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Abstract

Human ability estimation is essential for educational assessment, career advance-
ment, and professional certification. Adaptive Testing systems can improve estima-
tion efficiency by selecting fewer, targeted questions, and are widely used in exams,
e.g., GRE, GMAT, and Duolingo English Test. However, selecting an optimal
subset of questions remains a challenging nested optimization problem. Existing
methods rely on costly approximations or data-intensive training, making them
unsuitable for today’s large-scale and complex testing environments. Thus, we pro-
pose a Closed-Form solution for question subset selection in Adaptive Testing. It
directly minimizes ability estimation error by reducing ability parameter’s gradient
bias while maintaining Hessian stability, which enables a simple greedy algorithm
for question selection. Moreover, it can quantify the impact of human behavioral
perturbations on ability estimation. Extensive experiments on large-scale educa-
tional datasets demonstrate that it reduces the number of required questions by 10%
compared to SOTA methods, while maintaining the same estimation accuracy.

1 Introduction

Accurate assessment of human abilities plays a crucial role in education, career advancement, and
professional certification, directly influencing future opportunities. As a result, the demand for
effective and efficient assessment methodologies has grown significantly [1} [2}[3]. Traditional paper-
and-pencil tests require examinees to answer a large number of questions, leading to cognitive load
and inefficiency. In contrast, Adaptive Testing has emerged as a highly efficient ability estimation
approach and has been widely adopted in education systems, and has been successfully integrated
into various standardized testing systems [4} [5]].

The effectiveness of adaptive testing lies in a key insight: not all questions are equally valuable for
estimating ability. To achieve efficiency while maintaining accuracy, an adaptive testing system
relies on two key components: 1) Question selection algorithm — Identifying and selecting the most
informative subset of questions from the full question pool; 2) Item Response Theory (IRT) — A
psychometric framework [6] that models the relationship between an examinee’s latent ability 6 and
their observed responses (correct/incorrect). IRT serves as the “user model” for estimating ability
based on response data to the selected questions.
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From a machine learning perspective, the overall adaptive testing process can be formulated as a
subset selection problem that seeks to minimize the error of ability estimation [, 18]: Given a large
question pool V, selecting a question subset S C V for an examinee to answer such that the ability
estimate fg (inferred from responses to .S) is as close as possible to the true (or optimal) ability 6*:

gnglg 105 — 6%||, st Os=arg géiélz&w), (1)
€S
where ¢;(0) denotes the cross-entropy loss associated with the response to question 4, and 6 represents
the ability parameter modeled by IRT. Obviously, adaptive testing is a complex nested optimization
w.r.t. the subset variable S, requiring iterative updates: the outer loop selects the optimal subset
S (often represented as a sparse selection vector [8]]), while the inner loop estimates the ability
parameter via supervised learning.

Given its complexity, recent works often rely on data-driven meta-learning [9]], or reinforcement
learning [10l 2] to derive the question selection policy. However, these approaches introduce
significant computational overhead and may amplify biases present in the data [9]. Even latest
heuristic algorithms [[7 [11] still require approximating and matching gradients across the entire
ability parameter space ©, leading to prohibitively high complexity. These limitations are especially
critical in real-world online assessments, e.g., the Duolingo English Test, GRE Online, and remote
certifications, which involve massive item pools, diverse examinees, and complex user behavior.
These settings demand adaptive testing systems that are interpretable, robust, and efficient enough for
real-time operations [12, [13]].

To address these, this paper proposes a fundamental shift in the optimization paradigm of adaptive
testing. For the first time, we derive a closed-form solution for the unknown subset variable S,
referred to as CFAT (Closed-Form expression for Adaptive Testing). It allows us to directly solve
for the optimal subset without iterative sampling or complex nested optimization. Specifically,
we successfully quantify the ability estimation error and demonstrate that it can be interpreted as
minimizing the gradient bias while maintaining a stable Hessian structure. Furthermore, we prove
that the objective function exhibits approximate submodularity, enabling the use of a simple greedy
algorithm to efficiently select the subset.

