
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

µLO: COMPUTE-EFFICIENT META-GENERALIZATION
OF LEARNED OPTIMIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learned optimizers (LOs) can significantly reduce the wall-clock training time of
neural networks, substantially reducing training costs. However, they can struggle
to optimize unseen tasks (meta-generalize), especially when training networks
much larger than those seen during meta-training. To address this, we derive
the Maximal Update Parametrization (µP) for two popular learned optimizer ar-
chitectures and propose a simple meta-training recipe for µ-parameterized LOs
(µLOs). Our empirical evaluation demonstrates that LOs meta-trained with our
recipe substantially improve meta-generalization to wider unseen tasks when com-
pared to LOs trained under standard parametrization (e.g., as they are trained in
existing work). When applying our µLOs, each trained for less than 250 GPU-
hours, to large-width models we are often able to match or exceed the performance
of pre-trained VeLO, the most performant publicly available learned optimizer,
meta-trained with 4000 TPU-months of compute. We also empirically observe
that learned optimizers trained with our µLO recipe also exhibit substantially im-
proved meta-generalization to deeper networks (5× meta-training) and remarkable
generalization to much longer training horizons (25× meta-training).

1 INTRODUCTION

Deep learning (Goodfellow et al., 2016) has enabled a great number of breakthroughs (Brown et al.,
2020; Brooks et al., 2024; Radford et al., 2021; Alayrac et al., 2022; Kirillov et al., 2023; Rombach
et al., 2022; Oquab et al., 2023). Its success can, in part, be attributed to its ability to learn effective
representations for downstream tasks. Notably, this resulted in the abandonment of a number of
heuristics (e.g., hand-designed features in computer vision (Dalal and Triggs, 2005; Lowe, 2004))
in favor of end-to-end learned features. However, one aspect of the modern deep-learning pipeline
remains hand-designed: gradient-based optimizers. While popular optimizers such as Adam or
SGD provably converge to a local minimum in non-convex settings (Kingma and Ba, 2017; Li et al.,
2023; Robbins, 1951), there is no reason to expect these hand-designed optimizers reach the global
optimum at the optimal rate for a given problem. Given the lack of guaranteed optimality and the
clear strength of data-driven methods, it is natural to turn towards data-driven solutions for improving
the optimization of neural networks.

To improve hand-designed optimizers, Andrychowicz et al. (2016); Wichrowska et al. (2017); Metz
et al. (2019; 2022a) replaced them with small neural networks called learned optimizers (LOs).
Metz et al. (2022b) showed that scaling up the training of such optimizers can significantly improve
wall-clock training speeds and supersede existing hand-designed optimizers. However, LOs have
limitations in meta-generalization – optimizing new problems. For example, despite training for 4000
TPU months, VeLO (Metz et al., 2022b) is known to (1) generalize poorly to longer optimization
problems (e.g., more steps) than those seen during meta-training and (2) have difficulty optimizing
models much larger than those seen during meta-training. Given the high cost of meta-training LOs
(e.g., when meta-training, a single training example is analogous to training a neural network for
many steps), it is essential to be able to train learned optimizers on small tasks and generalize to
larger ones. Harrison et al. (2022) explore preconditioning methods to improve the generalization
from shorter to longer optimization problems (e.g., ones with more steps). However, no works have
tackled the meta-generalization of LOs to wider models in a principled way.

To address the meta-generalization problem of LOs, we recognize that this problem can be refor-
mulated as zero-shot hyperparameter transfer (Yang et al., 2022). The latter involves selecting
optimal hyperparameters of hand-designed optimizers for training very large networks (that one

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

128 256 512 1024 2048 4096 8192
Width

3

4

5

6

7

8

Fi
na

l L
os

s

VeLOM

LOM

VeLOM (ours)
LOM (ours)

(a) 32× 32× 3 ImageNet

128 256 512 1024 2048 4096
Width

3

4

5

6

7

8

Fi
na

l L
os

s

VeLOM

LOM

VeLOM (ours)
LOM (ours)

(b) 64× 64× 3 ImageNet

128 256 512 1024 2048 4096 8192
Width

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fi
na

l L
os

s

VeLOM

LOM

VeLOM (ours)
LOM (ours)

(c) 32× 32× 3 Cifar10

Figure 1: Generalization beyond meta-training widths is severely limited without our approach.
We report the final loss after 1000 steps (e.g., the inner problem length used when meta-training) for
models of different widths. Each point is the average final training loss over 5 seeds with standard
error bars. We observe that both µLOs consistently obtain lower loss values as the tasks become
wider. In contrast, their SP LO counterparts either diverge before reaching 1000 steps on the wider
tasks or make little progress as width is increase.

cannot afford to tune directly) by transferring those tuned on smaller versions of the model. Under
the standard parametrization (SP)1, the optimal hyperparameters of an optimizer used for a small
model do not generalize well to larger versions of the model. However, when a small model is
tuned using the Maximal Update Parametrization (µP), and its larger counterparts are also initialized
with µP, the small and large models share optimal hyperparameters (Yang et al., 2022). Given the
appealing connection between zero-shot hyperparameter transfer in hand-crafted optimizers and
meta-generalization in LOs, we ask the following questions: Can learned optimizers be meta-trained
under µP? How would the resulting optimizers perform on wider unseen tasks? We seek to answer
these questions in the following study. Specifically, we consider the recent LO architectures (Metz
et al., 2022a;b) and demonstrate that µP can be adapted to these optimizers leading to our µLO
optimizers. We subsequently conduct an empirical evaluation that reveals the power of our µLOs and
their advantages for scaling learned optimizers.

Our contributions can be summarized as follows:

• We derive µ-parameterization for two popular learned optimizer architectures (VeLO and
small_fc_lopt) and propose a training recipe for µLOs.

• We demonstrate that µLOs meta-trained with our recipe significantly improve generalization
to wider networks when compared to their SP counterparts and several strong baselines and
that, for wider counterparts of the meta-training tasks, they outperform VeLO (meta-trained
with 4000 TPU-months of compute).

• We demonstrate empirically that µLOs meta-trained with our recipe show improved general-
ization to deeper networks (5× meta-training) when compared to their SP counterparts.

• We demonstrate empirically that µLOs meta-trained with our recipe significantly improve
generalization to longer training horizons (25× meta-training) when compared to their SP
counterparts.

Our results show that µLOs significantly improve learned optimizer generalization without increasing
meta-training costs. This constitutes a noteworthy improvement in the scalability of meta-training
LOs.

2 RELATED WORK

Learned optimization. While research on learned optimizers (LOs) spans several decades (Schmid-
huber, 1992; Thrun and Pratt, 2012; Chen et al., 2022; Amos, 2022), our work is primarily related to

1When we refer to SP, we follow the same meaning as Yang et al. (2022). That is, we consider SP to designate
a parameterization that does not admit HP transfer. However, we note that recent work (Everett et al., 2024)
shows hyperparameter transfer is possible in SP under certain alignment assumptions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500

100

101

102

103

104

105

106

st
d(

x t
x 0

)

(a) SP Adam

0 100 200 300 400 500

100

101

102

103

104

105

(b) SP LOS

0 100 200 300 400 500

100

101

102

103

104
(c) SP LOM

0 100 200 300 400 500
Training Step (t)

100

101

102

st
d(

x t
x 0

)

(d) Adam

0 100 200 300 400 500
Training Step (t)

101

102

(e) LOS

0 100 200 300 400 500
Training Step (t)

100

101

102

(f) LOM

64

128

256

512

1024

2048

4096

M
od

el
 W

id
th

s
(lo

g
sc

al
e)

Figure 2: Layer 2 pre-activations behave harmoniously in µP for µLOs and µAdam alike. We
report the evolution of coordinate-wise standard deviation of the difference between the initial (t = 0)
and t-th second-layer pre-activations of an MLP during training for the first 500 steps of a single run
(the remaining layers behave similarly, see Sec. I). We observe that all models parameterized in µP
enjoy stable coordinates across widths, while the pre-activations of larger-width models in SP blow
up after a number of training steps.

the recent meta-learning approaches utilizing efficient per-parameter optimizer architectures of Metz
et al. (2022a). Unlike prior work (Andrychowicz et al., 2016; Wichrowska et al., 2017; Chen et al.,
2020), which computes meta-gradients (the gradients of the learned optimizer) using backpropagation,
Metz et al. (2022a) use Persistent Evolutionary Strategies (PES) (Vicol et al., 2021), a truncated
variant of evolutionary strategies (ES) (Buckman et al., 2018; Nesterov and Spokoiny, 2017; Parmas
et al., 2018). ES improves meta-training of LOs by having more stable meta-gradient estimates
compared to backpropagation through time, especially for longer sequences (i.e. long parameter
update unrolls inherent in meta-training) (Metz et al., 2019). PES and most recently ES-Single (Vicol,
2023) are more efficient and accurate variants of ES, among which PES is more well-established in
practice making it a favourable approach to meta-training.

Generalization in LOs. One of the critical issues in LOs is generalization in the three main
aspects (Chen et al., 2022; Amos, 2022): (1) optimize novel tasks (often referred to as meta-
generalization); (2) optimize for more iterations than the maximum unroll length used in meta-
training; (3) avoid overfitting on the training set. Among these, (3) has been extensively addressed
using different approaches, such as meta-training on the validation set objective (Metz et al., 2019),
adding extra-regularization terms (Harrison et al., 2022), parameterizing LOs as hyperparameter
controllers (Almeida et al., 2021) and introducing flatness-aware regularizations (Yang et al., 2023).
The regularization terms (Harrison et al., 2022; Yang et al., 2023) often alleviate issue (2) as a
byproduct. However, meta-generalization (1) has remained a more difficult problem. One approach
to tackle this problem is to meta-train LOs on thousands of tasks (Metz et al., 2022b). However,
this approach is extremely expensive and does not address the issue in a principled way leading
to poor meta-generalization in some cases, e.g. when the optimization task includes much larger
networks. Alternatively, Premont-Schwarz et al. (2022) introduced Loss-Guarded L2O (LGL2O)
that switches to Adam/SGD if the LO starts to diverge improving meta-generalization. However,
this approach needs tuning Adam/SGD and requires additional computation (e.g. for loss check)
limiting (or completely diminishing in some cases) the benefits of the LO. In this work, we study
aspects (1) and (2) of LO generalization, demonstrating how existing SP LOs generalize poorly across
these dimensions and showing how one can apply µP to learned optimizers to substantially improve
generalization in both these aspects.

