
Under review as a conference paper at ICLR 2017

PREDICTION OF POTENTIAL HUMAN INTENTION US-
ING SUPERVISEDCOMPETITIVE LEARNING

Masayoshi Ishikawa, Mariko Okude, Takehisa Nishida & Kazuo Muto
Hitachi, Ltd
Omika 7-1-1, Hitachi, Ibaraki, JAPAN
{masayoshi.ishikawa.gv, mariko.okude.uh }@hitachi.com
{takehisa.nishida.cu, kazuo.muto.ny }@hitachi.com

ABSTRACT

We propose a learning method to quantify human intention. Generally, a human
being will imagine several potential actions for a given scene, but only one of
these actions will subsequently be taken. This makes it difficult to quantify human
intentions.

To solve this problem, we apply competitive learning to human behavior predic-
tion as supervised learning. In our approach, competitive learning generates sev-
eral outputs that are then associated with several potential situations imagined by
a human. We applied the proposed method to human driving behavior and ex-
tracted three potential driving patterns. Results showed a squared error is reduced
to 1/25 that of a conventional method . We also found that competitive learning
can distinguish valid data from disturbance data in order to train a model.

1 INTRODUCTION

Progress in advanced driving assistance systems (ADASs) has led to an autonomous driving function
applicable for highway driving . The vehicle control logic of ADAS is typically developed by
hand. There are a few related works on controlling vehicles comfortably , but the complex nature of
vehicle environments prevents development by hand. Therefore, recent research has focused on the
application of machine learning to autonomous driving systems. The convolutional neural network
(CNN) shows particular promise as a core algorithm (Krizhevsky et al.(2012)). C. Chen & Xiao
(2015) estimates affordance for driving directly from a front camera image. They train a CNN to
generate key perception indicators from images to easily control a vehicle. Similarly,Bojarski et al.
(2016) predict the desired steering command directly from front camera images. They train a CNN
with a human command as training data and drive in traffic on local roads with or without lane
marking and on highways.

Our objective is to provide drivers with a comfortable trip featuring automatic vehicle control . The
above methods provide a uniform control for various scenarios, but drivers have an assortment of
preference behaviors, and individuals may drive in different ways even if the scenario or situation
is the same. For example, on the highway, one person might drive hard to arrive at a destination
quickly while another might drive relatively slowly to arrive at a destination safely. Therefore, we
want to provide autonomous driving adapted to each individual to improve ease of driving and to
generate control targets that imitate individual behavior. To imitate individual behavior, we predict
future vehicle states resulting from an individualfs decision.

There are many studies on the imitation of human behavior within the context of driving.
Ma & Andréasson(2006) proposed a vehicle interaction model that predicts future acceleration on
the basis of current acceleration, velocity, relative velocity, and relative distance of the preced-
ing vehicle. Moon & Choi (2011) proposed a method to predict human steering behavior. Their
model considers path planning, feed-forward steering, and feedback steering. While these methods
consider only acceleration or steering,Gindele et al.(2010) proposed a more complex model, the
dynamic Bayesian network model, to estimate driver behavior and vehicle trajectory. This model
considers vehicle model, trajectory, driver decision, and situation context.Wada et al.(2007) pro-

1

Under review as a conference paper at ICLR 2017

Figure 1:Graphical model of driving behavior.

posed a method to predict braking behavior. This method monitors the size of a preceding vehicle
by means of front camera images to detect collision risk.

These methods provide one output for one scene. However, we assume that one output might repre-
sent just one part of a driverfs behavior. We assume a driver will imagine several potential situations
for one scene and have several potential actions to take associated with each situation. This means
the driver is making decisions all the time. Therefore, we want to extract several of the driver’s
candidate actions or intentions for the autonomous control of a vehicle while considering various
potential situations.

