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ABSTRACT

Recurrent neural networks like long short-term memory (LSTM) are important ar-
chitectures for sequential prediction tasks. LSTMs (and RNNs in general) model
sequences along the forward time direction. Bidirectional LSTMs (Bi-LSTMs),
which model sequences along both forward and backward directions, generally
perform better at such tasks because they capture a richer representation of the
data. In the training of Bi-LSTMs, the forward and backward paths are learned
independently. We propose a variant of the Bi-LSTM architecture, which we call
Variational Bi-LSTM, that creates a dependence between the two paths (during
training, but which may be omitted during inference). Our model acts as a reg-
ularizer and encourages the two networks to inform each other in making their
respective predictions using distinct information. We perform ablation studies to
better understand the different components of our model and evaluate the method
on various benchmarks, showing state-of-the-art performance.

1 INTRODUCTION

Recurrent neural networks (RNNs) have become the standard models for sequential prediction tasks,
having achieved state of the art performance in a number of applications that includes sequence
prediction, language translation, machine comprehension, and speech synthesis (Arik et al., 2017;
Wang et al., 2017; Mehri et al., 2016; Sotelo et al., 2017). RNNs model temporal data by encoding
a given arbitrary-length input sequentially, at each time step combining some transformation of the
current input with the encoding from the previous time step. This encoding, referred to as the RNN
hidden state, summarizes all previous input tokens.

Viewed as “unrolled” feedforward networks, RNNs can become arbitrarily deep depending on the
input sequence length, and use a repeating module to combine the input with the previous state at
each time step. Consequently, they suffer from the vanishing/exploding gradient problem (Pascanu
et al., 2012). This problem has been addressed through architectural variants like the long short-term
memory (LSTM) (Hochreiter & Schmidhuber, 1997) and the gated recurrent unit (GRU) (Chung
et al., 2014). These architectures add a linear path along the temporal sequence which allows gradi-
ents to flow more smoothly back through time.

Various regularization techniques have also been explored to improve RNN performance and gen-
eralization. Dropout (Srivastava et al., 2014) regularizes a network by randomly dropping hidden
units during training. However, it has been observed that using dropout directly on RNNs is not as
effective as in the case of feed-forward networks. To combat this, Zaremba et al. (2014) propose to
instead apply dropout on the activations that are not involved in the recurrent connections (Eg. in
a multi-layer RNN); Gal & Ghahramani (2016) propose to apply the same dropout mask through
an input sequence during training. In a similar spirit to dropout, Zoneout (Krueger et al., 2016)
proposes to choose randomly whether to use the previous RNN hidden state.

The aforementioned architectures model sequences along the forward direction of the input se-
quence. Bidirectional-LSTM, on the other hand, is a variant of LSTM that simultaneously models
each sequence in both the forward and backward directions. This enables a richer representation of
data, since each token’s encoding contains context information from the past and the future. It has
been shown empirically that bidirectional architectures generally outperform unidirectional ones on
many sequence-prediction tasks. However, the forward and backward paths in Bi-LSTMs are trained
separately and the benefit usually comes from the combined hidden representation from both paths.
In this paper, our main idea is to create a dependence between the two paths that acts as a regulariza-
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tion during training, but doesn’t hinder inference even in the absence of the other path (the backward
path in practical scenarios). We note that recently proposed methods like TwinNet Serdyuk et al.
(2017) and Z-forcing Sordoni et al. (2017) are similar in spirit to this idea. In our approach, we use
a variational auto-encoder (VAE; Kingma & Welling (2014)) that takes as input the hidden states
from the two paths of the Bi-LSTM and maps them to a shared hidden representation of the VAE
at each time step. The samples from the VAE hidden state are then used both for reconstructing the
LSTM hidden states and feeding forward to the next hidden state. In this way, we create a channel
between the two paths that acts as a regularization for learning better representations. We refer to
the resulting model as a Variational Bi-LSTM.

Below, we describe Variational Bi-LSTMs in detail and then demonstrate empirically their ability
to model complex sequential distributions. In experiments, we obtain state-of-the-art or competitive
performance on the tasks of Penn Treebank, IMDB, TIMIT, Blizzard, and Sequential MNIST.