Beyond improving question selection, such closed-form formulation allows us to quantify the impact
of human behavioral perturbations (e.g., guessing and slipping) on ability estimation. CFAT ultimately
enables a bias correction mechanism for more reliable assessments. By fundamentally shifting the
optimization paradigm of adaptive testing, CFAT uses statistical learning principles for efficient, direct
computation. Experiments on three educational datasets demonstrate that our method reduces the
number of required test questions by 10% compared to the best baseline, under the same estimation
accuracy. Moreover, CFAT achieves at least a 12x improvement in selection efficiency (computation
time) over latest methods. It can also exhibit higher robustness in high-noise scenarios, accurately
recovering ability estimates and improving prediction reliability.

2 Background and Related Works

Adaptive testing has been widely adopted in human ability assessment especially in education, and has
gradually been incorporated into high-stakes examinations. To achieve both accuracy and efficiency,
adaptive testing typically consists of two key components: IRT and question selection algorithms:

(1) Item Response Theory (IRT). IRT serves as a user model that captures the relationship between
an examinee’s ability and their responses [4]]. Widely used in various large-scale assessments such
as OECD/PISA, a common example is the two-parameter logistic (2PL) model, which defines the
probability of a correct response to question i as: p(correct) = o(c; (6 — ;)), where «; and 5;
represent the discrimination and difficulty parameters, respectively. These question parameters
are pre-calibrated [14], while the examinee’s ability 6 is estimated during testing. IRT models
are interpretable: higher ability implies higher probability of success on items of fixed difficulty.
Extensions include multidimensional IRT [[15]] and neural cognitive diagnosis models [16} 17, 18],
which capture more complex interactions. All these methods rely on maximum likelihood estimation
(minimizing cross-entropy loss) to estimate ability parameters from observed response data.

(2) Selection Algorithm. This is the core of achieving efficient assessment, as it determines a valuable
subset for estimating examinee ability in IRT. Traditional algorithms rely on statistical heuristics



based on information measures, such as Fisher information [14], KL information [[19] and various
improved information metrics [20} 21} 22], to guide selection. Alternatively, active learning methods
select informative questions based on question diversity and uncertainty [23]]. Recently, to directly
solve the nested optimizations, researchers have increasingly adopted data-driven approaches, e.g.,
reinforcement learning and meta-learning, to optimize subset selection [10} 9} [2,[8]]. These methods
iteratively train a policy (often represented as a neural network) from large-scale response data.

In this work, we aim to bypass the nested optimization by deriving a closed-form expression for
the estimation error w.r.t. the selected subset. It allows us to determine the optimal subset directly.
Compared to data-driven/neural network-based approaches, this statistical method eliminates the
need for extensive training. Compared to the latest gradient-based heuristic algorithms [7, [L1], it
incorporates second-order gradient (Hessian matrix) information, meanwhile, mitigating the impact
of guessing and mistakes on ability estimation. Furthermore, CFAT is up to 12x more efficient than
these SOTA heuristic methods, making it highly practical for real-time human assessments.

3 Method

Adaptive testing estimates ability efficiently by selecting a small, informative subset S C V' from a
larger question pool V. It can reduce test length while maintaining accuracy.

Problem Statement. Formally, an examinee responds to the selected subset S, producing

{(q1,91)s -, (@15, 915]) }> where S = {qi}gl C V is the question set selected by the adaptive
selection algorithm, and y; € {0, 1} denotes the response label, with 1 representing a correct response

and 0 otherwise. The examinee’s ability is then estimated by minimizing cross-entropy loss £ over S.

05 = argmﬁm‘ezs&(o) = arg mem; —log po(qi, i), ()

where pg(q;, y;) represents the probability of observing response (g;, y;) from an examinee with
ability 6. The precise form of pg depends on the IRT model. Assuming an examinee’s true latent
ability is denoted as 6*, one can theoretically approximate it by minimizing the expected cross-entropy
loss over the entire question pool: 0 = argming ),y £;(¢) [7]. The objective of adaptive testing
is to ensure that the estimated ability 65 from the subset is as close as possible to 6* (Figure [I):

Definition 1 (Definition of Adaptive Testing). Given a fixed test length T, the task is to select an
optimal subset S C V' such that the ability estimate 0 approximates the estimate 0*. The adaptive
testing task can be formulated to a nested optimization problem as follows::

in (65— 60"[|, st 0s=argminy_£(6). 3
min [l6s —6°ll, st 6 argm;ni;s () 3)

In the outer loop, the subset S can be generated using a selection policy 7 [10} 9} 2], or it can be
treated as a trainable indicator or sparse selection vector that determines question selection [§]. In
the inner loop, a base optimization algorithm estimates 6g using the responses on the selected .5,
following standard supervised learning principles.