Maximal Update Parametrization. First proposed by Yang and Hu (2021), the Maximal Update
Parametrization is the unique stable abc-Parametrization where every layer learns features. The

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

parametrization was derived for adaptive optimizers by Yang and Littwin (2023) and was applied
by Yang et al. (2022) to enable zero-shot hyperparameter transfer, constituting the first practical
application of the tensor programs series of papers. Earlier works in the tensor programs series build
the mathematical foundation that led to the discovery of µP. Yang (2019) shows that many modern
neural networks with randomly initialized weights and biases are Gaussian Processes, providing a
language, called Netsor, to formalize neural network computations. Yang (2020a) focuses on neural
tangent kernels (NTK), proving that as a randomly initialized network’s width tends to infinity, its
NTK converges to a deterministic limit. Yang (2020b) shows that randomly initialized network’s pre-
activations become independent of its weights when its width tends to infinity. Most recently, in tensor
programs VI, Yang et al. (2024) propose Depth-µP, a parameterization allowing for hyperparameter
transfer in infinitely deep networks. However, Depth-µP is only valid for residual networks with a
block depth of 1, making it unusable for most practical architectures (e.g., transformers, resnets, etc.).
For these reasons, we do not study Depth-µP herein. Building on the latest works studying width
µP (Yang and Littwin, 2023; Yang et al., 2022), in this work, we show that µP can be extended to the
case of learned optimizers and empirically evaluate its benefits in this setting.

3 METHOD

3.1 BACKGROUND

A standard approach to learning optimizers (Metz et al., 2022a) is to solve the following meta-learning
problem:

min
ϕ

E(D,w0)∼T

[
E(X,Y)∼D

[
1

T

T−1∑
t=0

L(X,Y ; fϕ(ut),wt)

]]
, (1)

where T is a distribution over optimization tasks defined as pairs of dataset D and initial weights
w0 associated with a particular neural architecture (we refer to this network as the optimizee), ϕ
represents the weights of the learned optimizer, fϕ, that takes gradient-based features ut as input.
Finally, L is the loss function used to train the optimizee. T is the length of the unroll which we
write as a fixed quantity for simplicity. In our experiments, during meta-optimization, T is varied
according to a truncation schedule (Metz et al., 2022a). A clear goal of the learned optimization
community is not only learning to solve optimization problems over T , but also to apply the learned
optimizer, fϕ, more generally to unobserved datasets and architectures. This transfer to new tasks
is referred to as meta-generalization. This problem can be seen as a generalization of the zero-shot
hyperparameter transfer problem considered in Yang et al. (2022); for instance, when the optimizer is
a hand-designed method such as SGD or Adam and ϕ represents optimization hyper-parameters such
as the learning rate.

Gradient descent is a standard approach to solving equation 1. However, estimating the meta-gradients
via backpropagation for very long unrolls is known to be noisy (Metz et al., 2019). Instead, gradients
are estimated using evolution strategies (Buckman et al., 2018; Nesterov and Spokoiny, 2017; Parmas
et al., 2018). Evolution strategies work by sampling perturbations to the LO’s weights (similar
to SPSA (Spall, 2000)), unrolling an optimization trajectory for each perturbation, and estimating
gradients with respect to evaluations of the meta-objective (usually the loss of the network being
optimized, see eq. 1). In contrast to ES, which estimates one gradient per full unroll, PES (Vicol
et al., 2021) allows estimating unbiased gradients at many points (called truncations) during the full
unroll. This allows updating the optimizer’s parameters more often during meta-training. We use
PES to estimate meta-gradients in our experiments.

Learned optimizer features ut are constructed based on momentum, second-order momentum, and
adafactor values as in (Metz et al., 2022a), with the full list of features described in the (Table 6
of the Appendix). In our experiments, the architectures of our fϕ are similar to small_fc_lopt of
Metz et al. (2022a) and VeLO of Metz et al. (2022b) except that their dimensions differ slightly (see
sec. C for details). fϕ has three outputs m, d, and α, the magnitude, scale, and learning rate of the
update respectively. For small_fc_lopt, αw = 1 always, αw is produced by the tensor-level LSTM
for VeLO. The standard LO update is given as

wt = wt−1 − αwλ1dϕ exp (λ2mϕ), (2)

where λ1 and λ2 are constant values of 0.001 to bias initial step sizes towards being small.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 µ-PARAMETRIZATION FOR LEARNED OPTIMIZERS

Parameterizing an optimizee neural network in µP requires special handling of the initialization
variance, pre-activation multipliers, and optimizer update for each weight matrix w ∈ Rn×m in the
network. Specifically, these quantities will depend on the functional form of the optimizer and the
dependence of n (FAN_OUT) and m (FAN_IN) on width. We will refer to weight matrices in a network
of width h as hidden layers if Θ(n) = Θ(m) = Θ(h), as output layers if Θ(n) = 1,Θ(m) = Θ(h),
and as input layers if Θ(n) = Θ(h),Θ(m) = Θ(h).

Consider a model to be optimized gw with weights in layers l denoted wl. We apply and construct
µLOs as follows.

Initialization-µ. wl which are hidden and input layers have their weights initialized as
N (0, 1√

FAN_IN
). While output layers have their weights initialized as N (0, 1).

Multipliers-µ. Output layer pre-activations are multiplied by 1
FAN_IN

during the forward pass.

Updates-µ. The update by fϕ on the parameters of gw, at both meta-training and evaluation is
modified as follows:

wt =

wi
t−1 − 1

FAN_IN
·
(
αwλ1d

i
ϕ exp

(
λ2m

i
ϕ

))
if wi is part of a hidden layer

wi
t−1 − αwλ1d

i
ϕ exp

(
λ2m

i
ϕ

)
otherwise.

(3)

We now show that this can lead to a maximal update Parametrization, following the analysis of (Yang
et al., 2022, Appendix J.2.1) which studies the initial optimization step. For our analysis, we consider
a simplified input set for fϕ which takes as input only the gradient while producing an update for
each layer. Note that this analysis extends naturally to other first-order quantities.

Proposition 1. Assume that the LO fϕ is continuous around 0. Then, if fϕ(0) ̸= 0, the update, initial-
ization, and pre-activation multiplier above is necessary to obtain a Maximal Update Parametrization.

3.3 µLO META-TRAINING RECIPE

µP for hand-designed optimizers involves tuning the optimizer on a small width version
of the target architecture and transferring the hyperparameters to the larger width target
model (Yang et al., 2022). While µ-transfer makes hyperparameter search for large models
tractable, it has the following limitations: (1) the smaller scale hyperparameter search suf-
fers from increased complexity as it requires sweeping various multipliers in addition to the

128 256 512 1024 2048 4096 8192
Width

0

1

2

3

4

5

6

7

8

Fi
na

l L
os

s

LOM

LOS

LOM

LOS

(a) Iteration 1000

128 256 512 1024 2048 4096 8192
Width

0

1

2

3

4

5

6

7

8

Fi
na

l L
os

s

LOM

LOS

LOM

LOS

(b) Iteration 5000

Figure 3: µLOS underperforms µLOM as width and
training steps increase. Each point is the average train-
ing loss over 5 seeds at iterations 1000 (a) or 5000 (b). Error
bars report standard error.

standard hyperparameters, (2) tuning
the hyperparameters on too small of
a model may result in sub-optimal hy-
perparameters for the largest models,
(3) Yang et al. (2022) recommend re-
peating the procedure for every new
task/dataset. Meta-training flexible µ-
parametrized learned optimizers can
address these limitations. Due to their
flexible functional forms (as opposed
to just a learning rate hyperparameter),
µLOs can learn to optimize networks
in µP without tuning multipliers (we
set all multipliers to 1 in our exper-
iments). Therefore, by training our
µLOs with fixed multipliers on multi-
ple tasks that are large enough to ad-
mit strong transfer but still tractable and reusing them on new tasks, we address (1), (2), and (3) by
amortizing the tuning cost during the optimizer meta-training stage. However, it should be noted that
while the µLO framework allows for meta-generalization to unseen new tasks (unlike µ-transfer), a
µLO that relies on meta-generalization for transfer to new tasks should expect to be outperformed by
the µLO that also meta-trains on a small version of that task.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Meta-training configurations of LOs and baselines in our empirical evaluation.
Identifier Type Architecture Optimizee Par. Meta-Training / Tuning Task(s)
µLOS Ours small_fc_lopt (Metz et al., 2022a) µLO Sec. 3.2 ImageNet classification, 3-Layer MLP, width ∈ {128}
µLOM Ours small_fc_lopt (Metz et al., 2022a) µLO Sec. 3.2 ImageNet classification, 3-Layer MLP, width ∈ {128, 512, 1024}
µVeLOM Ours VeLO (Metz et al., 2022b) µLO Sec. 3.2 ImageNet classification, 3-Layer MLP, width ∈ {128, 512, 1024}
LOS LO Baseline small_fc_lopt (Metz et al., 2022a) SP ImageNet classification, 3-Layer MLP, width ∈ {128}
LOM LO Baseline small_fc_lopt (Metz et al., 2022a) SP ImageNet classification, 3-Layer MLP, width ∈ {128, 512, 1024}
VeLOM LO Baseline VeLO (Metz et al., 2022b) SP ImageNet classification, 3-Layer MLP, width ∈ {128, 512, 1024}
VeLO-4000 Oracle LO Baseline VeLO (Metz et al., 2022b) SP We refer the reader to (Metz et al., 2022b, Appendix C.2)

