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ABSTRACT

Learned optimizers (LOs) can significantly reduce the wall-clock training time of
neural networks, substantially reducing training costs. However, they can struggle
to optimize unseen tasks (meta-generalize), especially when training networks
much larger than those seen during meta-training. To address this, we derive
the Maximal Update Parametrization (µP) for two popular learned optimizer ar-
chitectures and propose a simple meta-training recipe for µ-parameterized LOs
(µLOs). Our empirical evaluation demonstrates that LOs meta-trained with our
recipe substantially improve meta-generalization to wider unseen tasks when com-
pared to LOs trained under standard parametrization (e.g., as they are trained in
existing work). When applying our µLOs, each trained for less than 250 GPU-
hours, to large-width models we are often able to match or exceed the performance
of pre-trained VeLO, the most performant publicly available learned optimizer,
meta-trained with 4000 TPU-months of compute. We also empirically observe
that learned optimizers trained with our µLO recipe also exhibit substantially im-
proved meta-generalization to deeper networks (5× meta-training) and remarkable
generalization to much longer training horizons (25× meta-training).

1 INTRODUCTION

Deep learning (Goodfellow et al., 2016) has enabled a great number of breakthroughs (Brown et al.,
2020; Brooks et al., 2024; Radford et al., 2021; Alayrac et al., 2022; Kirillov et al., 2023; Rombach
et al., 2022; Oquab et al., 2023). Its success can, in part, be attributed to its ability to learn effective
representations for downstream tasks. Notably, this resulted in the abandonment of a number of
heuristics (e.g., hand-designed features in computer vision (Dalal and Triggs, 2005; Lowe, 2004))
in favor of end-to-end learned features. However, one aspect of the modern deep-learning pipeline
remains hand-designed: gradient-based optimizers. While popular optimizers such as Adam or
SGD provably converge to a local minimum in non-convex settings (Kingma and Ba, 2017; Li et al.,
2023; Robbins, 1951), there is no reason to expect these hand-designed optimizers reach the global
optimum at the optimal rate for a given problem. Given the lack of guaranteed optimality and the
clear strength of data-driven methods, it is natural to turn towards data-driven solutions for improving
the optimization of neural networks.

To improve hand-designed optimizers, Andrychowicz et al. (2016); Wichrowska et al. (2017); Metz
et al. (2019; 2022a) replaced them with small neural networks called learned optimizers (LOs).
Metz et al. (2022b) showed that scaling up the training of such optimizers can significantly improve
wall-clock training speeds and supersede existing hand-designed optimizers. However, LOs have
limitations in meta-generalization – optimizing new problems. For example, despite training for 4000
TPU months, VeLO (Metz et al., 2022b) is known to (1) generalize poorly to longer optimization
problems (e.g., more steps) than those seen during meta-training and (2) have difficulty optimizing
models much larger than those seen during meta-training. Given the high cost of meta-training LOs
(e.g., when meta-training, a single training example is analogous to training a neural network for
many steps), it is essential to be able to train learned optimizers on small tasks and generalize to
larger ones. Harrison et al. (2022) explore preconditioning methods to improve the generalization
from shorter to longer optimization problems (e.g., ones with more steps). However, no works have
tackled the meta-generalization of LOs to wider models in a principled way.

To address the meta-generalization problem of LOs, we recognize that this problem can be refor-
mulated as zero-shot hyperparameter transfer (Yang et al., 2022). The latter involves selecting
optimal hyperparameters of hand-designed optimizers for training very large networks (that one
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Figure 1: Generalization beyond meta-training widths is severely limited without our approach.
We report the final loss after 1000 steps (e.g., the inner problem length used when meta-training) for
models of different widths. Each point is the average final training loss over 5 seeds with standard
error bars. We observe that both µLOs consistently obtain lower loss values as the tasks become
wider. In contrast, their SP LO counterparts either diverge before reaching 1000 steps on the wider
tasks or make little progress as width is increase.

cannot afford to tune directly) by transferring those tuned on smaller versions of the model. Under
the standard parametrization (SP)1, the optimal hyperparameters of an optimizer used for a small
model do not generalize well to larger versions of the model. However, when a small model is
tuned using the Maximal Update Parametrization (µP), and its larger counterparts are also initialized
with µP, the small and large models share optimal hyperparameters (Yang et al., 2022). Given the
appealing connection between zero-shot hyperparameter transfer in hand-crafted optimizers and
meta-generalization in LOs, we ask the following questions: Can learned optimizers be meta-trained
under µP? How would the resulting optimizers perform on wider unseen tasks? We seek to answer
these questions in the following study. Specifically, we consider the recent LO architectures (Metz
et al., 2022a;b) and demonstrate that µP can be adapted to these optimizers leading to our µLO
optimizers. We subsequently conduct an empirical evaluation that reveals the power of our µLOs and
their advantages for scaling learned optimizers.

Our contributions can be summarized as follows:

• We derive µ-parameterization for two popular learned optimizer architectures (VeLO and
small_fc_lopt) and propose a training recipe for µLOs.

• We demonstrate that µLOs meta-trained with our recipe significantly improve generalization
to wider networks when compared to their SP counterparts and several strong baselines and
that, for wider counterparts of the meta-training tasks, they outperform VeLO (meta-trained
with 4000 TPU-months of compute).

• We demonstrate empirically that µLOs meta-trained with our recipe show improved general-
ization to deeper networks (5× meta-training) when compared to their SP counterparts.

• We demonstrate empirically that µLOs meta-trained with our recipe significantly improve
generalization to longer training horizons (25× meta-training) when compared to their SP
counterparts.

Our results show that µLOs significantly improve learned optimizer generalization without increasing
meta-training costs. This constitutes a noteworthy improvement in the scalability of meta-training
LOs.

2 RELATED WORK

Learned optimization. While research on learned optimizers (LOs) spans several decades (Schmid-
huber, 1992; Thrun and Pratt, 2012; Chen et al., 2022; Amos, 2022), our work is primarily related to

1When we refer to SP, we follow the same meaning as Yang et al. (2022). That is, we consider SP to designate
a parameterization that does not admit HP transfer. However, we note that recent work (Everett et al., 2024)
shows hyperparameter transfer is possible in SP under certain alignment assumptions.
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Figure 2: Layer 2 pre-activations behave harmoniously in µP for µLOs and µAdam alike. We
report the evolution of coordinate-wise standard deviation of the difference between the initial (t = 0)
and t-th second-layer pre-activations of an MLP during training for the first 500 steps of a single run
(the remaining layers behave similarly, see Sec. I). We observe that all models parameterized in µP
enjoy stable coordinates across widths, while the pre-activations of larger-width models in SP blow
up after a number of training steps.

the recent meta-learning approaches utilizing efficient per-parameter optimizer architectures of Metz
et al. (2022a). Unlike prior work (Andrychowicz et al., 2016; Wichrowska et al., 2017; Chen et al.,
2020), which computes meta-gradients (the gradients of the learned optimizer) using backpropagation,
Metz et al. (2022a) use Persistent Evolutionary Strategies (PES) (Vicol et al., 2021), a truncated
variant of evolutionary strategies (ES) (Buckman et al., 2018; Nesterov and Spokoiny, 2017; Parmas
et al., 2018). ES improves meta-training of LOs by having more stable meta-gradient estimates
compared to backpropagation through time, especially for longer sequences (i.e. long parameter
update unrolls inherent in meta-training) (Metz et al., 2019). PES and most recently ES-Single (Vicol,
2023) are more efficient and accurate variants of ES, among which PES is more well-established in
practice making it a favourable approach to meta-training.