While reinforcement/meta-learning methods have shown promise in adaptive testing [1]], they are
often computationally intensive due to multi-step gradient descent and repeated backpropagation.
This raises: Can we directly formulate ||0s — 0*| and optimize S without resorting to iterative
meta-optimization? If the effect of question selection on ability estimation can be explicitly modeled,
more efficient selection strategies may be possible.

3.1 Avoid the Nested Optimization Trap

The key challenge in reformulating is to establish a direct link between 6 — 6* and S, without relying
on an inner-loop optimization (arg min). To achieve this, we can simplify the problem by framing it
as an issue of parameter estimation under data reduction: Consider the pool V' as the full dataset for
estimation, while S is its selected subset. The problem then becomes: analyzing how removing a
subset Z (where S = V' \ Z) affects the estimated ability.
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Figure 1: Illustration of subset selection in adaptive testing. The full question pool V' is divided into
a selected subset .S and a remainder Z. The estimation error is approximated via first-order (gradient)
and second-order (Hessian) terms, capturing S’s representativeness and informativeness, respectively.

Measuring the Impact of Question Reduction on the Ability Estimator. Obviously, the most
direct approach would be to recompute/retrain the parameter estimate from scratch for each choice
of S, as done in the inner loop’s minimization in Eq.(2). But that is computationally prohibitive.
Thus, instead of outright removing questions from V', we down-weight their influence in the ability
estimation process. This leads to the definition of a perturbed estimator:

0% = argmln Z&(G) —72&(9), ())
|V| ev i€z

where Z is the set of down-weighted (or “removed”) questions, and v € [0,1/|V|]. This formulation

reduces the contribution of response to Z to the total loss, thereby approximating the effect of

excluding them from estimation. For a first-order approximation, we expand the gradient of the loss

function evaluated at §, using a Taylor expansion of Eq. around 6*. Since 6, is a minimizer, its
gradient is approximately zero:

W‘Zw (0%) =7 ) _VL(0") + <|V|Zv2£ 0*) WZv%(e*)) (0% —6%). (5)
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In particular, when we set Z = V'\ .S and choose v =
the ability estimate based on the subset .S, i.e., 9} = fg. Since 0* satisfies the optimality condition
> iev VLi(0%) = 0, we obtain:

0L — 0" =05 — 0" = —H'(8,0%) ) VLi(67), (6)
i€s

where H(S,60%) = ;.5 V2/;(6*) denotes the Hessian of the loss function for ability estimation,
and H ! denotes its inverse. Here, (S, §*) is invertible, which holds under standard regularity
conditions in IRT [} [11]. For complex neural network-based models, where computing the exact
Hessian is often intractable, we adopt a quasi-Newton approximation (details are provided in Ap-
pendix @) This result can be viewed as an extension of influence function theory [24} 25} 26]], which
originated in statistics in the 1970s. It characterizes how perturbations in the data affect an estimator.
Here, we approximate the effect of selecting a subset S without resorting to explicit re-optimization.

Closed-Form Expression of Estimation Error. The key takeaway is that the error in ability
estimation based on the selected subset S admits a closed-form expression (Figure [I)):

Lemma 1. Let the true ability parameter be 0*. When using IRT for ability estimation, the estimation
error based on any subset S C 'V can be directly computed as in Eq.(6). This allows for directly
optimizing the selection of S to minimize the estimation error without the need to recompute 0g:

first-order
———
Inln ||05 -0 = mln H'H (S,60%) ZVE 0*) H (7)
i€S

second-order

This reformulated objective directly quantifies the influence of the selected subset S on the estimation
error, bypassing the need for re-optimization of g in previous nested optimizations. The selection of
S balances two critical factors: simultaneously managing both bias minimization (first-order stability)
and conditioning of the Hessian (second-order stability):



Factor 1: First-Order Gradient Alignment. The term ), V/;(6*) captures the aggregate first-
order (gradient) contribution of the selected questions. If this sum deviates significantly from zero,
it introduces directional bias into the estimated parameter fg. Intuitively, the goal is to find a
subset whose gradients “agree” with those of the full question pool. This ensures that the subset is
representative of the entire pool in terms of gradient information, and does not skew the estimation.