2 VARIATIONAL BI-LSTM

Bi-LSTM is a powerful architecture for sequential tasks because it models temporal data both in
the forward and backward directions. For this it uses two LSTMs that are generally learned inde-
pendently of each other; the richer representation results from combining the hidden states of these
LSTMs, where combination is often by concatenation. The idea behind variational Bi-LSTMs is to
create a channel of information exchange between the two LSTMs that helps the model to learn bet-
ter representations. We create this dependence using a variational auto-encoder (VAE). This enables
us to take advantage of the fact that VAE allows for sampling from a prior during inference. For
sequence prediction tasks like language generation, while one can use Bi-LSTMs during training,
there is no straightforward way to employ the full bidirectional model during inference – this would
involve, eg, generating a sentence starting at both its beginning and end. In such cases, the VAE
allows us to sample from the prior at inference time to make up for the absence of the backward
LSTM.

Now we describe our variational Bi-LSTM model formally. Let X = {x(i)}Ni=1 be a dataset con-
sisting of N i.i.d. sequential data samples of continuous or discrete variables. For notational con-
venience, we will henceforth drop the superscript i indexing samples. For each sample sequence
x = (x1, . . . ,xT ), the hidden state of the forward LSTM is given by:

ht =
−→
f (xt,ht−1, zt, b̃t).

The hidden state of the backward LSTM is given by,

bt =
←−
f (xt,bt+1).

In both cases, the function f represents the standard LSTM updates, modified to account for the
additional arguments.

In the forward LSTM model, we introduce three latent random variables, zt, b̃t, and h̃t−1, where
zt depends on ht−1 and bt during training, and b̃t and h̃t−1 depend only on zt (see figure 1-left,
for a graphical representation). Note that so far, b̃t and h̃t−1 are simply latent vectors drawn from
conditional distributions pψ and pξ, respectively, to be defined below. However, as explained in
Section 2.1 (see also dashed lines in figure 1-left), we will encourage these to lie near the manifolds
of backward and forward LSTM states, respectively.

By design, the joint conditional distribution over latent variables zt and b̃t with parameters θ and
ψ factorizes as pθ(zt|x1:t−1, z1:t−1)pψ(b̃t|zt). This factorization enables us to formulate several
helpful auxiliary cots, as defined in the next subsection. Further, pη(xt+1|x1:t, z1:t, b̃t) defines the
generating model, which induces the distribution over the next observation given the previous states
and the current input.
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Figure 1: Graphical description of our proposed variational Bi-LSTM model during train phase
(left) and inference phase (right). During training, each step t is composed of an encoder which
receives both the past and future summary via ht−1 and bt respectively, and a decoder that generates
h̃t−1 and b̃t which are forced to be close enough to ht−1 and bt using two auxiliary reconstruction
costs (dashed lines). This dependence between backward and forward LSTM through the latent
random variable encourages the forward LSTM to learn a richer representation. During inference,
the backward LSTM is removed. In this case, zt is sampled from the prior as in a typical VAE,
which in our case, is defined as a function of ht−1.

Then the marginal likelihood of each individual sequential data sample x can be written as

p(x; Γ) =

T∏
t=0

p(xt+1|x1:t) =

T∏
t=0

∫
z1:T

p(xt+1|x1:t, z1:t)pθ(zt|x1:t−1, z1:t−1)dz1:T

=

T∏
t=0

∫
z1:T

∫
b̃t

[
pη(xt+1|x1:t, z1:t, b̃t)pψ(b̃t|z1:t)pθ(zt|x1:t−1, z1:t−1)

]
db̃tdz1:T ,

(1)

where qφ(zt|x) is the conditional inference model and Γ = {φ,θ,ψ,η} is the set of all parameters
of the model. Here, we assume that all conditional distributions belong to parametrized families of
distributions which can be evaluated and sampled from efficiently.

Note that the joint distribution in equation (1) is intractable. Kingma & Welling (2014) demonstrated
how to maximize a variational lower bound, LΓ, of the data log likelihood instead, which is given
by

log p(x; Γ) ≥ LΓ =

T∑
t=0

E
z1:T∼qφ(z|x)

E
b̃t∼pψ(b̃t|zt)

[
log pη(xt+1|x1:t, z1:t, b̃t)

]
−DKL(qφ(zt|x)‖pθ(zt|x1:t−1, z1:t−1)),

(2)

where DKL is the Kullback-Leibler (KL) divergence between the approximate posterior and the
conditional prior (see the appendix). This is the approach we take.