µAdam Baseline – µP Adam ImageNet classification, 3-Layer MLP, width ∈ {1024}
AdamW Baseline – SP ImageNet classification, 3-Layer MLP, width ∈ {1024}

To verify the effectiveness of this multi-task strategy for learned optimizers, we compare µLOS ,
trained on a single small task (see Tab. 1), to µLOM , trained on 3 small tasks of the different width
(see Tab. 1), in figure 3. When training for 1000 steps (meta-training unroll length), we observe
that µLOM outperforms µLOS as the width of the model is increased (Fig. 3 (a)). Moreover, we
observe that there is a discrepancy in performance between both models after 5000 steps (Fig. 3 (b)),
showing that meta-training with multiple tasks of different widths has benefits for generalization
to longer unrolls in addition to improved generalization to larger optimizees. Given the improved
generalization of µLOM compared to µLOS , we adopt the multiple-width single-task meta-training
recipe as part of our method. Subsequent experiments (e.g., figures 1 and 4) will show that it is also
effective for meta-training µVeLO.

4 EMPIRICAL EVALUATION

We use a suite of optimization tasks of varying width to evaluate meta-generalization properties
of our µLOs vs tuned µAdam (Yang et al., 2022), SP AdamW Loshchilov and Hutter (2019), and
baseline SP LOs. We also include pre-trained VeLO (Metz et al., 2022b) as an oracle which we
denote as VeLO-4000. Meta-trained for 4000 TPUv4 months, it is the strongest publicly available
pre-trained learned optimizer. We focus on evaluating generalization to wider networks, however, we
also establish the generalization properties of µLOs to longer training horizons and deeper networks.
Please note that while µLOs inherit the theoretical properties of µP for width scaling, our findings
with respect to longer training and deeper networks are purely empirical.

Baseline LOs and µLOs. The meta-training configuration of each learned optimizer is summarized
in Table 1. Each learned optimizer (ours and the baselines) in our empirical evaluation is meta-trained
using the multiple-width single-task meta-training recipe proposed in section 3.3. The baseline sheds
light on whether simply varying the SP optimizee width during meta-training is enough to achieve
generalization of the LO to wider networks in SP. During meta-training, we set the inner problem
length to be 1000 iterations. Therefore, any optimization beyond this length is considered out-of-
distribution. For all meta-training and hyperparameter tuning details, including ablation experiments,
see section C of the appendix.

µAdam µAdam is a strong hand-designed µP baseline. It follows the Yang et al. (2022) Adam
µ-parametrization and does not use weight decay as this is incompatible with µP. It is tuned on the
largest meta-training task seen by our learned optimizers (Table 1). We tune the learning rate and
three multipliers: input multiplier, output multiplier, and the hidden learning rate multiplier. These
multipliers correspond to adding a tunable constant to the pre-activation multiplier for input weights,
the pre-activation multiplier for output weights, and the Adam LR for hidden weights. More details
about the grid search over 500 configurations are provided in Section B.1 of the appendix.

AdamW AdamW (Loshchilov and Hutter, 2019) is a strong hand-designed SP baseline. It is tuned
on the largest meta-training task seen by our learned optimizers (Table 1). We tune the learning rate,
β1,β1, and the weight decay. More details about the grid search over 500 configurations are provided
in Section B.1 of the appendix.

Pre-trained VeLO (VeLO-4000). VeLO (Metz et al., 2022b) is a learned optimizer that was meta-
trained on a curriculum of progressively more expensive meta-training tasks for a total of 4000 TPU
months. These tasks include but are not limited to image classification with MLPs, ViTs, ConvNets,
and ResNets; compression with MLP auto-encoders; generative modeling with VAEs; and language
modeling with transformers and recurrent neural networks. During meta-training, VeLO-4000 unrolls
inner problems for up to 20k steps (20× ours); the final model was then fine-tuned on tasks with up to
200k steps of optimization. VeLO-4000, therefore, represents the strongest baseline in our empirical
evaluation and we consider it to be an oracle.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000

Training Steps
0

1

2

3

4

5

6

7

Lo
ss

(a) MLP IN32 W=8192

0 1000 2000 3000 4000 5000

Training Steps

1

2

3

4

5

6

7

Lo
ss

(b) MLP IN64 W=4096

0 1000 2000 3000 4000 5000

Training Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

(c) MLP C10 W=8192

AdamW
Adam

VeLO-4000
VeLOM

LOM

(ours) VeLOM

(ours) LOM

0 1000 2000 3000 4000 5000

Training Steps

4

5

6

7

8

9
Lo

ss

(d) LM W=3072

0 1000 2000 3000 4000 5000

Training Steps

3

4

5

6

7

Lo
ss

(e) ViT W=3072
Figure 4: Evaluating generalization to wider networks for different tasks. Tasks Our optimizers
are meta-trained for 1000 inner steps (dotted red line), therefore, any optimization beyond 1000 steps
is considered out-of-distribution. We plot average training loss over 5 seeds with standard error bars.
We observe that µLOM and µVeLOMgeneralize smoothly to longer unrolls and all unseen tasks,
unlike their SP counterparts which diverge or failt to make progress. µLOs even surpass or match
the performance of VeLO in subfigures (a), (b), and (c)). Moreover, they also substantially best the
well-tuned hand-designed baselines on LM and ViT tasks (subfigures (d) and (e)) and best or match
the best performing hand-designed optimizer in subfigures (a),(b), and (c).

Is VeLO-4000 a fair baseline? While we believe the comparison is important given the relevance of
our results to scaling up LOs, we highlight that the comparison will unfairly advantage VeLO-4000
as all tasks in our suite fall within its meta-training distribution and VeLO-4000 was meta-trained on
inner unroll horizons well beyond those we evaluate. Thus, when comparing our LOs to VeLO-4000,
it is important to keep in mind that ours are meta-trained with only 0.004% of VeLO-4000’s compute
budget.

Evaluation tasks. Our evaluation suite includes 35 tasks spanning image classification (CIFAR-10,
ImageNet) using MLPs and Vision Transformers (ViTs) (Dosovitskiy et al., 2020) and autoregressive
language modeling with a decoder-only transformer on LM1B (Chelba et al., 2013). To create the
tasks, we further vary image size (for image classification), width, and depth of the optimizee network,
and the number of optimization steps. See Table 7 of the appendix for an extended description of all
the tasks.

4.1 RESULTS

In the following sections, we first (Sec. 4.1.1) present results empirically verifying the pre-activation
stability of our µLOs. Subsequently, we present the results of our main empirical evaluation of
meta-generalization to wider networks (Sec. 4.1.1), a study of µLOs generalization to deeper networks
(Sec. 4.1.3), and a study of µLOs generalization to longer training horizons (Sec. 4.1.4). All of our
figures reporting training loss show the average loss across 5 random seeds. The error bars in these
plots report the standard error. Each seed corresponds to a different ordering of training data and a
different initialization of the optimizee.
4.1.1 EVALUATING PRE-ACTIVATION STABILITY

We now verify that desiderata J.1 of Yang et al. (2022) is satisfied empirically. In Figure 2, we report
the evolution of the coordinate-wise standard deviation of the difference between initial (t=0) and
current (t) second-layer pre-activations of an MLP during the first 500 steps of training for a single
trial. We observe that all models parameterized in µP enjoy stable coordinates across widths, while
the pre-activations of the larger models in SP blow up after a number of training steps. Notably, SP

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Adam’s pre-activations blow up immediately, while LOS and LOM take longer to blow up and have
a more erratic pattern; we hypothesize that this is a side effect of meta-training where the optimizers
may learn to keep pre-activations small by rescaling updates. Section I of the appendix contains
similar plots for the remaining layers of the MLP which show similar trends.

In summary, we find, empirically, that pre-activations of µLOs and µAdam are similarly stable
across widths, while the activations of SP Adam and SP LOs both blow up but behave qualitatively
differently.

Table 2: In-distribution and out-of-distribution average performance of optimizers. We report
the average rank of different optimizers across the five tasks in our suite. We evaluate in-distribution
at a Base width of 1024 as this is the width used to tune the hand-designed baselines. We also evaluate
out-of-distribution widths: Large (2048) and XL (largest size for each task see Tab.7 of the appendix).
We bold the strongest, underline the second strongest, and italicize the third strongest average rank in
each column. We do not bold entries of VeLO-4000 as it is reported only for reference since it is not
a fair comparison. We observe that, across all iterations, when compared to fair baselines, µLOM

obtains the best rank for all settings except for the XL task at 5000 iterations, where it is only bested
by µVeLO.