Generalization in LOs. One of the critical issues in LOs is generalization in the three main
aspects (Chen et al., 2022; Amos, 2022): (1) optimize novel tasks (often referred to as meta-
generalization); (2) optimize for more iterations than the maximum unroll length used in meta-
training; (3) avoid overfitting on the training set. Among these, (3) has been extensively addressed
using different approaches, such as meta-training on the validation set objective (Metz et al., 2019),
adding extra-regularization terms (Harrison et al., 2022), parameterizing LOs as hyperparameter
controllers (Almeida et al., 2021) and introducing flatness-aware regularizations (Yang et al., 2023).
The regularization terms (Harrison et al., 2022; Yang et al., 2023) often alleviate issue (2) as a
byproduct. However, meta-generalization (1) has remained a more difficult problem. One approach
to tackle this problem is to meta-train LOs on thousands of tasks (Metz et al., 2022b). However,
this approach is extremely expensive and does not address the issue in a principled way leading
to poor meta-generalization in some cases, e.g. when the optimization task includes much larger
networks. Alternatively, Premont-Schwarz et al. (2022) introduced Loss-Guarded L2O (LGL2O)
that switches to Adam/SGD if the LO starts to diverge improving meta-generalization. However,
this approach needs tuning Adam/SGD and requires additional computation (e.g. for loss check)
limiting (or completely diminishing in some cases) the benefits of the LO. In this work, we study
aspects (1) and (2) of LO generalization, demonstrating how existing SP LOs generalize poorly across
these dimensions and showing how one can apply µP to learned optimizers to substantially improve
generalization in both these aspects.

Maximal Update Parametrization. First proposed by Yang and Hu (2021), the Maximal Update
Parametrization is the unique stable abc-Parametrization where every layer learns features. The

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

parametrization was derived for adaptive optimizers by Yang and Littwin (2023) and was applied
by Yang et al. (2022) to enable zero-shot hyperparameter transfer, constituting the first practical
application of the tensor programs series of papers. Earlier works in the tensor programs series build
the mathematical foundation that led to the discovery of µP. Yang (2019) shows that many modern
neural networks with randomly initialized weights and biases are Gaussian Processes, providing a
language, called Netsor, to formalize neural network computations. Yang (2020a) focuses on neural
tangent kernels (NTK), proving that as a randomly initialized network’s width tends to infinity, its
NTK converges to a deterministic limit. Yang (2020b) shows that randomly initialized network’s pre-
activations become independent of its weights when its width tends to infinity. Most recently, in tensor
programs VI, Yang et al. (2024) propose Depth-µP, a parameterization allowing for hyperparameter
transfer in infinitely deep networks. However, Depth-µP is only valid for residual networks with a
block depth of 1, making it unusable for most practical architectures (e.g., transformers, resnets, etc.).
For these reasons, we do not study Depth-µP herein. Building on the latest works studying width
µP (Yang and Littwin, 2023; Yang et al., 2022), in this work, we show that µP can be extended to the
case of learned optimizers and empirically evaluate its benefits in this setting.

3 METHOD

3.1 BACKGROUND

A standard approach to learning optimizers (Metz et al., 2022a) is to solve the following meta-learning
problem:

min
ϕ

E(D,w0)∼T

[
E(X,Y )∼D

[
1

T

T−1∑
t=0

L(X,Y ; fϕ(ut),wt)

]]
, (1)

where T is a distribution over optimization tasks defined as pairs of dataset D and initial weights
w0 associated with a particular neural architecture (we refer to this network as the optimizee), ϕ
represents the weights of the learned optimizer, fϕ, that takes gradient-based features ut as input.
Finally, L is the loss function used to train the optimizee. T is the length of the unroll which we
write as a fixed quantity for simplicity. In our experiments, during meta-optimization, T is varied
according to a truncation schedule (Metz et al., 2022a). A clear goal of the learned optimization
community is not only learning to solve optimization problems over T , but also to apply the learned
optimizer, fϕ, more generally to unobserved datasets and architectures. This transfer to new tasks
is referred to as meta-generalization. This problem can be seen as a generalization of the zero-shot
hyperparameter transfer problem considered in Yang et al. (2022); for instance, when the optimizer is
a hand-designed method such as SGD or Adam and ϕ represents optimization hyper-parameters such
as the learning rate.

Gradient descent is a standard approach to solving equation 1. However, estimating the meta-gradients
via backpropagation for very long unrolls is known to be noisy (Metz et al., 2019). Instead, gradients
are estimated using evolution strategies (Buckman et al., 2018; Nesterov and Spokoiny, 2017; Parmas
et al., 2018). Evolution strategies work by sampling perturbations to the LO’s weights (similar
to SPSA (Spall, 2000)), unrolling an optimization trajectory for each perturbation, and estimating
gradients with respect to evaluations of the meta-objective (usually the loss of the network being
optimized, see eq. 1). In contrast to ES, which estimates one gradient per full unroll, PES (Vicol
et al., 2021) allows estimating unbiased gradients at many points (called truncations) during the full
unroll. This allows updating the optimizer’s parameters more often during meta-training. We use
PES to estimate meta-gradients in our experiments.

Learned optimizer features ut are constructed based on momentum, second-order momentum, and
adafactor values as in (Metz et al., 2022a), with the full list of features described in the (Table 6
of the Appendix). In our experiments, the architectures of our fϕ are similar to small_fc_lopt of
Metz et al. (2022a) and VeLO of Metz et al. (2022b) except that their dimensions differ slightly (see
sec. C for details). fϕ has three outputs m, d, and α, the magnitude, scale, and learning rate of the
update respectively. For small_fc_lopt, αw = 1 always, αw is produced by the tensor-level LSTM
for VeLO. The standard LO update is given as

wt = wt−1 − αwλ1dϕ exp (λ2mϕ), (2)

where λ1 and λ2 are constant values of 0.001 to bias initial step sizes towards being small.
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3.2 µ-PARAMETRIZATION FOR LEARNED OPTIMIZERS

Parameterizing an optimizee neural network in µP requires special handling of the initialization
variance, pre-activation multipliers, and optimizer update for each weight matrix w ∈ Rn×m in the
network. Specifically, these quantities will depend on the functional form of the optimizer and the
dependence of n (FAN_OUT) and m (FAN_IN) on width. We will refer to weight matrices in a network
of width h as hidden layers if Θ(n) = Θ(m) = Θ(h), as output layers if Θ(n) = 1,Θ(m) = Θ(h),
and as input layers if Θ(n) = Θ(h),Θ(m) = Θ(h).

Consider a model to be optimized gw with weights in layers l denoted wl. We apply and construct
µLOs as follows.

Initialization-µ. wl which are hidden and input layers have their weights initialized as
N (0, 1√

FAN_IN
). While output layers have their weights initialized as N (0, 1).

Multipliers-µ. Output layer pre-activations are multiplied by 1
FAN_IN

during the forward pass.

Updates-µ. The update by fϕ on the parameters of gw, at both meta-training and evaluation is
modified as follows:

wt =

wi
t−1 − 1

FAN_IN
·
(
αwλ1d

i
ϕ exp

(
λ2m

i
ϕ

))
if wi is part of a hidden layer

wi
t−1 − αwλ1d

i
ϕ exp

(
λ2m

i
ϕ

)
otherwise.

