x̃)
]
=

d∑
k=1

{
w(l+1)k

n∑
r=0

[
x(k)
r · gl(x̃)

2r

]}

=

d∑
k=1

{
w(l+1)k

n∑
r=0

max

[
2(x(k)

r − 1) +
gl(x̃)

2r
, 0

]}
(7)

Obviously, equation (7) defines a relationship between the outputs of neighbor layers and thus can
be used to implement the multilayer neural network. In this implementation, we need dn rectifier
linear units in each layer and thus dnp rectifier linear units. Therefore, to implement function f̃(x),
we need p+ n layers, dn binary step units and dnp rectifier linear units in total.

In the rest of proof, we consider the approximation error. Since for k = 1, ..., d and ∀x ∈ [0, 1]d,∣∣∣∣∂f(x)∂x(k)

∣∣∣∣ =
∣∣∣∣∣∣

p∑
j=1

wjk ·
p∏

i=1,i̸=j

(
wT

i x
)∣∣∣∣∣∣ ≤

p∑
j=1

|wjk| ≤ p,

then

|f(x)− f̃(x)| = |f(x)− f(x̃)| ≤ ∥∇f∥2 · ∥x− x̃∥2 ≤ pd

2n
.

By choosing n =
⌈
log2

pd
ε

⌉
, we have

|f(x)− f(x̃)| ≤ ε.

Since we use nd binary step units to convert the input to binary form and dnp neurons in function
approximation, we thus use O

(
d log pd

ε

)
binary step units and O

(
pd log pd

ε

)
rectifier linear units

in total. In addition, since we have used n layers to convert the input to binary form and p layers
in the function approximation section of the network, the whole deep structure has O

(
p+ log pd

ε

)
layers.

13
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APPENDIX E PROOF OF THEOREM 9

Proof. For each multinomial function g with multi-index α, gα(x) = xα, it follows from
Theorem 4 that there exists a deep neural network g̃α of size O

(
|α| log |α|d

ε

)
and depth

O
(
|α|+ log |α|d

ε

)
such that

|gα(x)− g̃α(x)| ≤ ε.

Let the deep neural network be
f̃(x) =

∑
α:|α|≤p

Cαg̃α(x),

and thus
|f(x)− f̃(x)| ≤

∑
α:|α|≤p

|Cα| · |gα(x)− g̃α(x)| = ε.

Since the total number of multinomial is upper bounded by

p

(
p+ d− 1
d− 1

)
,

the size of deep neural network is thus upper bounded by

p2
(
p+ d− 1
d− 1

)
log

pd

ε
. (8)

If the dimension of the input d is fixed, then (8) is has the order of

p2
(
p+ d− 1
d− 1

)
log

pd

ε
= O

(
(ep)

d+1
log

pd

ε

)
, p → ∞

while if the degree p is fixed, then (8) is has the order of

p2
(
p+ d− 1
d− 1

)
log

pd

ε
= O

(
p2 (ed)

p
log

pd

ε

)
, d → ∞.

APPENDIX F PROOF OF THEOREM 11

Proof. We first prove the univariate case d = 1. The proof is composed of two parts. We say the
function g(x) has a break point at x = z if g is discontinuous at z or its derivative g′ is discontinuous
at z. We first present the lower bound on the number of break points M(ε) that the multilayer neural
network f̃ should have for ε-approximation of function f with error ε. We next relate the number of
break points M(ε) to the network depth L and the size N .

Now we calculate the lower bound on M(ε). We first define 4 points x0, x1 = x0 + 2
√

ρε/µ,
x2 = x1 + 2

√
ρε/µ and x3 = x2 + 2

√
ρε/µ, ∀ρ > 1. We assume

0 ≤ x0 < x1 < x2 < x3 ≤ 1.

We now prove that if multilayer neural network f̃ has no break point in [x1, x2], then f̃ should have
a break point in [x0, x1] and a break point in [x2, x3]. We prove this by contradiction. We assume
the neural network f̃ has no break points in the interval [x0, x3]. Since f̃ is constructed by rectifier
linear units and binary step units and has no break points in the interval [x0, x3], then f̃ should be
a linear function in the interval [x0, x3], i.e., f̃(x) = ax + b, x ∈ [x0, x3] for some a and b. By
assumption, since f̃ approximates f with error at most ε everywhere in [0, 1], then

|f(x1)− ax1 − b| ≤ ε and |f(x2)− ax2 − b| ≤ ε.