Loss at 1k steps Loss at 3k steps Loss at 5k steps
Optimizer ID (Base) OoD (Large) OoD (XL) ID (Base) OoD (Large) OoD (XL) ID (Base) OoD (Large) OoD (XL)
AdamW 3.40 3.20 4.60 3.60 3.80 4.80 4.00 4.40 4.80
µAdam 4.40 4.20 4.00 3.60 3.60 3.40 3.60 3.60 3.20
VeLOM 5.00 5.80 5.60 6.80 6.40 7.00 7.00 7.00 6.80
LOM 5.20 6.60 6.80 5.20 6.60 6.00 5.60 6.00 6.20
µVeLOM (ours) 4.40 3.40 2.20 3.60 2.60 2.20 4.00 2.80 2.00
µLOM (ours) 2.80 1.80 2.00 2.40 2.00 1.80 2.20 2.00 2.80

VeLO-4000 2.80 3.00 2.80 2.80 3.00 2.80 1.60 2.20 2.20

4.1.2 META-GENERALIZATION TO WIDER NETWORKS
Given our goal of improving LO generalization to unseen wider tasks, the bulk of our empirical
evaluation is presented in this section. Specifically, we evaluate the behavior of µLOs as the width
of tasks increases well beyond what was seen during meta-training. To accomplish this, we fix the
depth of each task and vary the width (see Table 7 for a full list of tasks), leading to a testbed of 32
different tasks. We then train each task using the baselines and µ-optimizers outlined in section 4 for
5000 steps for 5 different random seeds. This involves training 1120 different neural networks. To
make the results easily digestible, we summarize them by width and final performance in Figure 4
and by average optimizer rank in Table 2. We also highlight the smooth training dynamics of our
optimizers at the largest widths in figure 4.

Performance measured by final loss as a function of width Figure 1 compares the training loss
after 1000 steps of SP learned optimizers to µ-parameterized learned optimizers for different widths.
This is shown in three subfigures for three MLP image classification tasks: (a) Imagenet 32× 32× 3
(IN32), (b) Imagenet 64× 64× 3 (IN64), and (c) Cifar-10 32× 32× 3 (C10). Subfigure (a) shows
the performance of learned optimizers on larger versions of the meta-training tasks. We observe
that the µLOs achieve lower final training loss as the width of the task is increased. In contrast,
LOM diverges for widths larger than 2048 and VeLOM fails to substantially decrease the loss at
larger widths, falling behind the µLOs. Subfigure (b) evaluates our µLOs of larger ImageNet images
(e.g., when the input width is larger). Similarly, we observe smooth improvements in the loss as
the optimizee width increases for µLOs, while their SP counterparts either diverge at width 512
(LOM) or fail to substantially improve the loss beyond width 1024 (VeLOM). Finally, Subfigure (c)
shows the performance of our µLOs on Cifar-10 (smaller output width) as the width of the model is
increased. Similarly, we observe smooth improvements in the loss as the width increases for µLOs,
while their SP counterparts either diverge immediately at small widths (VeLOM) or diverge by width
1024 (LOM).

Performance measured by average optimizer rank Table 2 reports the average rank of different
optimizers on in-distribution width tasks (Base, width 1024) and out-of-distribution width tasks (Large
(width 2048) and XL (maximum width)). Each entry of the table corresponds to the optimizer’s
average rank (within the 7 optimizers evaluated) over the 5 tasks in our suite: Cifar 10 MLP image
classification, ImageNet 32 MLP image classification, ImageNet 64 MLP image classification,
ImageNet 32 ViT image classification, and LM1B transformer language modelling. The optimizers
are ranked by their training loss at the given iteration. We report average ranks for 1000 iterations
(inner-problem length), 3000 iterations, and 5000 iterations. We bold the strongest, underline the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000
Training Steps

5.0

5.5

6.0

6.5

7.0

Lo
ss

(a) W=192 ViT

0 1000 2000 3000 4000 5000
Training Steps

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Lo
ss

(b) W=192 Transformer LM

0 1000 2000 3000 4000 5000
Training Steps

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Lo
ss

VeLOM

LOM

VeLOM (ours)
LOM (ours)

(c) W=1024 MLP

Figure 5: Evaluating generalization capabilities of µLOs to deeper networks. The figures
report the performance of learned optimizers for training depth-16 ViTs for image classification,
Transformers for language modeling, and MLPs for image classification. We plot average training
loss over 5 seeds with standard error bars. In each case, µLOs show improved generalization and
performance when compared to their SP counterparts.

second strongest, and italicize the third strongest average rank in each column. We do not bold entries
of VeLO-4000 as it is reported only for reference since it is not a fair comparison. We observe that,
across all iterations, when compared to fair baselines, µLOM obtains the best rank for all settings
except for the XL task at 5000 iterations, where it is only bested by µVeLO. When only looking at the
out-of-distribution Large and XL tasks, we observe that µLOM and µVeLOMdominate the first two
spots of the optimizer podium in all cases except one. For the Large task at 1000 steps, µVeLOM is
bested by AdamW. When comparing our µLOs to VeLO-4000, we observe that at least one of µLOM

and µVeLOMbests VeLO-4000 on all tasks except for the large task at 5000 iterations. This is
remarkable as our µLOs are trained on many orders of magnitude less compute than VeLO-4000.
These results demonstrate that meta-training LOs using our recipe yields substantial improvements
in meta-generalization (across various tasks and widths) over LOs from previous work and strong
hand-designed baselines.

Training dynamics at the largest widths Figure 4 reports the training curves of different optimizers
on the largest width tasks in our suite. Despite training for 5× longer than the maximum meta-
training unroll length, our µLOs are capable of smoothly decreasing the loss for the largest out-
of-distribution tasks in our suite. In contrast, the strong SP LO baselines diverge by 1000 steps
(subfigures (a),(b),(c),(d)), or fail to decrease the training loss (subfigure (e)). Our µLOs also
substantially best the well-tuned hand-designed baselines on LM and ViT tasks (subfigures (d) and
(e)) and best or match the best performing hand-designed optimizer in subfigures (a),(b), and (c).
Notably in figure (c), our µLOs can even generalize beyond the tuning/meta-training widow to tasks
with a smaller output layer while µAdam suffers from instability in this case. When comparing with
VeLO-4000, we observe that our µLOs substantially outperform VeLO in subfigures (a),(b), and
µLOM outperforms VeLO-4000 in subfigure (c). In contrast, VeLO-4000 outperforms our µLOs on
transformer language modeling and ViT image classification, the most out-of-distribution tasks for
them. These findings show that µLOs can outperform VeLO-4000 on larger in-distribution tasks,
suggesting that scaling meta-training in SP (e.g., as done for VeLO) may not be sufficient to achieve
strong meta-generaliztion to the largest tasks, but that meta-training in µP could be.

In summary, the results in Fig. 1,Tab. 2 and Fig.4 demonstrate that our µLO meta-training recipe
represents a considerable advancement to low-cost meta-generalization for learned optimizers. The
technique is shown to be a substantial improvement over previous work.

4.1.3 META-GENERALIZATION TO DEEPER NETWORKS

In this section, we evaluate LO meta-generalization to deeper networks. Specifically, we increase
the number of layers used in MLP, ViT, and LM tasks from 3 to 16, while being sure to select
models that have widths within the meta-training range (128−1024) to avoid confounding the results.
Figure 5 reports the performance of our multi-task learned optimizers on deeper networks. We
observe that both µLOM and µVeLOM optimize stably throughout and generally outperform their
counterparts, LOM and VeLOM , by the end of training on each task, despite being meta-trained on
MLPs of exactly the same depth. Moreover, LOM immediately diverges when optimizing the deep
MLP while µLOM experience no instability. Similarly, VeLOM diverges on ViTs and Transformers,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000
Training Steps

1

2

3

4

5

6

7

Lo
ss

(a) W=1024 ViT

0 5000 10000 15000 20000 25000
Training Steps

4

5

6

7

8

Lo
ss

(b) W=1024 Transformer LM

0 5000 10000 15000 20000 25000
Training Steps

2

3

4

5

6

Lo
ss

VeLOM

LOM

VeLOM (ours)
LOM (ours)

(c) W=1024 MLP

Figure 6: Evaluating generalization capabilities of µLOs to longer training horizons. We plot
average training loss over 5 seeds with standard error bars. All optimizers are meta-trained for
1000 steps of training (dotted red line), therefore, any optimization beyond 1000 steps is considered
out-of-distribution. We observe that µLOs seamlessly generalize to training horizons 25× longer than
meta-training. In contrast, the best performing SP LO fails to decrease training loss (a), decreases it
but suffers instabilities (b), or diverges after 8000 steps (c).

while µVeLOM performs well, especially on ViTs. This is remarkable as, unlike width, there is no
theoretical justification for µP’s benefit to deeper networks. We hypothesize that µP’s stabilizing
effect on the optimizee’s activations leads to this improvement generalization.
In summary, we find, empirically, that using µP during meta-training benefits the generalization of
learned optimizers, including VeLO, to deeper networks.

4.1.4 META-GENERALIZATION TO LONGER TRAINING HORIZONS

In this subsection, we empirically evaluate the capability of µLOs to generalize to much longer
training horizons than those seen during meta-training. Specifically, we use µLOM and LOM as
well as µVeLOM and VeLOM to train three networks with width w = 1024: a 3-layer MLP, ViT on
32× 32× 3 ImageNet and a 3-layer Transformer for autoregressive language modeling on LM1B.
Each model is trained for 25, 000 steps (25× the longest unroll seen at meta-training time). Figure 6
reports the training loss averaged over 5 random seeds. We observe that µLOM and µVeLOM stably
decrease training loss over time for each task, while LOM and VeLOM fail to decrease training loss
(a), decreases it but suffers instabilities (b), or diverges after 8000 steps (c). These results suggest
that generalization to longer training horizons is another benefit of using µP with learned optimizers.

In summary, we find, empirically, that using µP during meta-training significantly benefits the
generalization of learned optimizers to longer training horizons.

5 LIMITATIONS

While we have conducted a systematic empirical study and shown strong results within the scope of
our study, there are some of limitations of our work. Specifically, (1) we do not meta-train on tasks
other than MLPs for image classification and we do not provide evaluation of models wider than
8192 for MLPs and 3072/12288 (hidden/FFN size) for transformers due to computational constraints
in our academic environment.