(3)

We now show that this can lead to a maximal update Parametrization, following the analysis of (Yang
et al., 2022, Appendix J.2.1) which studies the initial optimization step. For our analysis, we consider
a simplified input set for fϕ which takes as input only the gradient while producing an update for
each layer. Note that this analysis extends naturally to other first-order quantities.

Proposition 1. Assume that the LO fϕ is continuous around 0. Then, if fϕ(0) ̸= 0, the update, initial-
ization, and pre-activation multiplier above is necessary to obtain a Maximal Update Parametrization.

3.3 µLO META-TRAINING RECIPE

µP for hand-designed optimizers involves tuning the optimizer on a small width version
of the target architecture and transferring the hyperparameters to the larger width target
model (Yang et al., 2022). While µ-transfer makes hyperparameter search for large models
tractable, it has the following limitations: (1) the smaller scale hyperparameter search suf-
fers from increased complexity as it requires sweeping various multipliers in addition to the
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Figure 3: µLOS underperforms µLOM as width and
training steps increase. Each point is the average train-
ing loss over 5 seeds at iterations 1000 (a) or 5000 (b). Error
bars report standard error.

standard hyperparameters, (2) tuning
the hyperparameters on too small of
a model may result in sub-optimal hy-
perparameters for the largest models,
(3) Yang et al. (2022) recommend re-
peating the procedure for every new
task/dataset. Meta-training flexible µ-
parametrized learned optimizers can
address these limitations. Due to their
flexible functional forms (as opposed
to just a learning rate hyperparameter),
µLOs can learn to optimize networks
in µP without tuning multipliers (we
set all multipliers to 1 in our exper-
iments). Therefore, by training our
µLOs with fixed multipliers on multi-
ple tasks that are large enough to ad-
mit strong transfer but still tractable and reusing them on new tasks, we address (1), (2), and (3) by
amortizing the tuning cost during the optimizer meta-training stage. However, it should be noted that
while the µLO framework allows for meta-generalization to unseen new tasks (unlike µ-transfer), a
µLO that relies on meta-generalization for transfer to new tasks should expect to be outperformed by
the µLO that also meta-trains on a small version of that task.
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Table 1: Meta-training configurations of LOs and baselines in our empirical evaluation.
Identifier Type Architecture Optimizee Par. Meta-Training / Tuning Task(s)
µLOS Ours small_fc_lopt (Metz et al., 2022a) µLO Sec. 3.2 ImageNet classification, 3-Layer MLP, width ∈ {128}
µLOM Ours small_fc_lopt (Metz et al., 2022a) µLO Sec. 3.2 ImageNet classification, 3-Layer MLP, width ∈ {128, 512, 1024}
µVeLOM Ours VeLO (Metz et al., 2022b) µLO Sec. 3.2 ImageNet classification, 3-Layer MLP, width ∈ {128, 512, 1024}
LOS LO Baseline small_fc_lopt (Metz et al., 2022a) SP ImageNet classification, 3-Layer MLP, width ∈ {128}
LOM LO Baseline small_fc_lopt (Metz et al., 2022a) SP ImageNet classification, 3-Layer MLP, width ∈ {128, 512, 1024}
VeLOM LO Baseline VeLO (Metz et al., 2022b) SP ImageNet classification, 3-Layer MLP, width ∈ {128, 512, 1024}
VeLO-4000 Oracle LO Baseline VeLO (Metz et al., 2022b) SP We refer the reader to (Metz et al., 2022b, Appendix C.2)

µAdam Baseline – µP Adam ImageNet classification, 3-Layer MLP, width ∈ {1024}
AdamW Baseline – SP ImageNet classification, 3-Layer MLP, width ∈ {1024}

To verify the effectiveness of this multi-task strategy for learned optimizers, we compare µLOS ,
trained on a single small task (see Tab. 1), to µLOM , trained on 3 small tasks of the different width
(see Tab. 1), in figure 3. When training for 1000 steps (meta-training unroll length), we observe
that µLOM outperforms µLOS as the width of the model is increased (Fig. 3 (a)). Moreover, we
observe that there is a discrepancy in performance between both models after 5000 steps (Fig. 3 (b)),
showing that meta-training with multiple tasks of different widths has benefits for generalization
to longer unrolls in addition to improved generalization to larger optimizees. Given the improved
generalization of µLOM compared to µLOS , we adopt the multiple-width single-task meta-training
recipe as part of our method. Subsequent experiments (e.g., figures 1 and 4) will show that it is also
effective for meta-training µVeLO.

4 EMPIRICAL EVALUATION

We use a suite of optimization tasks of varying width to evaluate meta-generalization properties
of our µLOs vs tuned µAdam (Yang et al., 2022), SP AdamW Loshchilov and Hutter (2019), and
baseline SP LOs. We also include pre-trained VeLO (Metz et al., 2022b) as an oracle which we
denote as VeLO-4000. Meta-trained for 4000 TPUv4 months, it is the strongest publicly available
pre-trained learned optimizer. We focus on evaluating generalization to wider networks, however, we
also establish the generalization properties of µLOs to longer training horizons and deeper networks.
Please note that while µLOs inherit the theoretical properties of µP for width scaling, our findings
with respect to longer training and deeper networks are purely empirical.

Baseline LOs and µLOs. The meta-training configuration of each learned optimizer is summarized
in Table 1. Each learned optimizer (ours and the baselines) in our empirical evaluation is meta-trained
using the multiple-width single-task meta-training recipe proposed in section 3.3. The baseline sheds
light on whether simply varying the SP optimizee width during meta-training is enough to achieve
generalization of the LO to wider networks in SP. During meta-training, we set the inner problem
length to be 1000 iterations. Therefore, any optimization beyond this length is considered out-of-
distribution. For all meta-training and hyperparameter tuning details, including ablation experiments,
see section C of the appendix.

µAdam µAdam is a strong hand-designed µP baseline. It follows the Yang et al. (2022) Adam
µ-parametrization and does not use weight decay as this is incompatible with µP. It is tuned on the
largest meta-training task seen by our learned optimizers (Table 1). We tune the learning rate and
three multipliers: input multiplier, output multiplier, and the hidden learning rate multiplier. These
multipliers correspond to adding a tunable constant to the pre-activation multiplier for input weights,
the pre-activation multiplier for output weights, and the Adam LR for hidden weights. More details
about the grid search over 500 configurations are provided in Section B.1 of the appendix.

AdamW AdamW (Loshchilov and Hutter, 2019) is a strong hand-designed SP baseline. It is tuned
on the largest meta-training task seen by our learned optimizers (Table 1). We tune the learning rate,
β1,β1, and the weight decay. More details about the grid search over 500 configurations are provided
in Section B.1 of the appendix.