In this paper, we propose a method to extract a driver’s potential intention by utilizing competitive
learning (Ahalt et al.(1990), Shinozaki & Naruse(2013), Osoba & Kosko(2013)). Originally, com-
petitive learning was used for unsupervised neural network algorithms and functioned as clustering.
In such competitive learning, neural networks have several output layers and only one path that out-
puts the smallest loss to be trained . Consequently, neural networks predict the cluster with the most
activated units .

Ahalt et al.(1990) compare several competitive learning algorithms. In this paper, competitive learn-
ing algorithms is dealt as a kind of vector quantization algorithms.Shinozaki & Naruse(2013) uti-
lize competitive learning for pre-training of deep neural networks and they also use competitive
learning as unsupervised learning.Osoba & Kosko(2013) consider supervised competitive learn-
ing. However, they use also competitive learning as a kind of clustering methods. Therefore, in
our best knowledge, competitive learning is dealt as a kind of unsupervised learning algorithms or
clustering algorithms.

We apply competitive learning to time series supervised learning, especially, regression task. And
we train neural networks to output several patterns associated with a driver’s potential intentions. In
this paper, we describe how to model the driving behavior with competitive learning architecture .
Additionally, we show the experimental results of tests performed with an actual vehicle.

2 DRIVER BEHAVIOR MODEL

Here, we describe how to model driving behavior and how to implement the neural network archi-
tecture.

Our driving behavior model is a dynamic system that includes both a driver and a vehicle system. In
this model, the driver observes the environment and then decides on a driving action, e.g., steering
or pedal operation. The vehicle system then changes its state depending on the driving action and
the state of the vehicle at a previous time. Finally, we observe the various vehicle states. For
example, the environment observed by the driver is the same as that shown by the front camera and
the vehicle states include travel speed, accelerations, gas pedal position, brake pedal position, engine
speed, engine load, engine temperature, fuel level, fuel temperature, cooling water temperature, etc.

A graphical model of driving behavior is shown in Fig.1. Here,e stands for the environment ob-
served by the driver,d stands for the driving action decided by the driver,s stands for vehicle states,

2

Under review as a conference paper at ICLR 2017

Figure 2:Neural network architecture designed to imitate driving model.

andx stands for observed vehicle states. Subscriptst − 1 andt refer to time steps. Environment
e and parts of vehicle statesx are observed. Driving actiond and whole vehicle statess are latent
variables. We assume a front camera view for environmente. Observed variablesx include travel
speed, gas pedal position, engine speed, and engine load.

To ensure comfortable driving, we estimate the driver’s intention by predicting vehicle states in k
step future . The relations between each variable are shown in the following equations.

dt = fe(et; θe) (1)

st = fs(st−1; θs) + fd(, dt; θd) (2)

xt = fx(st; θx) (3)

xt+k = fx+k(st; θx+k) (4)

Additionally, we compensate for latent variablest by observable variablext. The compensatedst
are shown in Eq.5:

st = fs(st−1; θs) + fd(, dt; θd) + f−1
x (xt; θ

−1
x (5)

We design the neural network architecture in accordance with the driving behavior model shown
in Fig. 1. The designed architecture is shown in Fig.2. First, we select convolutional neural
network (CNN) layers to approximate driving actionfe, as the driver decides which action to take
depending on the front view and CNN is the best layer to process images. The front camera images
are resized to 256×256 with RGB channels. Second, we select a recurrent neural network (RNN)
layer to approximate vehicle statesfs, as our driver model is a dynamic system (Graves(2013)).
Finally, we select a fully connected layer for other layersfd, f

−1
x , fx+k because of its usability.

This model predicts observed variables and we train the driver behavior model by loss function.
We select squared error as loss functionL(xt+k, x̂t+k) and update parameters by backpropagation
(Hecht-NielsenWerbos(1990)).