6 CONCLUSION

We have demonstrated that applying or µLO meta-training recipe produces optimizers with substan-
tially improved meta-generalization properties when compared to strong baselines from previous
work. Remarkably, our µLOs even surpass VeLO-4000 (meta-trained for 4000 TPU months) on wider
versions of in-distribution tasks. Moreover, our experiments also show that µLOs meta-trained with
our recipe generalize better to wider and deeper out-of-distribution tasks than their SP counterparts.
Moreover, when evaluated on much longer training tasks, we observe that µLOs have a stabilizing
effect, enabling meta-generalization to much longer unrolls (25× maximum meta-training unroll
length). All of the aforementioned benefits of µLOs come at zero extra computational cost compared
to SP LOs. Our results outline a promising path forward for low-cost meta-training of learned
optimizers that can generalize to large unseen tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

J. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,
M. Reynolds, R. Ring, E. Rutherford, S. Cabi, T. Han, Z. Gong, S. Samangooei, M. Monteiro,
J. L. Menick, S. Borgeaud, A. Brock, A. Nematzadeh, S. Sharifzadeh, M. Binkowski, R. Barreira,
O. Vinyals, A. Zisserman, and K. Simonyan. Flamingo: a visual language model for few-shot
learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
960a172bc7fbf0177ccccbb411a7d800-Abstract-Conference.html. 1

D. Almeida, C. Winter, J. Tang, and W. Zaremba. A generalizable approach to learning optimizers.
arXiv preprint arXiv:2106.00958, 2021. 3

B. Amos. Tutorial on amortized optimization for learning to optimize over continuous domains.
arXiv e-prints, pages arXiv–2202, 2022. 2, 3

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford, and
N. De Freitas. Learning to learn by gradient descent by gradient descent. Advances in neural
information processing systems, 29, 2016. 1, 3

T. Brooks, B. Peebles, C. Homes, W. DePue, Y. Guo, L. Jing, D. Schnurr, J. Tay-
lor, T. Luhman, E. Luhman, C. W. Y. Ng, R. Wang, and A. Ramesh. Video gener-
ation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators. 1

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, pages 1877–1901, 2020.
URL https://arxiv.org/abs/2005.14165. 1

J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee. Sample-efficient reinforce-
ment learning with stochastic ensemble value expansion. In S. Bengio, H. M. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
8234–8244, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
f02208a057804ee16ac72ff4d3cec53b-Abstract.html. 3, 4

C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, and P. Koehn. One billion word benchmark
for measuring progress in statistical language modeling. CoRR, abs/1312.3005, 2013. URL
http://arxiv.org/abs/1312.3005. 7

T. Chen, W. Zhang, Z. Jingyang, S. Chang, S. Liu, L. Amini, and Z. Wang. Training stronger baselines
for learning to optimize. Advances in Neural Information Processing Systems, 33:7332–7343,
2020. 3

T. Chen, X. Chen, W. Chen, Z. Wang, H. Heaton, J. Liu, and W. Yin. Learning to optimize: A primer
and a benchmark. The Journal of Machine Learning Research, 23(1):8562–8620, 2022. 2, 3

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1,
pages 886–893 vol. 1, 2005. doi: 10.1109/CVPR.2005.177. 1

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020. 7

K. E. Everett, L. Xiao, M. Wortsman, A. A. Alemi, R. Novak, P. J. Liu, I. Gur, J. Sohl-Dickstein,
L. P. Kaelbling, J. Lee, and J. Pennington. Scaling exponents across parameterizations and opti-
mizers. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
0ksNeD1SJT. 2

11

http://papers.nips.cc/paper_files/paper/2022/hash/960a172bc7fbf0177ccccbb411a7d800-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/960a172bc7fbf0177ccccbb411a7d800-Abstract-Conference.html
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://arxiv.org/abs/2005.14165
https://proceedings.neurips.cc/paper/2018/hash/f02208a057804ee16ac72ff4d3cec53b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f02208a057804ee16ac72ff4d3cec53b-Abstract.html
http://arxiv.org/abs/1312.3005
https://openreview.net/forum?id=0ksNeD1SJT
https://openreview.net/forum?id=0ksNeD1SJT

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org. 1

J. Harrison, L. Metz, and J. Sohl-Dickstein. A closer look at learned optimization: Stability, robustness,
and inductive biases. Advances in Neural Information Processing Systems, 35:3758–3773, 2022.
1, 3

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 770–778. IEEE Computer Society, 2016. URL https://doi.org/10.
1109/CVPR.2016.90. 21

C. Joseph, B. Thérien, A. Moudgil, B. Knyazev, and E. Belilovsky. Can we learn communication-
efficient optimizers? CoRR, abs/2312.02204, 2023. URL https://doi.org/10.48550/
arXiv.2312.02204. 18

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017. 1

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything. arXiv:2304.02643, 2023. 1

T. Kudo and J. Richardson. Sentencepiece: A simple and language independent subword tokenizer
and detokenizer for neural text processing. In E. Blanco and W. Lu, editors, Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018: System
Demonstrations, Brussels, Belgium, October 31 - November 4, 2018, pages 66–71. Association
for Computational Linguistics, 2018. URL https://doi.org/10.18653/v1/d18-2012.
19

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural nets. In
S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
6391–6401, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
a41b3bb3e6b050b6c9067c67f663b915-Abstract.html. 21

H. Li, A. Rakhlin, and A. Jadbabaie. Convergence of adam under relaxed assumptions. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a3cc50126338b175e56bb3cad134db0b-Abstract-Conference.html. 1

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=Bkg6RiCqY7. 6, 16

D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2):
91–110, 2004. URL https://doi.org/10.1023/B:VISI.0000029664.99615.94.
1

L. Metz, N. Maheswaranathan, J. Nixon, D. Freeman, and J. Sohl-Dickstein. Understanding and
correcting pathologies in the training of learned optimizers. In International Conference on
Machine Learning, pages 4556–4565. PMLR, 2019. 1, 3, 4

L. Metz, C. D. Freeman, J. Harrison, N. Maheswaranathan, and J. Sohl-Dickstein. Practical tradeoffs
between memory, compute, and performance in learned optimizers, 2022a. 1, 2, 3, 4, 6, 16

L. Metz, J. Harrison, C. D. Freeman, A. Merchant, L. Beyer, J. Bradbury, N. Agrawal, B. Poole,
I. Mordatch, A. Roberts, et al. Velo: Training versatile learned optimizers by scaling up. arXiv
preprint arXiv:2211.09760, 2022b. 1, 2, 3, 4, 6

Y. E. Nesterov and V. G. Spokoiny. Random gradient-free minimization of convex func-
tions. Found. Comput. Math., 17(2):527–566, 2017. URL https://doi.org/10.1007/
s10208-015-9296-2. 3, 4

12

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.2312.02204
https://doi.org/10.48550/arXiv.2312.02204
https://doi.org/10.18653/v1/d18-2012
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
http://papers.nips.cc/paper_files/paper/2023/hash/a3cc50126338b175e56bb3cad134db0b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a3cc50126338b175e56bb3cad134db0b-Abstract-Conference.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1007/s10208-015-9296-2
https://doi.org/10.1007/s10208-015-9296-2

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, R. Howes, P.-Y. Huang, H. Xu, V. Sharma, S.-W. Li, W. Galuba, M. Rabbat,
M. Assran, N. Ballas, G. Synnaeve, I. Misra, H. Jegou, J. Mairal, P. Labatut, A. Joulin, and
P. Bojanowski. Dinov2: Learning robust visual features without supervision, 2023. 1

P. Parmas, C. E. Rasmussen, J. Peters, and K. Doya. PIPPS: flexible model-based policy search robust
to the curse of chaos. In J. G. Dy and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Research, pages 4062–4071. PMLR, 2018.
URL http://proceedings.mlr.press/v80/parmas18a.html. 3, 4

I. Premont-Schwarz, J. Vitkuu, and J. Feyereisl. A simple guard for learned optimizers. arXiv preprint
arXiv:2201.12426, 2022. 3

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language
supervision. In M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 8748–8763. PMLR, 2021. URL http://proceedings.
mlr.press/v139/radford21a.html. 1

F. Rezk, A. Antoniou, H. Gouk, and T. M. Hospedales. Is scaling learned optimizers worth it?
evaluating the value of velo’s 4000 TPU months. In J. Antorán, A. Blaas, K. Buchanan, F. Feng,
V. Fortuin, S. Ghalebikesabi, A. Kriegler, I. Mason, D. Rohde, F. J. R. Ruiz, T. Uelwer, Y. Xie,
and R. Yang, editors, Proceedings on "I Can’t Believe It’s Not Better: Failure Modes in the Age of
Foundation Models" at NeurIPS 2023 Workshops, 16 December 2023, New Orleans, Louisiana,
USA, volume 239 of Proceedings of Machine Learning Research, pages 65–83. PMLR, 2023. URL
https://proceedings.mlr.press/v239/rezk23a.html. 22

H. E. Robbins. A stochastic approximation method. Annals of Mathematical Statistics, 22:400–407,
1951. URL https://api.semanticscholar.org/CorpusID:16945044. 1

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with
latent diffusion models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 10674–10685. IEEE, 2022. URL
https://doi.org/10.1109/CVPR52688.2022.01042. 1

J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992. 2

J. C. Spall. Adaptive stochastic approximation by the simultaneous perturbation method. IEEE Trans.
Autom. Control., 45(10):1839–1853, 2000. URL https://doi.org/10.1109/TAC.2000.
880982. 4

S. Thrun and L. Pratt. Learning to learn. Springer Science & Business Media, 2012. 2

P. Vicol. Low-variance gradient estimation in unrolled computation graphs with es-single. In
International Conference on Machine Learning, pages 35084–35119. PMLR, 2023. 3