Pre-trained VeLO (VeLO-4000). VeLO (Metz et al., 2022b) is a learned optimizer that was meta-
trained on a curriculum of progressively more expensive meta-training tasks for a total of 4000 TPU
months. These tasks include but are not limited to image classification with MLPs, ViTs, ConvNets,
and ResNets; compression with MLP auto-encoders; generative modeling with VAEs; and language
modeling with transformers and recurrent neural networks. During meta-training, VeLO-4000 unrolls
inner problems for up to 20k steps (20× ours); the final model was then fine-tuned on tasks with up to
200k steps of optimization. VeLO-4000, therefore, represents the strongest baseline in our empirical
evaluation and we consider it to be an oracle.
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Figure 4: Evaluating generalization to wider networks for different tasks. Tasks Our optimizers
are meta-trained for 1000 inner steps (dotted red line), therefore, any optimization beyond 1000 steps
is considered out-of-distribution. We plot average training loss over 5 seeds with standard error bars.
We observe that µLOM and µVeLOMgeneralize smoothly to longer unrolls and all unseen tasks,
unlike their SP counterparts which diverge or failt to make progress. µLOs even surpass or match
the performance of VeLO in subfigures (a), (b), and (c)). Moreover, they also substantially best the
well-tuned hand-designed baselines on LM and ViT tasks (subfigures (d) and (e)) and best or match
the best performing hand-designed optimizer in subfigures (a),(b), and (c).

Is VeLO-4000 a fair baseline? While we believe the comparison is important given the relevance of
our results to scaling up LOs, we highlight that the comparison will unfairly advantage VeLO-4000
as all tasks in our suite fall within its meta-training distribution and VeLO-4000 was meta-trained on
inner unroll horizons well beyond those we evaluate. Thus, when comparing our LOs to VeLO-4000,
it is important to keep in mind that ours are meta-trained with only 0.004% of VeLO-4000’s compute
budget.

Evaluation tasks. Our evaluation suite includes 35 tasks spanning image classification (CIFAR-10,
ImageNet) using MLPs and Vision Transformers (ViTs) (Dosovitskiy et al., 2020) and autoregressive
language modeling with a decoder-only transformer on LM1B (Chelba et al., 2013). To create the
tasks, we further vary image size (for image classification), width, and depth of the optimizee network,
and the number of optimization steps. See Table 7 of the appendix for an extended description of all
the tasks.

4.1 RESULTS

In the following sections, we first (Sec. 4.1.1) present results empirically verifying the pre-activation
stability of our µLOs. Subsequently, we present the results of our main empirical evaluation of
meta-generalization to wider networks (Sec. 4.1.1), a study of µLOs generalization to deeper networks
(Sec. 4.1.3), and a study of µLOs generalization to longer training horizons (Sec. 4.1.4). All of our
figures reporting training loss show the average loss across 5 random seeds. The error bars in these
plots report the standard error. Each seed corresponds to a different ordering of training data and a
different initialization of the optimizee.
4.1.1 EVALUATING PRE-ACTIVATION STABILITY

We now verify that desiderata J.1 of Yang et al. (2022) is satisfied empirically. In Figure 2, we report
the evolution of the coordinate-wise standard deviation of the difference between initial (t=0) and
current (t) second-layer pre-activations of an MLP during the first 500 steps of training for a single
trial. We observe that all models parameterized in µP enjoy stable coordinates across widths, while
the pre-activations of the larger models in SP blow up after a number of training steps. Notably, SP
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Adam’s pre-activations blow up immediately, while LOS and LOM take longer to blow up and have
a more erratic pattern; we hypothesize that this is a side effect of meta-training where the optimizers
may learn to keep pre-activations small by rescaling updates. Section I of the appendix contains
similar plots for the remaining layers of the MLP which show similar trends.

In summary, we find, empirically, that pre-activations of µLOs and µAdam are similarly stable
across widths, while the activations of SP Adam and SP LOs both blow up but behave qualitatively
differently.

Table 2: In-distribution and out-of-distribution average performance of optimizers. We report
the average rank of different optimizers across the five tasks in our suite. We evaluate in-distribution
at a Base width of 1024 as this is the width used to tune the hand-designed baselines. We also evaluate
out-of-distribution widths: Large (2048) and XL (largest size for each task see Tab.7 of the appendix).
We bold the strongest, underline the second strongest, and italicize the third strongest average rank in
each column. We do not bold entries of VeLO-4000 as it is reported only for reference since it is not
a fair comparison. We observe that, across all iterations, when compared to fair baselines, µLOM

obtains the best rank for all settings except for the XL task at 5000 iterations, where it is only bested
by µVeLO.

Loss at 1k steps Loss at 3k steps Loss at 5k steps
Optimizer ID (Base) OoD (Large) OoD (XL) ID (Base) OoD (Large) OoD (XL) ID (Base) OoD (Large) OoD (XL)
AdamW 3.40 3.20 4.60 3.60 3.80 4.80 4.00 4.40 4.80
µAdam 4.40 4.20 4.00 3.60 3.60 3.40 3.60 3.60 3.20
VeLOM 5.00 5.80 5.60 6.80 6.40 7.00 7.00 7.00 6.80
LOM 5.20 6.60 6.80 5.20 6.60 6.00 5.60 6.00 6.20
µVeLOM (ours) 4.40 3.40 2.20 3.60 2.60 2.20 4.00 2.80 2.00
µLOM (ours) 2.80 1.80 2.00 2.40 2.00 1.80 2.20 2.00 2.80

VeLO-4000 2.80 3.00 2.80 2.80 3.00 2.80 1.60 2.20 2.20

4.1.2 META-GENERALIZATION TO WIDER NETWORKS
Given our goal of improving LO generalization to unseen wider tasks, the bulk of our empirical
evaluation is presented in this section. Specifically, we evaluate the behavior of µLOs as the width
of tasks increases well beyond what was seen during meta-training. To accomplish this, we fix the
depth of each task and vary the width (see Table 7 for a full list of tasks), leading to a testbed of 32
different tasks. We then train each task using the baselines and µ-optimizers outlined in section 4 for
5000 steps for 5 different random seeds. This involves training 1120 different neural networks. To
make the results easily digestible, we summarize them by width and final performance in Figure 4
and by average optimizer rank in Table 2. We also highlight the smooth training dynamics of our
optimizers at the largest widths in figure 4.

Performance measured by final loss as a function of width Figure 1 compares the training loss
after 1000 steps of SP learned optimizers to µ-parameterized learned optimizers for different widths.
This is shown in three subfigures for three MLP image classification tasks: (a) Imagenet 32× 32× 3
(IN32), (b) Imagenet 64× 64× 3 (IN64), and (c) Cifar-10 32× 32× 3 (C10). Subfigure (a) shows
the performance of learned optimizers on larger versions of the meta-training tasks. We observe
that the µLOs achieve lower final training loss as the width of the task is increased. In contrast,
LOM diverges for widths larger than 2048 and VeLOM fails to substantially decrease the loss at
larger widths, falling behind the µLOs. Subfigure (b) evaluates our µLOs of larger ImageNet images
(e.g., when the input width is larger). Similarly, we observe smooth improvements in the loss as
the optimizee width increases for µLOs, while their SP counterparts either diverge at width 512
(LOM ) or fail to substantially improve the loss beyond width 1024 (VeLOM ). Finally, Subfigure (c)
shows the performance of our µLOs on Cifar-10 (smaller output width) as the width of the model is
increased. Similarly, we observe smooth improvements in the loss as the width increases for µLOs,
while their SP counterparts either diverge immediately at small widths (VeLOM ) or diverge by width
1024 (LOM ).