Then we have
f(x2)− f(x1)− 2ε

x2 − x1
≤ a ≤ f(x2)− f(x1) + 2ε

x2 − x1
.

14
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By strong convexity of f ,
f(x2)− f(x1)

x2 − x1
+

µ

2
(x2 − x1) ≤ f ′(x2).

Besides, since ρ > 1 and
µ

2
(x2 − x1) =

√
ρµε =

2ρε

x2 − x1
>

2ε

x2 − x1
,

then
a ≤ f ′(x2). (9)

Similarly, we can obtain a ≥ f ′(x1). By our assumption that f̃ = ax+ b, x ∈ [x0, x3], then

f(x3)− f̃(x3) = f(x3)− ax3 − b

= f(x3)− f(x2)− a(x3 − x2) + f(x2)− ax2 − b

≥ f ′(x2)(x3 − x2) +
µ

2
(x3 − x2)

2 − a(x3 − x2)− ε

= (f ′(x2)− a)(x3 − x2) +
µ

2

(
2
√
ρε/µ

)2
− ε

≥ (2ρ− 1)ε > ε

The first inequality follows from strong convexity of f and f(x2) − ax2 − b ≥ ε. The second
inequality follows from the inequality (9). Therefore, this leads to the contradiction. Thus there
exists a break point in the interval [x2, x3]. Similarly, we could prove there exists a break point in
the interval [x0, x1]. These indicate that to achieve ε-approximation in [0, 1], the multilayer neural
network f̃ should have at least

⌈
1
4

√
µ
ρε

⌉
break points in [0, 1]. Therefore,

M(ε) ≥
⌈
1

4

√
µ

ρε

⌉
, ∀ρ > 1.

Further, Telgarsky (2016) has shown that the maximum number of break points that a multilayer
neural network of depth L and size N could have is (N/L)L. Thus, L and N should satisfy

(N/L)L >

⌈
1

4

√
µ

ρε

⌉
, ∀ρ > 1.

Therefore, we have

N ≥ L
( µ

16ε

) 1
2L

.

Besides, let m = N/L. Since each layer in network should have at least 2 neurons, i.e., m ≥ 2, then

N ≥ m

2 log2 m
log2

( µ

16ε

)
≥ log2

( µ

16ε

)
.

Now we consider the multivariate case d > 1. Assume input vector to be x = (x1, ..., x(d)). We
now fix x(2), ..., x(d) and define two univariate functions

g(y) = f(y, x(2), ..., x(d)), and g̃(y) = f̃(y, x(2), ..., x(d)).

By assumption, g(y) is a strongly convex function with parameter µ and for all y ∈ [0, 1],
|g(y)− g̃(y)| ≤ ε. Therefore, by results in the univariate case, we should have

N ≥ L
( µ

16ε

) 1
2L

and N ≥ log2

( µ

16ε

)
. (10)

Now we have proved the theorem.

Remark: We make the following remarks about the lower bound in the theorem.

(1) if the depth L is fixed, as in shallow networks, the number of neurons required is
Ω
(
(1/ε)

1
2L

)
.

(2) if we are allowed to choose L optimally to minimize the lower bound, we will choose
L = 1

2 log(
µ
16ε ) and thus the lower bound will become Ω(log 1

ε ), closed to the O(log2 1
ε )

upper bound shown in Theorem 4.
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APPENDIX G PROOF OF COROLLARY 12

Proof. From Theorem 4, it follows that there exists a deep neural network f̃d of depth
Ld = Θ

(
log 1

ε

)
and size

Nd ≤ c

(
log

1

ε

)2

(11)

for some constant c > 0 such that ∥f̃d − f∥ ≤ ε.

From the equation (10) in the proof of Theorem 11, it follows that for all shallow neural networks
f̃s of depth Ls and

∥∥∥f̃s − f
∥∥∥ ≤ ε, their sizes should satisfy

Ns ≥ Ls

( µ

16ε

) 1
2Ls

,

which is equivalent to

logNs ≥ logLs +
1

2Ls
log
( µ

16ε

)
. (12)

Substituting for log
(
1
ε

)
from (12) to (11), we have

Nd = O(L2
s log

2 Ns).

By definition, a shallow neural network has a small number of layers, i.e., Ls. Thus, the size of the
deep neural network is O(log2 Ns). This means Nd ≪ Ns.