P. Vicol, L. Metz, and J. Sohl-Dickstein. Unbiased gradient estimation in unrolled computation
graphs with persistent evolution strategies. In M. Meila and T. Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 10553–10563. PMLR, 2021.
URL http://proceedings.mlr.press/v139/vicol21a.html. 3, 4, 16, 17

O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Colmenarejo, M. Denil, N. Freitas, and
J. Sohl-Dickstein. Learned optimizers that scale and generalize. In International conference on
machine learning, pages 3751–3760. PMLR, 2017. 1, 3

G. Yang. Tensor programs I: wide feedforward or recurrent neural networks of any architecture are
gaussian processes. CoRR, abs/1910.12478, 2019. URL http://arxiv.org/abs/1910.
12478. 4

13

http://proceedings.mlr.press/v80/parmas18a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v239/rezk23a.html
https://api.semanticscholar.org/CorpusID:16945044
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/TAC.2000.880982
https://doi.org/10.1109/TAC.2000.880982
http://proceedings.mlr.press/v139/vicol21a.html
http://arxiv.org/abs/1910.12478
http://arxiv.org/abs/1910.12478

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

G. Yang. Tensor programs II: neural tangent kernel for any architecture. CoRR, abs/2006.14548,
2020a. URL https://arxiv.org/abs/2006.14548. 4

G. Yang. Tensor programs III: neural matrix laws. CoRR, abs/2009.10685, 2020b. URL https:
//arxiv.org/abs/2009.10685. 4

G. Yang and E. J. Hu. Tensor programs IV: feature learning in infinite-width neural networks. In
M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 11727–11737. PMLR, 2021. URL http://proceedings.mlr.
press/v139/yang21c.html. 3

G. Yang and E. Littwin. Tensor programs ivb: Adaptive optimization in the infinite-width limit. CoRR,
abs/2308.01814, 2023. URL https://doi.org/10.48550/arXiv.2308.01814. 4

G. Yang, E. J. Hu, I. Babuschkin, S. Sidor, D. Farhi, J. Pachocki, X. Liu,
W. Chen, and J. Gao. Tensor programs v: Tuning large neural net-
works via zero-shot hyperparameter transfer. In NeurIPS 2021, March 2022.
URL https://www.microsoft.com/en-us/research/publication/
tuning-large-neural-networks-via-zero-shot-hyperparameter-transfer/.
1, 2, 4, 5, 6, 7, 15, 17, 20

G. Yang, D. Yu, C. Zhu, and S. Hayou. Tensor programs VI: feature learning in infinite depth neural
networks. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=17pVDnpwwl. 4

J. Yang, T. Chen, M. Zhu, F. He, D. Tao, Y. Liang, and Z. Wang. Learning to generalize provably in
learning to optimize. In International Conference on Artificial Intelligence and Statistics, pages
9807–9825. PMLR, 2023. 3

14

https://arxiv.org/abs/2006.14548
https://arxiv.org/abs/2009.10685
https://arxiv.org/abs/2009.10685
http://proceedings.mlr.press/v139/yang21c.html
http://proceedings.mlr.press/v139/yang21c.html
https://doi.org/10.48550/arXiv.2308.01814
https://www.microsoft.com/en-us/research/publication/tuning-large-neural-networks-via-zero-shot-hyperparameter-transfer/
https://www.microsoft.com/en-us/research/publication/tuning-large-neural-networks-via-zero-shot-hyperparameter-transfer/
https://openreview.net/forum?id=17pVDnpwwl
https://openreview.net/forum?id=17pVDnpwwl

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOF OF PROPOSITION 1

Proposition 1. Assume that the LO fϕ is continuous around 0. Then, if fϕ(0) ̸= 0, the update, initial-
ization, and pre-activation multiplier above is necessary to obtain a Maximal Update Parametrization.

Proof. The update produced by fϕ is denoted ∆W and we write ∇W the corresponding gradient, so
that ∆W = fϕ(∇W). For the sake of simplicity, n will be the output size and d the feature input
size of our neural network. Our goal is to satisfy the desiderata of (Yang et al., 2022, Appendix
J.2). We assume our initialization follows Initialization-µ in Sec 3. Overall, our goal is to study
strategy so that if xi = Θ(1), then one needs to renormalize/initialize so that (Wx)i = Θ(1) while
((W +∆W)x)i = Θ(1) so that the update is as large as possible. Note that given the assumptions
on f , if x = Θ(1n), then f(x) = Θ(1).

Output weights. Here, if input x has some Θ(1) coordinates, we initialize W = (wi)i≤n with
weights of variance 1 (which is necessary) and rescale the preactivations with 1

n . For the update,
we thus have that ∇W scales (coordinate wise) as Θ(1n) and we do not rescale the LR, given that
fϕ(∇W) will also have coordinates in Θ(1).

Hidden weights. Now, for the update, we observe that the gradient ∇W has some coordinates
which scale as Θ(1n), due to the output renormalization choice. Thus, the LO fϕ(∇W) satisfies that
f(∇W) = Θ(1), given that fϕ is continuous in 0 and satisfies fϕ(0) ̸= 0. Thus for the update, we
need to use ∆W = 1

nfϕ(∇W) so that ∆Wx is coordinate wise bounded.

Input weights. In this case, the gradient has coordinates which already scale in Θ(1n) (due to the
output renormalization) and there is no need to rescale the LR.

B HAND DESIGNED OPTIMIZER HYPERPARAMETER TUNING

B.1 TUNING µADAM

We tune the µAdam baseline on the largest meta-training seen by our learned optimizers.µAdamM

was, therefore, tuned using a 1024 width MLP for 32×32×3 ImageNet classification. As mentioned
in section 4, we tune the learning rate and three multipliers: input multiplier, output multiplier, and
the hidden learning rate multiplier. These multipliers correspond to adding a tunable constant to the
pre-activation multiplier for input weights, the pre-activation multiplier for output weights, and the
Adam LR for hidden weights (e.g., in Table 8 of Yang et al. (2022)). Specifically, we search for
the learning rate in {0.1, 0.01, 0.001, 0.0001} and for each multiplier in {2−4, 2−2, 1, 22, 24}. This
results in a grid search of 500 configurations, whose optimal values are reported in table 3.

Table 3: Best hyperparameters values for µAdam baseline. µAdam is tuned to optimize 3-layer
W= 1024 MLP for 32× 32× 3 ImageNet classification, while µAdam (re-tuned) is tuned on 3-layer
W= 384 ViT for 32× 32× 3 ImageNet classification.

Optimizer LR Input Multiplier Output Multiplier Hidden LR Multiplier

µAdam 0.1 0.25 0.25 4
µAdam (re-tuned) 0.000702 0.9 0.95 0.01

B.2 TUNING ADAMW

We tune the AdamW baseline on the largest meta-training seen by our learned optimizers. AdamW
was, therefore, tuned using a 1024 width MLP for 32×32×3 ImageNet classification. As mentioned
in section 4, we tune the learning rate, betas, and weight decay: LR, β1, β2, and the weights decay.
Specifically, we search over the values of each hyperparameter reported in Table 4. This results in a
grid search of 500 configurations, whose optimal values are reported in table 5.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Grid search values used for AdamW. Similar to the µAdam baseline, we tune all optimizers
on a 3-layer W= 1024 MLP ImageNet classification task and use a budget of approximately 500
total runs. We tune LR, β1, β2, and weight decay to minimize training loss after 1000 steps.

Optimizer LR β1 β2 weight decay Total runs

SP AdamW Log Sample 14 from [10−5, 0.1] {0.9,0.95,0.99} {0.95,0.99,0.999} {0.1,0.01,0.001,0.0001} 504

Table 5: Optimal Hyperparameters Found AdamW. Similar to the µAdam baseline, we tune all
optimizers on a 3-layer W= 1024 MLP ImageNet classification task and use a budget of approxi-
mately 500 total runs.

Optimizer LR β1 β2 weight decay Total runs

SP AdamW 0.000702 0.9 0.95 0.0001 504

C META-TRAINING WITH µLOS

General meta-training setup for small_fc_lopt Each small_fc_lopt (Metz et al., 2022a) learned
optimizer is meta-trained for 5000 steps of gradient descent using AdamW (Loshchilov and Hutter,
2019) and a linear warmup and cosine annealing schedule. We using PES (Vicol et al., 2021) to
estimate meta-gradients with a truncation length of 50 steps and sampling 8 perturbations per task
at each step with standard deviation 0.01. For the inner optimization task, we used a maximum
unroll length of 1000 iterations; that is, all our learned optimizers see at most 1000 steps of the inner
optimization problem during meta-training. Unlike with µAdam, we do not tune the µP multipliers
when meta-training µLOS and µLOM , instead, we set the all to 1. All optimizers are meta-trained on
a single A6000 GPU. µLOS and LOS take 8 hours each to meta-train, while µLOM and LOM take
103 hours.

General meta-training setup for VeLO Each VeLO (Metz et al., 2022a) learned optimizer is meta-
trained for 45000 steps of gradient descent using AdamW (Loshchilov and Hutter, 2019) and a linear
warmup and cosine annealing schedule. We using PES (Vicol et al., 2021) to estimate meta-gradients
with a truncation length of 20 steps and sampling 8 perturbations per task at each step with standard
deviation 0.01. For the inner optimization task, we used a maximum unroll length of 1000 iterations;
that is, all our learned optimizers see at most 1000 steps of the inner optimization problem during
meta-training. Unlike with µAdam, we do not tune the µP multipliers when meta-training µLOS

and µLOM , instead, we set the all to 1. All optimizers are meta-trained on a single A6000 GPU.
µVeLOMand VeLOM take 250 hours to meta-train.