Factor 2: Second-Order Information Control. The Hessian inverse, 1 (S, 0*), controls how the
subset’s curvature information influences estimation stability. The optimal subset must ensure that
the Hessian remains well-conditioned while retaining crucial second-order information to stabilize
parameter updates. Consider the case of IRT: the expected Hessian can be approximated by the
Fisher information Z, i.e., E[H(S,0)] ~ —>,. ¢ Z;(0) = — > .cga? - po(qi, 0) - po(gi, 1). This
suggests that it tries to find informative questions with high discrimination («) and maximum response
uncertainty, e.g., p(¢;, 1) = O.Eﬂ

Thus, the best subset is both diverse and informative—minimizing gradient bias while maintaining a
stable Hessian structure—leading to efficient and reliable estimation.

3.2 Approximate Optimization for Subset Selection

Based on the above reformulated objective, we aim to select a subset S' that minimizes the set function:
min f(S) = min ||H(S,6%) >,c5 V£ (6%)]|. This problem is combinatorial and generally NP-
hard. Exhaustively searching for the optimal subset is computationally infeasible for large pool due
to the exponential number of possible combinations.

Fortunately, we observe that this objective function exhibits a diminishing marginal gain property,
which aligns with the concept of submodularity [29]. Submodularity is a useful concept in combinato-
rial optimization problems that plays a crucial role in designing efficient approximation [30} 31} 32],
e.g., greedy algorithm. More precisely, the objective function f(S) is approximately submodular, a
property referred to as e-submodularity. This property implies that the incremental benefit of adding
an element x decreases as the set grows:

Theorem 1 (e-Submodularity of the Set Function). Estimating the ability 6 using IRT, the
loss function €(0) is u-strongly convex. Assume that the gradient norm and Hessian’s spec-
tral norm are bounded‘ IVoli(0)| < G and ||[V3;(0)| < H. The objective f(S)
||'H (8,0%) > icg VVE( H is e-submodular, and ¢ = 2%(2”‘;?) + “221‘{46‘72, i.e., for any subsets
ACBCV:

H H
2G(p+H) 2 G) ®

FAU L) - £ 2 FBUL) - 18) - (U 2T

The proofs can be found in Appendix The e = %;”H) + 227 Acl;g bound decreases as | A| increases.

This means the function becomes more submodular as the subset grows, which is intuitive—the
marginal benefit of adding a new question becomes more stable as more questions are already selected.
This bound provides theoretical justification for using greedy methods: if € is small (e.g., due to large
|Al]), greedy selection will be near-optimal even though the function is not strictly submodular.

Greedy Question Selection.  Given that the objective f(.S) is e-submodular, we can use a greedy al-
gorithm to iteratively construct an optimal subset S. The approximate submodularity property ensures
that a greedy selection achieves a near-optimal solution with theoretically bounded suboptimality.

For size-constrained minimization of f(S), a simple reverse greedy algorithm can be adopted. It
sequentially selects elements that yield the smallest marginal increase in f(.5). Specifically, it starts
with an empty subset Sy = (). At each step ¢, the question that minimizes the marginal gain is
selected, formally given by ¢; = argmingevs,_, (f(St—1 U {(q,%)}) — f(Si—1)). After selecting
g, the subset is updated as: Sy = S¢—1 U {(qt,y¢)}-

In practice, the parameter 6* is unknown and we use the estimate @' obtained from S;. The objective
function can be approximated: f(S | 6') = ||[H (S, 6") Y ,cq V4i(6)||. Meanwhile, the true

From the perspective of Active Learning, samples near the decision boundary—where the model is most
uncertain—are typically the most informative [27, 28]



labels y are also unobserved, we take the expectation over y, selecting the next question:

¢ = argmin E,[f(S;—1 U{qy}| 0" )] 9)
geEV\St_1

The sequential selection process continues until the selected questions reach a predefined maximum
size T', corresponding to the termination condition of the test. Based on the asymptotic unbiasedness
of MLE, we find an upper bound on the approximation error when substituting 6% for 6*.