L(xt+k, x̂t+k) = |xt+k − x̂t+k|2 (6)

The CNN consists of three layers. In the first layer, kernel size is 11×11 with 64 channels and
stride 4 . In the second layer, kernel size is 5×5 with 128 channels. In the third layer, kernel size
is 3×3 with 128 channels. After all CNN layers, we apply batch normalization, ReLU, and max
pooling (Ioffe & Szegedy(2015)). The RNN layer has 1024 units. We use the ADAM algorithm for
optimization (Kingma & Ba(2014)).

The architecture shown in Fig.2 is a baseline architecture and cannot extract potential driver inten-
tions. In the next section, we introduce a competitive learning architecture that can extract potential
intentions and discuss how to train it.

3

Under review as a conference paper at ICLR 2017

Figure 3:Competitive learning architecture.

Figure 4:Backpropagation in competitive learning architecture.

3 COMPETITIVE LEARNING FORDRIVER BEHAVIOR MODEL

3.1 COMPETITIVE LEARNING ARCHITECTURE

The competitive learning architecture is shown in Fig.3. It hasNo output layers. Additionally, we
set upNo RNN layers, as the driver’s potential intentions are separated depending on the driving
actions . Therefore, a separated RNN will be affected by separated intentions. The i-th RNN i and
the output layer generate i-th predictionx̂i

t+k at time t+k. We calculate i-th loss using Eq.7 and
decide the loss for backpropagation using Eq.9. Finally, we update the parameters depending on
this loss for backpropagation.

li = L(xt+k, x̂
i
t+k) (7)

L = [l1, ...li, ...lNo] (8)

libp =


0i ̸= arg min

j
(L)

lii = arg min
j

(L)
(9)

Backpropagation in the competitive learning architecture is shown in Fig.4. In the competitive
learning architecture, we train only the computation path that output minimum loss. In Fig.4, the
computation path to be trained is indicated by solid lines and the layer whose parameters are not
updated is indicated by dashed lines. In this case, the i-th output layer has minimum loss and is
trained. The other output layers (i.e., whose losses are bigger than i-th) are not trained and the losses
are compensated as zero. Since each output layer is trained by different data, each prediction reflects
different intentions. Therefore, competitive learning can extract several potential intentions.

4

Under review as a conference paper at ICLR 2017

Figure 5:Pre-training for competitive learning architecture.

3.2 PRE-TRAINING FOR COMPETITIVE LEARNING

Here, we discuss the pre-training for competitive learning. In our experiments, competitive layers
with simple initialization are difficult to train, and many experiments result in only one output layer
being trained. Since only one computation path is trained at a time in competitive learning, how
the trained path is decided depends on the initialization. Therefore, we need to ensure appropriate
initialization for competitive layers. To this end , we adopt a pre-training technique for competi-
tive learning (Erhan et al.(2010), Erhan et al.). Pre-training is an initialization technique for neural
networks and is typically used for stacking neural networks. In this work, we apply pre-training to
initialize the parallel competitive layer, as shown in Fig.5. First, we train only one output layer
by means of the ordinal loss function in Eq.6. Then, we initialize competitive layers by copying
pre-trained parameters. Finally, we train each output layer as fine-tuning.

4 EXPERIMENTAL RESULTS

In order to evaluate the proposed method, we record the front camera view using a smartphone and
collect actual vehicle data using OBD2 (Birnbaum & Truglia(2000), International(2003)). The
data on vehicle states are whitened by removing means and scaled variances. Front camera images
and vehicle data are resampled to 2 Hz. Six steps (equivalent to three seconds in the future) are
predicted. We collect 80 minutes of data and use 40 minutes to train the neural networks. We set
three competitive layers and train 300 iterations for pre-training and 2000 iterations for fine-tuning.
We train neural networks with TITAN Z and use the Chainer framework (Tokui et al.(2015)).