Meta-training hyperparameters for small_fc_lopt in µP While there are very few differences
between µLOs and SP LOs, the effective step size for hidden layers is changed (see eq. 3) which
could alter the optimal meta-training hyperparameters. Consequently, we conduct an ablation study
on hyper-parameters choices for µLOS . Specifically, using AdamW and gradient clipping with a
linear warmup and cosine annealing LR schedule, we meta-train µLOS to train 3-layer width 128
MLPs to classify 32× 32× 3 ImageNet Images. By default, we warmup linearly for 100 steps to
a maximum learning rate of 3e− 3 and anneal the learning rate for 4900 steps to a value of 1e− 3
with λ1 = 0.001 (from equation 3) and sampling 8 perturbations per step in PESVicol et al. (2021).
The above ablation varies the maximum learning rate ∈ {1e− 2, 3e− 3, 1e− 3} (always using 100
steps of warmup and decaying to 0.3×MaxLR), λ1 ∈ {0.001, 0.01, 0.1}, the number of steps (5k or
10k), and the number of perturbations (8 or 16). We observe that using all default values except for
λ1 = 0.01 yields one of the best solutions while being fast to train and stable during meta-training.
We, therefore, select these hyperparameters to meta-train µLOS and µLOM .

Meta-training hyperparameters for VeLO in µP Unlike small_fc_lopt, we do not find it necessary
to λ1 from its default value. However, we do remove the multiplication by the current parameter
norm used in the update equation to VeLO as it causes meta-training problems when initializing
tensors to zero.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

µP at Meta-training time While we use the same µP at meta-training and testing time, it is
important to consider meta-training tasks that have similar training trajectories to their infinite
width counterparts. In (Yang et al., 2022), authors provide discussions of these points for zero-shot
hyperparameter transfer. Two notable guidelines are to initialize the output weight matrix to zero (as it
will approach zero in the limit) and to use a relatively large key size when meta-training transformers.
For all our tasks, we initialize the network’s final layer to zeros. While we do not meta-train on
transformers, we suspect that the aforementioned transformer-specific guidelines may be useful.

0 2000 4000 6000 8000 10000
Meta Training Steps

6.00

6.25

6.50

6.75

7.00

7.25

7.50

7.75

8.00

M
et

a
Lo

ss

Steps=5k MaxLR=3e-3 1=0.001 Perturbations=16
Steps=5k MaxLR=3e-3 1=0.001 Perturbations=8
Steps=5k MaxLR=3e-3 1=0.01 Perturbations=8
Steps=5k MaxLR=1e-3 1=0.001 Perturbations=8
Steps=5k MaxLR=1e-2 1=0.001 Perturbations=8
Steps=5k MaxLR=3e-3 1=0.1 Perturbations=8
Steps=10k MaxLR=3e-3 1=0.001 Perturbations=8

Figure 7: Ablating Meta-training Hyperparameter for µLOS . All curves show a single meta-
training run. Using AdamW with a linear warmup and cosine annealing schedule, we meta-train µLOS

to train 3-layer width 128 MLPs for classifying 32×32×3 ImageNet Images. By default, we warmup
linearly for 100 steps to a maximum learning rate of 3e − 3 and anneal the learning rate for 4900
steps to a value of 1e− 3 with λ1 = 0.001 (from equation 3) and sampling 8 perturbations per step in
PESVicol et al. (2021). The above ablation varies the maximum learning rate ∈ {1e−2, 3e−3, 1e−3}
(always using 100 steps of warmup and decaying to 0.3×MaxLR), λ1 ∈ {0.001, 0.01, 0.1}, the
number of steps (5k or 10k), and the number of perturbations (8 or 16). We observe that using all
default values except for λ1 = 0.01 yields one of the best solutions while being fast to train and
stable during meta-training.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D FEATURES OF THE LEARNED OPTIMIZER

Table 6: Per-parameter features used as input to our learned optimizers. All the coefficients, βi,
are learnable parameters adjusted during meta-optimization. We replicate the table of (Joseph et al.,
2023) for convenience.

Description value

parameter value wt

3 momentum values with coefficients β1, β2, β3 mt,i = βimt−1,i + (1− βi)gt

second moment value computed from gt with decay β4 vt = β4vt−1 + (1− β4)g
2
t

3 values consisting of the three momentum values normal-
ized by the square root of the second moment

mt,i√
v

the reciprocal square root of the second moment value 1√
v

3 ∆t Adafactor normalized values gt × ROW FACTOR × COLUMN FACTOR

3 tiled Adafactor row features with coefficients β5, β6, β7,
computed from gt

rt,i = βirt−1,i + (1− βi)ROW_MEAN(∆2
t)

3 tiled Adafactor column feature with coefficients β5, β6, β7

computed from gt
ct,i = βict−1,i + (1− βi)COL_MEAN(∆2

t)

the reciprocal square root of the previous 6 features 1√
rt,i OR ct,i

3 m Adafactor normalized values mt,i × ROW FACTOR × COLUMN FACTOR

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E LIST OF META-TESTING TASKS

Table 7 reports the configuration of different testing tasks used to evaluate our optimizers. We
note that we do not augment the ImageNet datasets we use in any way except for normalizing the
images. We tokenize LM1B using a sentence piece tokenizer(Kudo and Richardson, 2018) with 32k
vocabulary size. All evaluation tasks are run on A6000 48BG or A100 80GB GPUs for 5 random
seeds.

Table 7: Meta-testing settings. We report the optimization tasks we will use to evaluate the LOs of
Table 1.

Identifier Dataset Model Depth Width Attn. Heads FFN Size Batch Size Sequence Length

IN32T MLP
(3,128) 32× 32× 3 ImageNet MLP 3 128 – – 4096 –

IN32T MLP
(3,256) 32× 32× 3 ImageNet MLP 3 256 – – 4096 –

IN32T MLP
(3,512) 32× 32× 3 ImageNet MLP 3 512 – – 4096 –

IN32T MLP
(3,1024) 32× 32× 3 ImageNet MLP 3 1024 – – 4096 –

IN32T MLP
(3,2048) 32× 32× 3 ImageNet MLP 3 2048 – – 4096 –

IN32T MLP
(3,4096) 32× 32× 3 ImageNet MLP 3 4096 – – 4096 –

IN32T MLP
(3,8192) 32× 32× 3 ImageNet MLP 3 8192 – – 4096 –

IN64T MLP
(3,128) 64× 64× 3 ImageNet MLP 3 128 – – 4096 –

IN64T MLP
(3,256) 64× 64× 3 ImageNet MLP 3 256 – – 4096 –

IN64T MLP
(3,512) 64× 64× 3 ImageNet MLP 3 512 – – 4096 –

IN64T MLP
(3,1024) 64× 64× 3 ImageNet MLP 3 1024 – – 4096 –

IN64T MLP
(3,2048) 64× 64× 3 ImageNet MLP 3 2048 – – 4096 –

IN64T MLP
(3,4096) 64× 64× 3 ImageNet MLP 3 4096 – – 4096 –

C10T MLP
(3,128) 32× 32× 3 Cifar-10 MLP 3 128 – – 4096 –

C10T MLP
(3,256) 32× 32× 3 Cifar-10 MLP 3 256 – – 4096 –

C10T MLP
(3,512) 32× 32× 3 Cifar-10 MLP 3 512 – – 4096 –

C10T MLP
(3,1024) 32× 32× 3 Cifar-10 MLP 3 1024 – – 4096 –

C10T MLP
(3,2048) 32× 32× 3 Cifar-10 MLP 3 2048 – – 4096 –

C10T MLP
(3,4096) 32× 32× 3 Cifar-10 MLP 3 4096 – – 4096 –

C10T MLP
(3,8192) 32× 32× 3 Cifar-10 MLP 3 8192 – – 4096 –

T ViT
(3,192) 32× 32× 3 ImageNet ViT 3 192 3 768 4096 –

T ViT
(3,384) 32× 32× 3 ImageNet ViT 3 384 6 1536 4096 –

T ViT
(3,768) 32× 32× 3 ImageNet ViT 3 768 8 3072 4096 –

T ViT
(3,1024) 32× 32× 3 ImageNet ViT 3 1024 8 4096 4096 –

T ViT
(3,2048) 32× 32× 3 ImageNet ViT 3 2048 16 8192 4096 –

T ViT
(3,3072) 32× 32× 3 ImageNet ViT 3 3072 16 12288 4096 –

T LM
(3,192) LM1B, 32k Vocab Transformer LM 3 192 3 768 4096 64

T LM
(3,384) LM1B, 32k Vocab Transformer LM 3 384 6 1536 4096 64

T LM
(3,768) LM1B, 32k Vocab Transformer LM 3 768 8 3072 4096 64

T LM
(3,1024) LM1B, 32k Vocab Transformer LM 3 1024 8 4096 4096 64

T LM
(3,2048) LM1B, 32k Vocab Transformer LM 3 2048 16 8192 4096 64

T LM
(3,3072) LM1B, 32k Vocab Transformer LM 3 3072 16 12288 4096 64

DT MLP
(16,512) 32× 32 ImageNet MLP 16 512 – – 4096 –

DT ViT
(16,192) 32× 32 ImageNet ViT 16 192 3 768 4096 –

DT LM
(16,192) LM1B Transformer LM 16 192 3 768 4096 –

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F TASK-SPECIFIC TUNED µADAM

In this section, we evaluate the meta-generalization performance of µLOM and µVeLOM relative
to µAdam and µAdam (re-tuned) on a w=3072 ViT 32× 32 ImageNet task. µAdam is tuned on a
width=1024 MLP task for 500 trials and µAdam (re-tuned) is tuned on a width=384 ViT task for 500
trials. The hyperparameters of these baselines are reported in table 3. In figure 8, we observe that
µAdam is outperformed by µAdam (re-tuned) as expected. We note that µAdam (re-tuned) is tuned in
the µ−transfer setting of Yang et al. (2022) where one tunes on a smaller width version of the target
task. This experiment allows us to assess whether µLO out-of-distribution can outperform µ-transfer
in-distribution. Despite being evaluated out-of-distribution, µLOM and µVeLOM outperformed
the re-tuned µAdam baseline on the width 3072 ViT task. These results demonstrate that the µLO
framework has the potential to show strong transfer even for unseen tasks.