2.1 TRAINING AND INFERENCE

In the proposed variational Bi-LSTM, the latent variable zt is inferred as

zt ∼ qφ(zt|(ht−1,bt)) = N (µq,t, diag(σ2
q,t)), (3)

in which [µq,t,σ
2
q,t] = fφ(ht−1,bt) where fφ is a multi-layered feed-forward network with Gaus-

sian outputs. We assume that the prior over zt is a diagonal multivariate Gaussian distribution given
by

pθ(zt|x1:t−1, z1:t−1) = N (µp,t, diag(σ2
p,t)), where [µp,t,σ

2
p,t] = fθ(ht−1), (4)

for a fully connected network fθ. This is important because, during generation (see Figure 1-right,
for a graphical representation), we will not have access to the backward LSTM. In this case, as in a
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VAE, we will sample from the prior for zt. Since we define the prior to be a function of ht−1, the
forward LSTM is encouraged during training to learn the dependency due to the backward hidden
state bt.

The latent variable b̃t is meant to model information coming from the future of the sequence. Its
conditional distribution is given by

pψ(b̃t|zt) = N (µb̃,t, diag(σ2
b̃,t

)), (5)

where [µb̃,t,σ
2
b̃,t

] = fψ(zt) for a fully connected neural network fψ (See Figure 1(a)). To encour-

age the encoding of future information in b̃t, we maximize the probability of the true backward
hidden state, bt, under the distribution pψ , as an auxiliary cost during training. In this way we treat
b̃t as a predictor of bt, similarly to what was done by Sordoni et al. (2017).

To capture information from the past in the latents, we similarly use h̃t−1 as a predictor of ht−1.
This is accomplished by maximizing the probability of the latter under the conditional distribution
of the former, log pξ(h̃t−1|zt), as another auxiliary cost, where

pξ(h̃t−1|zt) = N (µh̃,t, diag(σ2
h̃,t

)). (6)

Here, [µh̃,t,σ
2
h̃,t

] is the output of a fully-connected neural network fξ taking zt as input. The
auxiliary costs arising from distributions pξ and pψ teach the variational Bi-LSTM to encode past
and future information into the latent space of z.

We assume that parameters of the generating distribution pη(xt+1|x1:t, z1:t, b̃t) are computed via
MLP, taking the form of either a Gaussian distribution output in the continuous case or categorical
proportions output in the discrete (ie, one-hot) prediction case (See Figure 1(b)).

All the parameters in Γ and ξ are updated based on backpropagation through time (Rumelhart et al.,
1988) using the reparameterization trick (Kingma & Welling, 2014), where the gradients are com-
puted by differentiating of the following function:

L(x; Γ, ξ) =

T∑
t=0

E
z1:T∼qφ(z|x)

[
E

b̃t∼pψ(b|z1:t)

[
log p(xt+1|x1:t, z1:t, b̃t)+

α log pψ(bt|zt) + β log pξ(ht−1|zt)
]]
−

DKL(qφ(zt|x)‖pθ(zt|x1:t−1, z1:t−1)).

Here, α and β are non-negative real numbers. We improve training convergence with a trick for
the variational Bi-LSTM, which we refer to as skip gradient, meant to ease learning of the latent
variables. It is well known that autoregressive decoder models tend to ignore their stochastic vari-
ables (Bowman et al., 2015). Skip gradient is a technique to encourage that relevant summaries of
the past and the future are encoded in the latent space. The idea is to skip the gradient of the stochas-
tic operations with respect to the recurrent units through time. To achieve this, at each time step, a
mask drawn from a Bernoulli distribution governs whether to skip the gradient or to backpropagate
it for a given data point.

3 EXPERIMENTAL RESULTS

In this section demonstrate the effectiveness of our proposed model on several tasks. We present ex-
perimental results obtained when training the Variational Bi-LSTM on various sequential datasets:
Penn Treebank (PTB), IMDB, TIMIT, Blizzard, and Sequential MNIST. Our main goal is to en-
sure that the model proposed in Section 2 can benefit from a generated relevant summary of the
future that yields competitive results. In all experiments, we train all the models using ADAM
optimizer (Kingma & Ba, 2014) and we set all MLPs in Section 2 to have one hidden layer with
leaky-ReLU hidden activation. All the models are implemented using Theano (Theano Develop-
ment Team, 2016) and the code is available at https://anonymous.url.