4.1 COMPARISON OFCOMPETITIVE LEARNING ARCHITECTURE WITHBASELINE
ARCHITECTURE

Before we show the competitive learning results, we present the results of the baseline architecture
shown in Fig.6 . These data are predictions of vehicle speed over ten minutes. The left figure is the
prediction on training data and the right one is on test data. Red line indicates the measured speed
and blue line indicates the prediction by baseline architecture. In the training data, the baseline
architecture could predict accurately in the low speed band under 30 km/h. However, the prediction
error became bigger in the middle-high speed band over 30 km/h. In the higher speed band, the
driverfs action had several variations even when the vehicle was operating in the same environment.
This variation made prediction difficult. In the test data prediction, prediction error became bigger
in not only the high speed band but also the very low speed band around 0 km/h . Additionally, the
timing of the acceleration or deceleration shifted later, too. This is because the baseline architecture
cannot extract potential driving intentions.

The competitive learning results are shown in Fig.7. This figure is written up the same way as
Fig. 6, except the blue line refers to integrated predictions by the competitive learning architecture.
These predictions are a combination of three outputs derived by selecting minimum loss. In the
training data prediction, the competitive learning architecture predicted a value quite close to the

5

Under review as a conference paper at ICLR 2017

Figure 6:Prediction of baseline architecture on training data (left) and test data (right).

Figure 7:Integrated prediction of competitive architecture on training data (left) and test data (right).

measured vehicle speed before three seconds . In the test data prediction, the competitive learning
architecture could also predict the speed accurately. Additionally, the timing shift of acceleration or
deceleration became smaller. The loss summation in both the training and test data is listed in Table
1. Competitive learning architecture loss was about 1/25 smaller in the training data and about 1/3
smaller in the test data compared with the baseline architecture.

4.2 COMPETITIVE LEARNING PREDICTION ASSOCIATED WITHPOTENTIAL INTENTIONS

Here, we show the driving intentions extracted using the competitive learning architecture. The
intentions extracted from the training data are shown in Fig.8. Four time series data are included:
upper left is the integrated prediction, upper right is the first output layer’s prediction (indicated
by green line), lower left is the second output prediction (blue line), and lower right is the third
output prediction (purple line). The red lines are the measured vehicle speed. The upper left figure
depicts the winning output prediction, where the minimum error prediction is output for each time
and the line color refers to the winning output layer . For example, the purple line in the upper left
figure is the prediction by the third output layer . We can see that each output layer is affected by
other driving intentions. The first output layer accurately predicted the stop timing associated with
the stop intention, the second output layer accurately predicted the acceleration or high speed band
associated with a rapid intention, and the third output layer accurately predicted the deceleration
timing associated with a careful intention. We also show the results of the test data in Fig.9, which
are written the same as the training data in Fig.8. Trained intentions are also valid in test data
because the first output was accurate at stop time, the second output was accurate at acceleration
or the high speed band, and the third output was accurate at the time of deceleration. Therefore,
extracting these potential intentions enables accurate prediction.

Table 1:Summation loss of each architecture
Architecture Loss (training) Loss (test)
Baseline 335.8 2603
Competitive learning 13.14 816.4

6

Under review as a conference paper at ICLR 2017

Figure 8:Driving intentions extracted by competitive learning architecture; training data.

Figure 9:Driving intentions extracted by competitive learning architecture; test data.

7

Under review as a conference paper at ICLR 2017

Figure 10:Competitive layer outputs without pre-training in training data.

Table 2:Summation loss without pre-training
Architecture Loss (training) Loss (test)
Baseline 335.8 2603
Competitive learning 13.14 816.4
Competitive learning without pre-training 164.0 870.9

4.3 EFFECT OFPRE-TRAINING

The competitive learning result without pre-training is shown in Fig.10. We can train ”only one”
output layer to predict driver intention even if we have three output layers. Potential intentions of
the driver have similar trends. Therefore, we require the initialization of several of the same output
layers . We can extract potential intentions by training each output layer using other data.