Performance measured by average optimizer rank Table 2 reports the average rank of different
optimizers on in-distribution width tasks (Base, width 1024) and out-of-distribution width tasks (Large
(width 2048) and XL (maximum width)). Each entry of the table corresponds to the optimizer’s
average rank (within the 7 optimizers evaluated) over the 5 tasks in our suite: Cifar 10 MLP image
classification, ImageNet 32 MLP image classification, ImageNet 64 MLP image classification,
ImageNet 32 ViT image classification, and LM1B transformer language modelling. The optimizers
are ranked by their training loss at the given iteration. We report average ranks for 1000 iterations
(inner-problem length), 3000 iterations, and 5000 iterations. We bold the strongest, underline the
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Figure 5: Evaluating generalization capabilities of µLOs to deeper networks. The figures
report the performance of learned optimizers for training depth-16 ViTs for image classification,
Transformers for language modeling, and MLPs for image classification. We plot average training
loss over 5 seeds with standard error bars. In each case, µLOs show improved generalization and
performance when compared to their SP counterparts.

second strongest, and italicize the third strongest average rank in each column. We do not bold entries
of VeLO-4000 as it is reported only for reference since it is not a fair comparison. We observe that,
across all iterations, when compared to fair baselines, µLOM obtains the best rank for all settings
except for the XL task at 5000 iterations, where it is only bested by µVeLO. When only looking at the
out-of-distribution Large and XL tasks, we observe that µLOM and µVeLOMdominate the first two
spots of the optimizer podium in all cases except one. For the Large task at 1000 steps, µVeLOM is
bested by AdamW. When comparing our µLOs to VeLO-4000, we observe that at least one of µLOM

and µVeLOMbests VeLO-4000 on all tasks except for the large task at 5000 iterations. This is
remarkable as our µLOs are trained on many orders of magnitude less compute than VeLO-4000.
These results demonstrate that meta-training LOs using our recipe yields substantial improvements
in meta-generalization (across various tasks and widths) over LOs from previous work and strong
hand-designed baselines.

Training dynamics at the largest widths Figure 4 reports the training curves of different optimizers
on the largest width tasks in our suite. Despite training for 5× longer than the maximum meta-
training unroll length, our µLOs are capable of smoothly decreasing the loss for the largest out-
of-distribution tasks in our suite. In contrast, the strong SP LO baselines diverge by 1000 steps
(subfigures (a),(b),(c),(d)), or fail to decrease the training loss (subfigure (e)). Our µLOs also
substantially best the well-tuned hand-designed baselines on LM and ViT tasks (subfigures (d) and
(e)) and best or match the best performing hand-designed optimizer in subfigures (a),(b), and (c).
Notably in figure (c), our µLOs can even generalize beyond the tuning/meta-training widow to tasks
with a smaller output layer while µAdam suffers from instability in this case. When comparing with
VeLO-4000, we observe that our µLOs substantially outperform VeLO in subfigures (a),(b), and
µLOM outperforms VeLO-4000 in subfigure (c). In contrast, VeLO-4000 outperforms our µLOs on
transformer language modeling and ViT image classification, the most out-of-distribution tasks for
them. These findings show that µLOs can outperform VeLO-4000 on larger in-distribution tasks,
suggesting that scaling meta-training in SP (e.g., as done for VeLO) may not be sufficient to achieve
strong meta-generaliztion to the largest tasks, but that meta-training in µP could be.

In summary, the results in Fig. 1,Tab. 2 and Fig.4 demonstrate that our µLO meta-training recipe
represents a considerable advancement to low-cost meta-generalization for learned optimizers. The
technique is shown to be a substantial improvement over previous work.

4.1.3 META-GENERALIZATION TO DEEPER NETWORKS

In this section, we evaluate LO meta-generalization to deeper networks. Specifically, we increase
the number of layers used in MLP, ViT, and LM tasks from 3 to 16, while being sure to select
models that have widths within the meta-training range (128−1024) to avoid confounding the results.
Figure 5 reports the performance of our multi-task learned optimizers on deeper networks. We
observe that both µLOM and µVeLOM optimize stably throughout and generally outperform their
counterparts, LOM and VeLOM , by the end of training on each task, despite being meta-trained on
MLPs of exactly the same depth. Moreover, LOM immediately diverges when optimizing the deep
MLP while µLOM experience no instability. Similarly, VeLOM diverges on ViTs and Transformers,
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Figure 6: Evaluating generalization capabilities of µLOs to longer training horizons. We plot
average training loss over 5 seeds with standard error bars. All optimizers are meta-trained for
1000 steps of training (dotted red line), therefore, any optimization beyond 1000 steps is considered
out-of-distribution. We observe that µLOs seamlessly generalize to training horizons 25× longer than
meta-training. In contrast, the best performing SP LO fails to decrease training loss (a), decreases it
but suffers instabilities (b), or diverges after 8000 steps (c).

while µVeLOM performs well, especially on ViTs. This is remarkable as, unlike width, there is no
theoretical justification for µP’s benefit to deeper networks. We hypothesize that µP’s stabilizing
effect on the optimizee’s activations leads to this improvement generalization.
In summary, we find, empirically, that using µP during meta-training benefits the generalization of
learned optimizers, including VeLO, to deeper networks.

4.1.4 META-GENERALIZATION TO LONGER TRAINING HORIZONS

In this subsection, we empirically evaluate the capability of µLOs to generalize to much longer
training horizons than those seen during meta-training. Specifically, we use µLOM and LOM as
well as µVeLOM and VeLOM to train three networks with width w = 1024: a 3-layer MLP, ViT on
32× 32× 3 ImageNet and a 3-layer Transformer for autoregressive language modeling on LM1B.
Each model is trained for 25, 000 steps (25× the longest unroll seen at meta-training time). Figure 6
reports the training loss averaged over 5 random seeds. We observe that µLOM and µVeLOM stably
decrease training loss over time for each task, while LOM and VeLOM fail to decrease training loss
(a), decreases it but suffers instabilities (b), or diverges after 8000 steps (c). These results suggest
that generalization to longer training horizons is another benefit of using µP with learned optimizers.

In summary, we find, empirically, that using µP during meta-training significantly benefits the
generalization of learned optimizers to longer training horizons.

5 LIMITATIONS

While we have conducted a systematic empirical study and shown strong results within the scope of
our study, there are some of limitations of our work. Specifically, (1) we do not meta-train on tasks
other than MLPs for image classification and we do not provide evaluation of models wider than
8192 for MLPs and 3072/12288 (hidden/FFN size) for transformers due to computational constraints
in our academic environment.

6 CONCLUSION

We have demonstrated that applying or µLO meta-training recipe produces optimizers with substan-
tially improved meta-generalization properties when compared to strong baselines from previous
work. Remarkably, our µLOs even surpass VeLO-4000 (meta-trained for 4000 TPU months) on wider
versions of in-distribution tasks. Moreover, our experiments also show that µLOs meta-trained with
our recipe generalize better to wider and deeper out-of-distribution tasks than their SP counterparts.
Moreover, when evaluated on much longer training tasks, we observe that µLOs have a stabilizing
effect, enabling meta-generalization to much longer unrolls (25× maximum meta-training unroll
length). All of the aforementioned benefits of µLOs come at zero extra computational cost compared
to SP LOs. Our results outline a promising path forward for low-cost meta-training of learned
optimizers that can generalize to large unseen tasks.
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A PROOF OF PROPOSITION 1

Proposition 1. Assume that the LO fϕ is continuous around 0. Then, if fϕ(0) ̸= 0, the update, initial-
ization, and pre-activation multiplier above is necessary to obtain a Maximal Update Parametrization.