Blizzard: Blizzard is a speech model dataset with 300 hours of English, spoken by a single female
speaker. We report the average log-likelihood for half-second sequences (Fraccaro et al., 2016). In
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our experimental setting, we use 1024 hidden units for MLPs, 1024 LSTM units and 512 latents.
Our model is trained using learning rate of 0.001 and minibatches of size 32 and we set α = β = 1.
A fully factorized multivariate Gaussian distribution is used as the output distribution. The final
lower bound estimation on TIMIT can be found in Table 1.

Table 1: The average of log-likelihood per sequence on Blizzard and TIMIT testset

Model Blizzard TIMIT

RNN-Gauss 3539 -1900
RNN-GMM 7413 26643
VRNN-I-Gauss ≥ 8933 ≥ 28340
VRNN-Gauss ≥ 9223 ≥ 28805
VRNN-GMM ≥ 9392 ≥ 28982
SRNN (smooth+resq) ≥ 11991 ≥ 60550
Z-Forcing (Sordoni et al., 2017) ≥ 14315 ≥ 68852
Variational Bi-LSTM ≥ 17319 ≥ 73315

TIMIT: Another speech modeling dataset is TIMIT with 6300 English sentences read by 630 speak-
ers. Like the work done in (Fraccaro et al., 2016), our model is trained on raw sequences of 200
dimensional frames. In our experiments, we use 1024 hidden units, 2048 LSTM units and 128 latent
variables, and batch size of 128. We train the model using learning rate of 0.0001, α = 1 and β = 0.
The average log-likelihood for the sequences on test can be found in Table 1.

Sequential MNIST: We use the MNIST dataset which is binarized according to (Murray &
Salakhutdinov, 2009) and we downloaded in binrized from (Larochelle, 2011). Our best model
consists of 1024 hidden units, 1024 LSTM units and 256 latent variables. We train the model using
a learning rate of 0.0001 and a batch size of 32. To reach the negative log-likelihood reported in
Table 2, we set α = 0.001 and β = 0.

Table 2: The average of negative log-likelihood on sequential MNIST

Models Seq-MNIST

DBN 2hl (Germain et al., 2015) ≈ 84.55
NADE (Uria et al., 2016) 88.33
EoNADE-5 2hl (Raiko et al., 2014) 84.68
DLGM 8 (Salimans et al., 2014) ≈ 85.51
DARN 1hl (Gregor et al., 2015) ≈ 84.13
BiHM (Bornschein et al., 2015) ≈ 84.23
DRAW (Gregor et al., 2015) ≤ 80.97
PixelVAE (Gulrajani et al., 2016) ≈ 79.02
Prof. Forcing (Goyal et al., 2016) 79.58
PixelRNN(1-layer) (Oord et al., 2016) 80.75
PixelRNN(7-layer) (Oord et al., 2016) 79.20
Z-Forcing (Sordoni et al., 2017) ≤ 80.09
Variational Bi-LSTM ≤ 79.78

IMDB: It is a dataset consists of 350000 movie reviews (Diao et al., 2014) in which each sentence
has less than 16 words and the vocabulary size is fixed to 16000 words. In this experiment, we use
500 hidden units, 500 LSTM units and latent variables of size 64. The model is trained with a batch
size of 32 and a learning rate of 0.001 and we set α = β = 1. The word perplexity on valid and test
dataset is shown in Table 3.

PTB: Penn Treebank (Marcus et al. (1993)) is a language model dataset consists of 1 million words.
We train our model with 1024 LSTM units, 1024 hidden units, and the latent variables of size 128.
We train the model using a standard Gaussian prior, a learning rate of 0.001 and batch size of 50 and
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Table 3: Word perplexity on IMDB on valid and test sets

Model Valid Test

Gated Word-Char 70.60 70.87
Z-Forcing (Sordoni et al., 2017) 56.48 65.68
Variational Bi-LSTM 51.43 51.60

Figure 2: Evolution of the average of log-likelihood during training of Variational Bi-LSTMs with
and without using skip gradient and auxiliary costs on PTB and Blizzard.

we set α = β = 1. The model is trained to predict the next character in a sequence and the final bits
per character on test and valid sets are shown in Table 4