We show the summation loss in Table2. Surprisingly, competitive learning without pre-training
significantly improved its losses by about 1/2 for training data and about 1/3 for test data. We
consider the second and third output layers to play an important role, even though they cannot learn
potential intentions. There is usually a lot of inadequate data to train, and these data disrupt the
training of the model. However, in most cases we cannot distinguish useful data from disturbance
data. In the competitive learning architecture, each output layer automatically selects data to train its
computation path. This selection might distinguish useful data from disturbance data, and the first
output layer can be trained using just the useful data, even though other output layers are trained
using inadequate data. In this way, competitive learning can train the model such that it is robust
against noisy data.

5 CONCLUSION

We proposed supervised competitive learning to imitate a driver’s potential intentions. Competitive
learning was applied to supervised learning and the squared error was reduced to 1/25 that of a
conventional method. We also demonstrated that competitive learning can distinguish valid data
from disturbance data to train a model.

REFERENCES

Stanley C Ahalt, Ashok K Krishnamurthy, Prakoon Chen, and Douglas E Melton. Competitive
learning algorithms for vector quantization.Neural networks, 3(3):277–290, 1990.

8

Under review as a conference paper at ICLR 2017

Ralph Birnbaum and Jerry Truglia.Getting to Know OBD II. New York, 2000.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars.arXiv preprint arXiv:1604.07316, 2016.

A. Kornhauser C. Chen, A. Seff and J. Xiao. Deepdriving: Learning affordance for direct perception
in autonomous driving. InProceedings of 15th IEEE International Conference on Computer
Vision, 2015.

Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, and Pascal Vincent. The
difficulty of training deep architectures and the effect of unsupervised pre-training.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning?Journal of Machine
Learning Research, 11(Feb):625–660, 2010.

Tobias Gindele, Sebastian Brechtel, and Rüdiger Dillmann. A probabilistic model for estimating
driver behaviors and vehicle trajectories in traffic environments. InIntelligent Transportation
Systems (ITSC), 2010 13th International IEEE Conference on, pp. 1625–1631. IEEE, 2010.

Alex Graves. Generating sequences with recurrent neural networks.arXiv preprint
arXiv:1308.0850, 2013.

Robert Hecht-Nielsen. Theory of the backpropagation neural network. InNeural Networks, 1989.
IJCNN., International Joint Conference on, pp. 593–605. IEEE.

SAE International.On-Board Diagnostics for Light and Medium Duty Vehicles Standards Manual.
Pennsylvania, 2003.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift. InProceedings of The 32nd International Conference on Machine
Learning, pp. 448–456, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. InAdvances in neural information processing systems, pp. 1097–1105,
2012.

Xiaoliang Ma and Ingmar Andréasson. Driver reaction time estimation from real car following data
and application in gm-type model evaluation. InProceedings of the 85th TRB annual meeting,
pp. 1–19, 2006.

Chulwoo Moon and Seibum B Choi. A driver model for vehicle lateral dynamics.International
journal of vehicle design, 56(1-4):49–80, 2011.

Osonde Osoba and Bart Kosko. Noise-enhanced clustering and competitive learning algorithms.
Neural Networks, 37:132–140, 2013.

Takashi Shinozaki and Yasushi Naruse. Competitive learning with feedforward supervisory signal
for pre-trained multilayered networks.arXiv preprint arXiv:1312.5845, 2013.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-
generation open source framework for deep learning. InProceedings of Work-
shop on Machine Learning Systems (LearningSys) in The Twenty-ninth Annual
Conference on Neural Information Processing Systems (NIPS), 2015. URL
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf .

Takahiro Wada, Shun’ichi Doi, Keisuke Imai, Naohiko Tsuru, Kazuyoshi Isaji, and Hiroshi Kaneko.
On driver’s braking behavior in car following. InSICE, 2007 Annual Conference, pp. 2396–2401.
IEEE, 2007.

Paul J Werbos. Backpropagation through time: what it does and how to do it.Proceedings of the
IEEE, 78(10):1550–1560, 1990.

9