Proof. The update produced by fϕ is denoted ∆W and we write ∇W the corresponding gradient, so
that ∆W = fϕ(∇W ). For the sake of simplicity, n will be the output size and d the feature input
size of our neural network. Our goal is to satisfy the desiderata of (Yang et al., 2022, Appendix
J.2). We assume our initialization follows Initialization-µ in Sec 3. Overall, our goal is to study
strategy so that if xi = Θ(1), then one needs to renormalize/initialize so that (Wx)i = Θ(1) while
((W +∆W )x)i = Θ(1) so that the update is as large as possible. Note that given the assumptions
on f , if x = Θ( 1n ), then f(x) = Θ(1).

Output weights. Here, if input x has some Θ(1) coordinates, we initialize W = (wi)i≤n with
weights of variance 1 (which is necessary) and rescale the preactivations with 1

n . For the update,
we thus have that ∇W scales (coordinate wise) as Θ( 1n ) and we do not rescale the LR, given that
fϕ(∇W ) will also have coordinates in Θ(1).

Hidden weights. Now, for the update, we observe that the gradient ∇W has some coordinates
which scale as Θ( 1n ), due to the output renormalization choice. Thus, the LO fϕ(∇W ) satisfies that
f(∇W ) = Θ(1), given that fϕ is continuous in 0 and satisfies fϕ(0) ̸= 0. Thus for the update, we
need to use ∆W = 1

nfϕ(∇W ) so that ∆Wx is coordinate wise bounded.

Input weights. In this case, the gradient has coordinates which already scale in Θ( 1n ) (due to the
output renormalization) and there is no need to rescale the LR.

B HAND DESIGNED OPTIMIZER HYPERPARAMETER TUNING

B.1 TUNING µADAM

We tune the µAdam baseline on the largest meta-training seen by our learned optimizers.µAdamM

was, therefore, tuned using a 1024 width MLP for 32×32×3 ImageNet classification. As mentioned
in section 4, we tune the learning rate and three multipliers: input multiplier, output multiplier, and
the hidden learning rate multiplier. These multipliers correspond to adding a tunable constant to the
pre-activation multiplier for input weights, the pre-activation multiplier for output weights, and the
Adam LR for hidden weights (e.g., in Table 8 of Yang et al. (2022)). Specifically, we search for
the learning rate in {0.1, 0.01, 0.001, 0.0001} and for each multiplier in {2−4, 2−2, 1, 22, 24}. This
results in a grid search of 500 configurations, whose optimal values are reported in table 3.

Table 3: Best hyperparameters values for µAdam baseline. µAdam is tuned to optimize 3-layer
W= 1024 MLP for 32× 32× 3 ImageNet classification, while µAdam (re-tuned) is tuned on 3-layer
W= 384 ViT for 32× 32× 3 ImageNet classification.

Optimizer LR Input Multiplier Output Multiplier Hidden LR Multiplier

µAdam 0.1 0.25 0.25 4
µAdam (re-tuned) 0.000702 0.9 0.95 0.01

B.2 TUNING ADAMW

We tune the AdamW baseline on the largest meta-training seen by our learned optimizers. AdamW
was, therefore, tuned using a 1024 width MLP for 32×32×3 ImageNet classification. As mentioned
in section 4, we tune the learning rate, betas, and weight decay: LR, β1, β2, and the weights decay.
Specifically, we search over the values of each hyperparameter reported in Table 4. This results in a
grid search of 500 configurations, whose optimal values are reported in table 5.
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Table 4: Grid search values used for AdamW. Similar to the µAdam baseline, we tune all optimizers
on a 3-layer W= 1024 MLP ImageNet classification task and use a budget of approximately 500
total runs. We tune LR, β1, β2, and weight decay to minimize training loss after 1000 steps.

Optimizer LR β1 β2 weight decay Total runs

SP AdamW Log Sample 14 from [10−5, 0.1] {0.9,0.95,0.99} {0.95,0.99,0.999} {0.1,0.01,0.001,0.0001} 504

Table 5: Optimal Hyperparameters Found AdamW. Similar to the µAdam baseline, we tune all
optimizers on a 3-layer W= 1024 MLP ImageNet classification task and use a budget of approxi-
mately 500 total runs.

Optimizer LR β1 β2 weight decay Total runs

SP AdamW 0.000702 0.9 0.95 0.0001 504

C META-TRAINING WITH µLOS

General meta-training setup for small_fc_lopt Each small_fc_lopt (Metz et al., 2022a) learned
optimizer is meta-trained for 5000 steps of gradient descent using AdamW (Loshchilov and Hutter,
2019) and a linear warmup and cosine annealing schedule. We using PES (Vicol et al., 2021) to
estimate meta-gradients with a truncation length of 50 steps and sampling 8 perturbations per task
at each step with standard deviation 0.01. For the inner optimization task, we used a maximum
unroll length of 1000 iterations; that is, all our learned optimizers see at most 1000 steps of the inner
optimization problem during meta-training. Unlike with µAdam, we do not tune the µP multipliers
when meta-training µLOS and µLOM , instead, we set the all to 1. All optimizers are meta-trained on
a single A6000 GPU. µLOS and LOS take 8 hours each to meta-train, while µLOM and LOM take
103 hours.

General meta-training setup for VeLO Each VeLO (Metz et al., 2022a) learned optimizer is meta-
trained for 45000 steps of gradient descent using AdamW (Loshchilov and Hutter, 2019) and a linear
warmup and cosine annealing schedule. We using PES (Vicol et al., 2021) to estimate meta-gradients
with a truncation length of 20 steps and sampling 8 perturbations per task at each step with standard
deviation 0.01. For the inner optimization task, we used a maximum unroll length of 1000 iterations;
that is, all our learned optimizers see at most 1000 steps of the inner optimization problem during
meta-training. Unlike with µAdam, we do not tune the µP multipliers when meta-training µLOS

and µLOM , instead, we set the all to 1. All optimizers are meta-trained on a single A6000 GPU.
µVeLOMand VeLOM take 250 hours to meta-train.

Meta-training hyperparameters for small_fc_lopt in µP While there are very few differences
between µLOs and SP LOs, the effective step size for hidden layers is changed (see eq. 3) which
could alter the optimal meta-training hyperparameters. Consequently, we conduct an ablation study
on hyper-parameters choices for µLOS . Specifically, using AdamW and gradient clipping with a
linear warmup and cosine annealing LR schedule, we meta-train µLOS to train 3-layer width 128
MLPs to classify 32× 32× 3 ImageNet Images. By default, we warmup linearly for 100 steps to
a maximum learning rate of 3e− 3 and anneal the learning rate for 4900 steps to a value of 1e− 3
with λ1 = 0.001 (from equation 3) and sampling 8 perturbations per step in PESVicol et al. (2021).
The above ablation varies the maximum learning rate ∈ {1e− 2, 3e− 3, 1e− 3} (always using 100
steps of warmup and decaying to 0.3×MaxLR), λ1 ∈ {0.001, 0.01, 0.1}, the number of steps (5k or
10k), and the number of perturbations (8 or 16). We observe that using all default values except for
λ1 = 0.01 yields one of the best solutions while being fast to train and stable during meta-training.
We, therefore, select these hyperparameters to meta-train µLOS and µLOM .