Table 4: Bits Per Character (BPC) on PTB valid and test sets

Model Valid Test

Unregularized LSTM 1.47 1.36
Weight noise 1.51 1.34
Norm stabilizer 1.46 1.35
Stochastic depth 1.43 1.34
Recurrent dropout 1.40 1.29
Zoneout (Krueger et al. (2016)) 1.36 1.25
RBN (Cooijmans et al. (2016)) - 1.32
H-LSTM + LN (Ha et al. (2016)) 1.28 1.25
3-HM-LSTM + LN (Chung et al., 2016) - 1.24
2-H-LSTM + LN (Ha et al. (2016)) 1.25 1.22
Z-Forcing 1.29 1.26
Variational Bi-LSTM 1.26 1.23

4 ABLATION STUDIES

The goal of this section is to study the importance of the various components in our model to avoid
any triviality. The experiments are as follows:

1. Reconstruction loss on ht vs activity regularization on ht
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Figure 3: Evolution of the bits per character on PTB validation with sampling latent variables z
fromN (0, I) during training or using a fixed vector which we set to be the mean of latent variables.
Interestingly, not sampling from prior during inference does not hurt the final performance on PTB.

Table 5: Perplexity on IMDB using different coefficient γ for activity regularization

γ 0.001 1. 4. 8. 16.

Test perplexity 56.07 60.74 69.97 77.24 86.72

The authors of Merity et al. (2017) study the importance of activity regularization (AR) on the
hidden states on LSTMs given as,

RAR = γ‖ht‖22 (7)
(8)

However, since our model’s reconstruction term on ht can be decomposed as,

‖ht − h̃t‖22 = ‖ht‖22 + ‖h̃t‖22 − 2hTt h̃t (9)

we perform experiments to confirm that the gains in our approach is not due to the `2 regularization
alone since our regularization encapsulates an `2 term along with the dot product term.

We use activity regularization using hyperparameter α ∈ {0.001, 1, 4, 8, 16} in place of reconstruc-
tion term in our model and study the test perplexity. The results are shown in table 5. We find that
in all the cases performance using activity regularization is worse compared with our best model
shown in table 3.

Table 6: KL divergence of the Variational Bi-LSTM

Dataset PTB Seq-MNIST IMDB TIMIT Blizzard

KL 0.001 0.02 0.18 3204.71 3799.79

2. Use of parametric encoder prior vs. fixed Gaussian prior

In our variational Bi-LSTM model, we propose to have the encoder prior over zt as a function of
the previous forward LSTM hidden state ht−1. This is done to omit the need of the backward
LSTM during inference because it is unavailable in practical scenarios since predictions are made
in the forward direction. However, to study whether the model learns to use this encoder or not, we
record the KL divergence value of the best validation model for the various datasets. The results are
reported in table 6. We can see that the KL divergence values are large in the case of IMDB, TIMIT
and Blizzard datasets, but small in the case of Seq-MNIST and PTB. To further explore, we ran
experiments on these datasets with fixed standard Gaussian prior like in the case of traditional VAE.
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Interestingly we found that the model with fixed prior performed similarly in the case of PTB, but
hurt performance in the other cases, which can be explained given their large KL divergence values
in the original experiments.

5 RELATED WORK

Variational auto-encoders (Kingma & Welling, 2014) can be easily combined with many deep learn-
ing models. They have been applied in the feed-forward setting but they have also found usage
in RNNs to better capture variation in sequential data (Sordoni et al., 2017; Fraccaro et al., 2016;
Chung et al., 2015; Bayer & Osendorfer, 2014). VAEs consists of several muti-layer neural net-
works as probabilistic encoders and decoders and training is based on the gradient on log-likelihood
lower bound (as the likelihood is in general intractable) of the model parameters Γ along with a
reparametrization trick. The derived variational lower-bound LΓ for an observed random variable x
is:

log p(x) ≥ LΓ = E
qφ(z|x)

[
log

p(x, z)

qφ(z|x)

]
= E
qφ(z|x)

[
ln pθ(x|z)

]
−DKL(qφ(z|x)‖pθ(z)), (10)

whereDKL denotes the Kullback-Leibler divergence and pθ is the prior over a latent variable z. The
KL divergence tem can be expressed as the difference between the entropy of qφ and the prior and
fortunately, it can be computed and differentiated without estimation for some distribution families
like Gaussians. Although maximizing the log-likelihood corresponds to minimizing the KL diver-
gence, we have to ensure that the resulting qφ remains far enough from an undesired equilibrium
state where qφ is almost everywhere equal to the prior over latent variables. Combining recurrent
neural networks with variational auto encoders can lead to powerful generative models that are ca-
pable of capturing the variations in data, however, they suffer badly from this optimization issue as
discussed by Bowman et al. (2015).