APPENDIX H PROOF OF COROLLARY 13

Corollary 13 (Gaussian function). For Gaussian function f(x) = f(x(1), ..., x(d)) =

e−
∑d

i=1(x
(i))2/2, x ∈ [0, 1]d, there exists a deep neural network f̃(x) with O

(
log d

ε

)
lay-

ers, O
(
d log d

ε

)
binary step units and O

(
d log d

ε +
(
log 1

ε

)2)
rectifier linear units such that

|f̃(x)− f(x)| ≤ ε for ∀x ∈ [0, 1]d.

Proof. It follows from the Theorem 4 that there exists d multilayer neural networks
g̃1(x

(1)), ..., g̃d(x
(d)) with O

(
log d

ε

)
layers and O

(
d log d

ε

)
binary step units and O

(
d log d

ε

)
rec-

tifier linear units in total such that∣∣∣∣∣x(1)2 + ...+ x(d)2

2
− g̃1(x

(1)) + ...+ g̃d(x
(d))

2

∣∣∣∣∣ ≤ ε

2
. (13)

Besides, from Theorem 4, it follows that there exists a deep neural network f̂ with O
(
log 1

ε

)
layers

O
(
log 1

ε

)
binary step units and O

((
log 1

ε

)2)
such that

|e−dx − f̂(x)| ≤ ε

2
, ∀x ∈ [0, 1].

Let x = (g̃1(x
(1)) + ...+ g̃d(x

(d)))/2d, then we have∣∣∣∣∣e−(
∑d

i=1 g̃i(x
(i)))/2 − f̂

(∑d
i=1 g̃i(x

(i))

2

)∣∣∣∣∣ ≤ ε

2
. (14)

Let the deep neural network

f̃(x) = f̂

(
g̃1(x

(1)) + ...+ g̃d(x
(d))

2

)
.

16



Published as a conference paper at ICLR 2017

By inequalities (13) and (14), the the approximation error is upper bounded by

|f(x)− f̃(x)| =

∣∣∣∣∣e−(
∑d

i=1 x(i))/2 − f̂

(∑d
i=1 g̃i(x

(i))

2

)∣∣∣∣∣
≤
∣∣∣e−(

∑d
i=1 x(i))/2 − e−(

∑d
i=1 g̃i(x

(i)))/2
∣∣∣+ ∣∣∣∣∣e−(

∑d
i=1 g̃i(x

(i)))/2 − f̂

(∑d
i=1 g̃i(x

(i))

2

)∣∣∣∣∣
≤ ε

2
+

ε

2
= ε.

Now the deep neural network has O
(
log d

ε

)
layers, O

(
d log d

ε

)
binary step units and

O
(
d log d

ε +
(
log 1

ε

)2)
rectifier linear units.

APPENDIX I PROOF OF COROLLARY 14

Corollary 14 (Ridge function). If f(x) = g(aTx) for some direction a ∈ Rd with ∥a∥1 = 1, a ⪰
0, x ∈ [0, 1]d and some univariate function g satisfying conditions in Theorem 4, then there exists a

multilayer neural network f̃ with O
(
log 1

ε

)
layers, O

(
log 1

ε

)
binary step units and O

((
log 1

ε

)2)
rectifier linear units such that |f(x)− f̃(x)| ≤ ε for ∀x ∈ [0, 1]d.

Proof. Let t = aTx. Since ∥a∥1 = 1, a ⪰ 0 and x ∈ [0, 1]d, then 0 ≤ t ≤ 1. Then from
Theorem 4, it follows that then there exists a multilayer neural network g̃ with O

(
log 1

ε

)
layers,

O
(
log 1

ε

)
binary step units and O

((
log 1

ε

)2)
rectifier linear units such that

|g(t)− g̃(t)| ≤ ε, ∀t ∈ [0, 1].

If we define the deep network f̃ as
f̃(x) = g̃(t),

then the approximation error of f̃ is

|f(x)− f̃(x)| = |g(t)− g̃(t)| ≤ ε.

Now we have proved the corollary.
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