Meta-training hyperparameters for VeLO in µP Unlike small_fc_lopt, we do not find it necessary
to λ1 from its default value. However, we do remove the multiplication by the current parameter
norm used in the update equation to VeLO as it causes meta-training problems when initializing
tensors to zero.
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µP at Meta-training time While we use the same µP at meta-training and testing time, it is
important to consider meta-training tasks that have similar training trajectories to their infinite
width counterparts. In (Yang et al., 2022), authors provide discussions of these points for zero-shot
hyperparameter transfer. Two notable guidelines are to initialize the output weight matrix to zero (as it
will approach zero in the limit) and to use a relatively large key size when meta-training transformers.
For all our tasks, we initialize the network’s final layer to zeros. While we do not meta-train on
transformers, we suspect that the aforementioned transformer-specific guidelines may be useful.
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Figure 7: Ablating Meta-training Hyperparameter for µLOS . All curves show a single meta-
training run. Using AdamW with a linear warmup and cosine annealing schedule, we meta-train µLOS

to train 3-layer width 128 MLPs for classifying 32×32×3 ImageNet Images. By default, we warmup
linearly for 100 steps to a maximum learning rate of 3e − 3 and anneal the learning rate for 4900
steps to a value of 1e− 3 with λ1 = 0.001 (from equation 3) and sampling 8 perturbations per step in
PESVicol et al. (2021). The above ablation varies the maximum learning rate ∈ {1e−2, 3e−3, 1e−3}
(always using 100 steps of warmup and decaying to 0.3×MaxLR), λ1 ∈ {0.001, 0.01, 0.1}, the
number of steps (5k or 10k), and the number of perturbations (8 or 16). We observe that using all
default values except for λ1 = 0.01 yields one of the best solutions while being fast to train and
stable during meta-training.
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D FEATURES OF THE LEARNED OPTIMIZER

Table 6: Per-parameter features used as input to our learned optimizers. All the coefficients, βi,
are learnable parameters adjusted during meta-optimization. We replicate the table of (Joseph et al.,
2023) for convenience.

Description value

parameter value wt

3 momentum values with coefficients β1, β2, β3 mt,i = βimt−1,i + (1− βi)gt

second moment value computed from gt with decay β4 vt = β4vt−1 + (1− β4)g
2
t

3 values consisting of the three momentum values normal-
ized by the square root of the second moment

mt,i√
v

the reciprocal square root of the second moment value 1√
v

3 ∆t Adafactor normalized values gt × ROW FACTOR × COLUMN FACTOR

3 tiled Adafactor row features with coefficients β5, β6, β7,
computed from gt

rt,i = βirt−1,i + (1− βi)ROW_MEAN(∆2
t )

3 tiled Adafactor column feature with coefficients β5, β6, β7

computed from gt
ct,i = βict−1,i + (1− βi)COL_MEAN(∆2

t )

the reciprocal square root of the previous 6 features 1√
rt,i OR ct,i

3 m Adafactor normalized values mt,i × ROW FACTOR × COLUMN FACTOR
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E LIST OF META-TESTING TASKS

Table 7 reports the configuration of different testing tasks used to evaluate our optimizers. We
note that we do not augment the ImageNet datasets we use in any way except for normalizing the
images. We tokenize LM1B using a sentence piece tokenizer(Kudo and Richardson, 2018) with 32k
vocabulary size. All evaluation tasks are run on A6000 48BG or A100 80GB GPUs for 5 random
seeds.

Table 7: Meta-testing settings. We report the optimization tasks we will use to evaluate the LOs of
Table 1.

Identifier Dataset Model Depth Width Attn. Heads FFN Size Batch Size Sequence Length

IN32T MLP
(3,128) 32× 32× 3 ImageNet MLP 3 128 – – 4096 –

IN32T MLP
(3,256) 32× 32× 3 ImageNet MLP 3 256 – – 4096 –

IN32T MLP
(3,512) 32× 32× 3 ImageNet MLP 3 512 – – 4096 –

IN32T MLP
(3,1024) 32× 32× 3 ImageNet MLP 3 1024 – – 4096 –

IN32T MLP
(3,2048) 32× 32× 3 ImageNet MLP 3 2048 – – 4096 –

IN32T MLP
(3,4096) 32× 32× 3 ImageNet MLP 3 4096 – – 4096 –

IN32T MLP
(3,8192) 32× 32× 3 ImageNet MLP 3 8192 – – 4096 –

IN64T MLP
(3,128) 64× 64× 3 ImageNet MLP 3 128 – – 4096 –

IN64T MLP
(3,256) 64× 64× 3 ImageNet MLP 3 256 – – 4096 –

IN64T MLP
(3,512) 64× 64× 3 ImageNet MLP 3 512 – – 4096 –

IN64T MLP
(3,1024) 64× 64× 3 ImageNet MLP 3 1024 – – 4096 –

IN64T MLP
(3,2048) 64× 64× 3 ImageNet MLP 3 2048 – – 4096 –

IN64T MLP
(3,4096) 64× 64× 3 ImageNet MLP 3 4096 – – 4096 –

C10T MLP
(3,128) 32× 32× 3 Cifar-10 MLP 3 128 – – 4096 –

C10T MLP
(3,256) 32× 32× 3 Cifar-10 MLP 3 256 – – 4096 –

C10T MLP
(3,512) 32× 32× 3 Cifar-10 MLP 3 512 – – 4096 –

C10T MLP
(3,1024) 32× 32× 3 Cifar-10 MLP 3 1024 – – 4096 –

C10T MLP
(3,2048) 32× 32× 3 Cifar-10 MLP 3 2048 – – 4096 –

C10T MLP
(3,4096) 32× 32× 3 Cifar-10 MLP 3 4096 – – 4096 –

C10T MLP
(3,8192) 32× 32× 3 Cifar-10 MLP 3 8192 – – 4096 –

T ViT
(3,192) 32× 32× 3 ImageNet ViT 3 192 3 768 4096 –

T ViT
(3,384) 32× 32× 3 ImageNet ViT 3 384 6 1536 4096 –

T ViT
(3,768) 32× 32× 3 ImageNet ViT 3 768 8 3072 4096 –

T ViT
(3,1024) 32× 32× 3 ImageNet ViT 3 1024 8 4096 4096 –

T ViT
(3,2048) 32× 32× 3 ImageNet ViT 3 2048 16 8192 4096 –

T ViT
(3,3072) 32× 32× 3 ImageNet ViT 3 3072 16 12288 4096 –

T LM
(3,192) LM1B, 32k Vocab Transformer LM 3 192 3 768 4096 64

T LM
(3,384) LM1B, 32k Vocab Transformer LM 3 384 6 1536 4096 64

T LM
(3,768) LM1B, 32k Vocab Transformer LM 3 768 8 3072 4096 64

T LM
(3,1024) LM1B, 32k Vocab Transformer LM 3 1024 8 4096 4096 64

T LM
(3,2048) LM1B, 32k Vocab Transformer LM 3 2048 16 8192 4096 64

T LM
(3,3072) LM1B, 32k Vocab Transformer LM 3 3072 16 12288 4096 64

DT MLP
(16,512) 32× 32 ImageNet MLP 16 512 – – 4096 –

DT ViT
(16,192) 32× 32 ImageNet ViT 16 192 3 768 4096 –

DT LM
(16,192) LM1B Transformer LM 16 192 3 768 4096 –
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F TASK-SPECIFIC TUNED µADAM