0 1000 2000 3000 4000 5000

Training Steps

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Lo
ss

Adam
Adam (re-tuned)
VeLOM (ours)
LOM (ours)

Figure 8: Comparing the performance of µLOs to µAdam on a width 3072 ViT task. Each curve
reports the mean training loss over 5 trials. Error bars report standard error. µAdam was tuned on a
width 1024 MLP task for 500 trials, while µAdam (re-tuned) was tuned on a width 384 ViT task for
500 trials. We observe that the re-tuned µAdam baseline bests its counterpart, but is outperformed by
our µLOs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

G RESULTS FOR RESNETS AND PLAIN RESNETS

Prior work has demonstrating the difficulty of optimizing deep networks without residual connec-
tions Li et al. (2018); He et al. (2016). Specifically, Li et al. (2018) demonstrates that the loss
landscape is much smoother for ResNets than plain ResNets. Such pernicious loss landscapes could
pose problems for gradient-based optimizers. Could this be the case for learned optimizers? How
do µLOs affect this? In this section, we answer this question by ablating the performance of µLOs
and SP learned optimizers on plain and residual networks. Figures 9 reports the training curves
for ResNets (subfigure a) and plain ResNets (subfigure b). We observe that VeLOM immediately
diverges in both cases, LOM initially decreases the loss faster than µLOM and µVeLOM , but it
eventually stagnates and is surpassed by bot µLOs, and µLOs monotonically decrease the loss during
the first 5000 steps of training.

0 1000 2000 3000 4000 5000
Training Steps

3

4

5

6

7

8

Lo
ss

(a) ResNet

0 1000 2000 3000 4000 5000
Training Steps

3

4

5

6

7

8

Lo
ss

LOM

VeLOM

VeLOM (ours)
LOM (ours)

(b) Plain ResNet

Figure 9: Performance of Deep Plain and Residual Networks. We report the training loss for a
depth 24 and width 256 plain and residual networks. We observe similar trends for both residual
and plan networks: 1) VeLOM immediately diverges in both cases, 2) LOM initially decreases the
loss faster than µLOM and µVeLOM , but it eventually stagnates and is surpassed by bot µLOs, and
3) µLOs monotonically decrease the loss during the first 5000 steps of training. Each curve is an
average over 5 trials. The shaded regions denote standard error.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

H EXTENDED GENERALIZATION TO LONGER UNROLLS FOR µVELO

In this section, we extend our meta-generalization results for longer unrolls. Specifically, we verify
whether µVeLO can generalize beyond 25× the meta-training unroll length for a width 1024 ViT
to ImageNet task as its training curve in figure 6 (a) seems to slightly increase toward the end of
training. It is important to note that the VeLO architecture takes as input the number of training
steps remaining, thus, requiring the user to specify the total number of training steps (total_steps
) a-priori (e.g. as is done for many LR schedules in practice). Therefore, at each step, VeLO’s LSTM
is conditioned on an embedding that provides the number of training steps remaining, allowing it to
learn a schedule. Previous work analyzing VeLO-4000’s behavior has noted that changing the value of
the total_steps hyperparameter leads to variable performance Rezk et al. (2023). Specifically, they
found that increasing the value of total_steps does not always lead to better performance Rezk
et al. (2023). Figure 10 demonstrates that µVeLOM can successfully optimize a width 1024 ViT to
classify ImageNet images (same task as Figure 6 (a)) for 40, 000 training steps. However, we note
that it underperforms µVeLOM using total_steps = 25, 000. This is similar to what was found in
previous work for VeLO-4000 Rezk et al. (2023).

0 5000 10000 15000 20000 25000 30000 35000 40000
Training Steps

0

1

2

3

4

5

6

7

Lo
ss

VeLOM (ours) with total_steps=25k
VeLOM (ours) with total_steps=40k

Figure 10: Comparing the performance of µVeLOM on a width 1024 ViT ImageNet task when
the total training steps are set to 25,000 and 40,000. Each curve reports the mean training loss over
5 trials. Error bars report standard error. We observe that both decrease the loss throughout training,
except after iteration 20,000 for µVeLOM with total_steps = 25k, which seems to suffer from a
very slight increase in loss. Notably, similar to what is shown in previous work Rezk et al. (2023) for
VeLO-4000, µVeLOM using total_steps = 40k underperforms µVeLOM using total_steps
= 25k.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

I COORDINATE EVOLUTION OF MLP LAYERS IN µP FOR DIFFERENT
OPTIMIZERS

The following section presents the continuation of our experiments comparing pre-activation growth
during training for SP LOs and µLOs with different meta-trainnig recipes, SP adam, and µAdam.

0 100 200 300 400 500

102st
d(

x t
x 0

)

(a) SP Adam

0 100 200 300 400 500

101

(b) SP LOS

0 100 200 300 400 500

101

102
(c) SP LOM

0 100 200 300 400 500
Training Step (t)

101

102

103

st
d(

x t
x 0

)

(d) Adam

0 100 200 300 400 500
Training Step (t)

101

102

(e) LOS

0 100 200 300 400 500
Training Step (t)

101

102

(f) LOM

64

128

256

512

1024

2048

4096

M
od

el
 W

id
th

s
(lo

g
sc

al
e)

Figure 11: Layer 0 pre-activations behave harmoniously in µP for LOs and Adam alike. We
report the evolution of coordinate-wise standard deviation between the difference of initial and current
second-layer pre-activations. We observe that all models parameterized in µP enjoy stable coordinates
across widths, while the pre-activations of larger-width models in SP blow up after a number of
training steps. All plots report these metrics for the first 500 steps of a single training run.

0 100 200 300 400 500

103

104

105

st
d(

x t
x 0

)

(a) SP Adam

0 100 200 300 400 500

100

101

102

103

(b) SP LOS

0 100 200 300 400 500

100

101

102

103

(c) SP LOM

0 100 200 300 400 500
Training Step (t)

100

101

102

st
d(

x t
x 0

)

(d) Adam

0 100 200 300 400 500
Training Step (t)

101

102

(e) LOS

0 100 200 300 400 500
Training Step (t)

100

101

102

(f) LOM

64

128

256

512

1024

2048

4096

M
od

el
 W

id
th

s
(lo

g
sc

al
e)

Figure 12: Layer 1 pre-activations behave harmoniously in µP for LOs and Adam alike. We
report the evolution of coordinate-wise standard deviation between the difference of initial and current
second-layer pre-activations. We observe that all models parameterized in µP enjoy stable coordinates
across widths, while the pre-activations of larger-width models in SP blow up after a number of
training steps. All plots report these metrics for the first 500 steps of a single training run.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500

100

101

102

103

104

105

106

st
d(

x t
x 0

)
(a) SP Adam

0 100 200 300 400 500

100

102

104

106

108
(b) SP LOS

0 100 200 300 400 500

100

101

102

103

104

105

(c) SP LOM

0 100 200 300 400 500
Training Step (t)

101

102

103

104

st
d(

x t
x 0

)

(d) Adam

0 100 200 300 400 500
Training Step (t)

100

101

102

103

104
(e) LOS

0 100 200 300 400 500
Training Step (t)

100

101

102

103

104
(f) LOM

64

128

256

512

1024

2048

4096

M
od

el
 W

id
th

s
(lo

g
sc

al
e)

Figure 13: Layer 3 pre-activations behave harmoniously in µP for LOs and Adam alike. We
report the evolution of coordinate-wise standard deviation between the difference of initial and current
second-layer pre-activations. We observe that all models parameterized in µP enjoy stable coordinates
across widths, while the pre-activations of larger-width models in SP blow up after a number of
training steps. All plots report these metrics for the first 500 steps of a single training run.

0 100 200 300 400 500

100

101

102

103

104

105

106

st
d(

x t
x 0

)

(a) SP Adam

0 100 200 300 400 500

100

102

104

106

108
(b) SP LOS

0 100 200 300 400 500

100

101

102

103

104

105

(c) SP LOM

0 100 200 300 400 500
Training Step (t)

10 1

100

st
d(

x t
x 0

)

(d) Adam

0 100 200 300 400 500
Training Step (t)

10 1

100

(e) LOS

0 100 200 300 400 500
Training Step (t)

10 2

10 1

100

(f) LOM

64

128

256

512

1024

2048

4096

M
od

el
 W

id
th

s
(lo

g
sc

al
e)

Figure 14: Logits behave harmoniously in µP for LOs and Adam alike. We report the evolution
of coordinate-wise standard deviation between the difference of initial and current second-layer
pre-activations. We observe that all models parameterized in µP enjoy stable logits across widths,
while the pre-activations of larger-width models in SP blow up after a number of training steps. All
plots report these metrics for the first 500 steps of a single training run.

24

	Introduction
	Related Work
	Method
	Background
	-parametrization for Learned Optimizers
	LO Meta-training Recipe

	Empirical evaluation
	Results
	Evaluating pre-activation stability
	Meta-generalization to wider networks
	Meta-generalization to deeper networks
	Meta-generalization to longer training horizons

	Limitations
	Conclusion
	Proof of proposition 1
	Hand Designed Optimizer Hyperparameter Tuning
	Tuning Adam
	Tuning AdamW

	Meta-training with LOs
	Features of the learned optimizer
	List of Meta-testing Tasks
	Task-specific tuned Adam
	Results for ResNets and Plain ResNets
	Extended generalization to longer unrolls for VeLO
	Coordinate evolution of MLP layers in P for different optimizers