Recently, VAEs have also been applied to Bi-LSTMs by Sordoni et al. (2017) through a technique
called Z-forcing. It is a powerful generative autoregressive model which is trained using the follow-
ing variational evidence lower-bound

L(x; θ, φ, ξ) =
∑
`

E
qφ(z`|x)

[
log pθ(xt+1|x1:t, z1:t)

]
−DKL(qφ(zt|x)‖(pθ(zt|x1:t−1, z1:t−1))

plus an auxiliary cost as a regularizer which is defined as log pξ(bt|zt). They show that the auxiliary
cost helps in improving the final performance; however during inference the backward reconstruc-
tions have not been used in their approach. In our ablation study section below, we show experi-
mentally that this connection is important towards improving the performance of Bi-LSTMs as is
the case in our model.

6 CONCLUSION

Variational Bi-LSTMs are powerful autoregressive generative models that are capable of learning
better representations by creating a channel to exchange the information of the past and the future.
Moreover, the conditional distribution over the backward LSTM variables is learned that can lead
to better learning results in practice. Furthermore, Variational Bi-LSTM model acts as a regularizer
and makes both networks be informative enough to perform well on different benchmark problems
taken from the literature.
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APPENDIX

A: Derivation of variation lower bound LΓ in equation (2) in more details:

log p(x; Γ) = log
[ T∏
t=0

∫
z1:T

∫
b̃t

[
pη(xt+1|x1:t, z1:t, b̃t)pψ(b̃t|z1:t)pθ(zt|x1:t−1, z1:t−1)

]
db̃tdz1:T

]
=

T∑
t=0

log
[ ∫

z1:T

pθ(zt|x1:t−1, z1:t−1)

∫
b̃t

[
pη(xt+1|x1:t, z1:t, b̃t)pψ(b̃t|z1:t)

]
db̃tdz1:T

]
=

T∑
t=0

log
[ ∫

z1:T

qφ(zt|x)
pθ(zt|x1:t−1, z1:t−1)

qφ(zt|x)

∫
b̃t

[
pη(xt+1|x1:t, z1:t, b̃t)pψ(b̃t|z1:t)

]
db̃tdz1:T

]
≥

T∑
t=0

∫
z1:T

qφ(zt|x) log
[pθ(zt|x1:t−1, z1:t−1)

qφ(zt|x)

∫
b̃t

[
pη(xt+1|x1:t, z1:t, b̃t)pψ(b̃t|z1:t)

]
db̃tdz1:T

]
=

T∑
t=0

∫
z1:T

[
qφ(zt|x) log(

pθ(zt|x1:t−1, z1:t−1)

qφ(zt|x)
)

+ qφ(zt|x) log
[ ∫

b̃t

[
pη(xt+1|x1:t, z1:t, b̃t)pψ(b̃t|z1:t)

]
db̃tdz1:T

]
=

T∑
t=0

[ ∫
z1:T

qφ(zt|x) log
[ ∫

b̃t

[
pη(xt+1|x1:t, z1:t, b̃t)pψ(b̃t|z1:t)

]
db̃tdz1:T

]
−DKL(qφ(zt|x)‖pθ(zt|x1:t−1, z1:t−1))

]
≥

T∑
t=0

[ ∫
z1:T

qφ(zt|x)

∫
b̃t

pψ(b̃t|z1:t) log
[
pη(xt+1|x1:t, z1:t, b̃t)

]
db̃tdz1:T

−DKL(qφ(zt|x)‖pθ(zt|x1:t−1, z1:t−1))
]

≈
T∑
t=0

E
z1:T∼qφ(z|x)

E
b̃t∼pψ(b̃t|zt)

[
log pη(xt+1|x1:t, z1:t, b̃t)

]
−DKL(qφ(zt|x)‖pθ(zt|x1:t−1, z1:t−1)),
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