In this section, we evaluate the meta-generalization performance of µLOM and µVeLOM relative
to µAdam and µAdam (re-tuned) on a w=3072 ViT 32× 32 ImageNet task. µAdam is tuned on a
width=1024 MLP task for 500 trials and µAdam (re-tuned) is tuned on a width=384 ViT task for 500
trials. The hyperparameters of these baselines are reported in table 3. In figure 8, we observe that
µAdam is outperformed by µAdam (re-tuned) as expected. We note that µAdam (re-tuned) is tuned in
the µ−transfer setting of Yang et al. (2022) where one tunes on a smaller width version of the target
task. This experiment allows us to assess whether µLO out-of-distribution can outperform µ-transfer
in-distribution. Despite being evaluated out-of-distribution, µLOM and µVeLOM outperformed
the re-tuned µAdam baseline on the width 3072 ViT task. These results demonstrate that the µLO
framework has the potential to show strong transfer even for unseen tasks.
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Figure 8: Comparing the performance of µLOs to µAdam on a width 3072 ViT task. Each curve
reports the mean training loss over 5 trials. Error bars report standard error. µAdam was tuned on a
width 1024 MLP task for 500 trials, while µAdam (re-tuned) was tuned on a width 384 ViT task for
500 trials. We observe that the re-tuned µAdam baseline bests its counterpart, but is outperformed by
our µLOs.
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G RESULTS FOR RESNETS AND PLAIN RESNETS

Prior work has demonstrating the difficulty of optimizing deep networks without residual connec-
tions Li et al. (2018); He et al. (2016). Specifically, Li et al. (2018) demonstrates that the loss
landscape is much smoother for ResNets than plain ResNets. Such pernicious loss landscapes could
pose problems for gradient-based optimizers. Could this be the case for learned optimizers? How
do µLOs affect this? In this section, we answer this question by ablating the performance of µLOs
and SP learned optimizers on plain and residual networks. Figures 9 reports the training curves
for ResNets (subfigure a) and plain ResNets (subfigure b). We observe that VeLOM immediately
diverges in both cases, LOM initially decreases the loss faster than µLOM and µVeLOM , but it
eventually stagnates and is surpassed by bot µLOs, and µLOs monotonically decrease the loss during
the first 5000 steps of training.
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(a) ResNet
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Figure 9: Performance of Deep Plain and Residual Networks. We report the training loss for a
depth 24 and width 256 plain and residual networks. We observe similar trends for both residual
and plan networks: 1) VeLOM immediately diverges in both cases, 2) LOM initially decreases the
loss faster than µLOM and µVeLOM , but it eventually stagnates and is surpassed by bot µLOs, and
3) µLOs monotonically decrease the loss during the first 5000 steps of training. Each curve is an
average over 5 trials. The shaded regions denote standard error.
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H EXTENDED GENERALIZATION TO LONGER UNROLLS FOR µVELO

In this section, we extend our meta-generalization results for longer unrolls. Specifically, we verify
whether µVeLO can generalize beyond 25× the meta-training unroll length for a width 1024 ViT
to ImageNet task as its training curve in figure 6 (a) seems to slightly increase toward the end of
training. It is important to note that the VeLO architecture takes as input the number of training
steps remaining, thus, requiring the user to specify the total number of training steps (total_steps
) a-priori (e.g. as is done for many LR schedules in practice). Therefore, at each step, VeLO’s LSTM
is conditioned on an embedding that provides the number of training steps remaining, allowing it to
learn a schedule. Previous work analyzing VeLO-4000’s behavior has noted that changing the value of
the total_steps hyperparameter leads to variable performance Rezk et al. (2023). Specifically, they
found that increasing the value of total_steps does not always lead to better performance Rezk
et al. (2023). Figure 10 demonstrates that µVeLOM can successfully optimize a width 1024 ViT to
classify ImageNet images (same task as Figure 6 (a)) for 40, 000 training steps. However, we note
that it underperforms µVeLOM using total_steps = 25, 000. This is similar to what was found in
previous work for VeLO-4000 Rezk et al. (2023).
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VeLOM (ours) with total_steps=25k
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Figure 10: Comparing the performance of µVeLOM on a width 1024 ViT ImageNet task when
the total training steps are set to 25,000 and 40,000. Each curve reports the mean training loss over
5 trials. Error bars report standard error. We observe that both decrease the loss throughout training,
except after iteration 20,000 for µVeLOM with total_steps = 25k, which seems to suffer from a
very slight increase in loss. Notably, similar to what is shown in previous work Rezk et al. (2023) for
VeLO-4000, µVeLOM using total_steps = 40k underperforms µVeLOM using total_steps
= 25k.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

I COORDINATE EVOLUTION OF MLP LAYERS IN µP FOR DIFFERENT
OPTIMIZERS

The following section presents the continuation of our experiments comparing pre-activation growth
during training for SP LOs and µLOs with different meta-trainnig recipes, SP adam, and µAdam.
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Figure 11: Layer 0 pre-activations behave harmoniously in µP for LOs and Adam alike. We
report the evolution of coordinate-wise standard deviation between the difference of initial and current
second-layer pre-activations. We observe that all models parameterized in µP enjoy stable coordinates
across widths, while the pre-activations of larger-width models in SP blow up after a number of
training steps. All plots report these metrics for the first 500 steps of a single training run.
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Figure 12: Layer 1 pre-activations behave harmoniously in µP for LOs and Adam alike. We
report the evolution of coordinate-wise standard deviation between the difference of initial and current
second-layer pre-activations. We observe that all models parameterized in µP enjoy stable coordinates
across widths, while the pre-activations of larger-width models in SP blow up after a number of
training steps. All plots report these metrics for the first 500 steps of a single training run.
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Figure 13: Layer 3 pre-activations behave harmoniously in µP for LOs and Adam alike. We
report the evolution of coordinate-wise standard deviation between the difference of initial and current
second-layer pre-activations. We observe that all models parameterized in µP enjoy stable coordinates
across widths, while the pre-activations of larger-width models in SP blow up after a number of
training steps. All plots report these metrics for the first 500 steps of a single training run.
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Figure 14: Logits behave harmoniously in µP for LOs and Adam alike. We report the evolution
of coordinate-wise standard deviation between the difference of initial and current second-layer
pre-activations. We observe that all models parameterized in µP enjoy stable logits across widths,
while the pre-activations of larger-width models in SP blow up after a number of training steps. All
plots report these metrics for the first 500 steps of a single training run.

24


	Introduction
	Related Work
	Method
	Background
	-parametrization for Learned Optimizers
	LO Meta-training Recipe

	Empirical evaluation
	Results
	Evaluating pre-activation stability
	Meta-generalization to wider networks
	Meta-generalization to deeper networks
	Meta-generalization to longer training horizons


	Limitations
	Conclusion
	Proof of proposition 1
	Hand Designed Optimizer Hyperparameter Tuning
	Tuning Adam
	Tuning AdamW

	Meta-training with LOs
	Features of the learned optimizer
	List of Meta-testing Tasks
	Task-specific tuned Adam
	Results for ResNets and Plain ResNets
	Extended generalization to longer unrolls for VeLO
	Coordinate evolution of MLP layers in P for different optimizers