Lemma 2 (Approximation Error). When using IRT for ability estimation, the function f(S) is
Lipschitz continuous w.r.t. 0. With probability at least 1 — 0, the approximation error incurred by

using 0" satisfies the upper bound: |f(S | 0') — f(S)| < (% + fﬂi) 5%, where 11, p2, M, H,

G, and C are model-dependent constants characterizing the properties of the objective function.

The proofs can be found in Appendix [Cl The substitution of 8* with 6% is justified due to the
consistency and asymptotic normality of estimators. According to this bounded approximation error
in Lemma the error introduced by estimating 6* diminishes at a rate of O(|S;|~'/2), ensuring the
robustness of the adaptive selection process.

3.3 Bias Correction in Ability Estimation: Guessing and Slipping

The idealized ability estimation above assumes that an examinee’s responses accurately reflect their
true ability. However, in practical testing, the observed response y may not correspond perfectly to
true ability due to guessing and slipping [1]. 1) Guessing: An examinee correctly answers a question
they should not have been able to solve purely by chance. For example, if a multiple-choice question
has three options, random guessing yields a 33.3% success probability; 2) Slipping: An examinee
fails to answer a question correctly despite having the ability to do so. It arises due to carelessness,
misreading, or other lapses.

Both factors induce label flipping in the observed responses y € {0, 1}, leading to biased ability
estimates 6g that contain unpredictable noise. This distortion can be explicitly quantified within
this CFAT framework: Consider a response (¢, y.,) affected by label flipping, resulting in the

incorrect label (g, 1 — ¥ ). The corresponding loss becomes: £, (6) = —(1 — yp,) log po(gm, 1) —
Ym 108 po(Gm, 0). After incorporating the flipped response, the new ability estimate on .S is: 0; (m) =
arg ming ﬁ Yicg li(0) — 4 (0) + vzm(ﬁ). Note that this also applies a weighted adjustment
rather than physically replacing the affected data. When v = ST the correction becomes equivalent
to a full replacement of the original response.

Applying a Taylor expansion around 6, similar to the derivations in Section 3.1 we approximate:

pe(qmv 1)
pO(QWm O) ’

where H(gm,0s) = V?*£,,(0s). The term AbOg(m) = Os(m) — Os provides a quantitative measure
of how a flipped response skews the estimate. Even if we cannot pinpoint the specific flipped samples,
analyzing the expected effect enables us to understand the direction and magnitude of the systematic
bias caused by response errors. See Appendix [Dfor a detailed derivation of Eq.(I0).

Os(m) = 05 + [H(S\ g, 05) + H(gm, 05)] (1 = 29,V log (10)

Thus, instead of relying on the potentially biased estimator g, we introduce a bias-corrected
ability estimate by subtracting the expected distortion: 65 — E[A0] = 05 — > o [7g(1 — ym) +
s ym] Abg(m), where , is the guessing probability, capturing the likelihood of obtaining a correct
response by chance, and 7, is the slipping probability, representing the likelihood of incorrect
responses despite having the requisite ability. The complete CFAT framework is shown in Algorithm [I]

4 Experiments

Evaluation Tasks. To assess the efficiency of question selection algorithms in adaptive testing, we
evaluate the accuracy of ability estimation under a fixed test length. Specifically, we compare the final
estimated ability g, where .S represents the selected question subset chosen by different selection
algorithms. The evaluation is conducted across two primary tasks [9}[7]]: 1) Student Performance
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Algorithm 1: The proposed framework CFAT
Require: V' - Question pool, pg - Parameterized probability model (IRT or neural network), 7
Guessing probability, 7 - Slipping probability

Initialize: Initialize the ability estimate §° and responses data Sy « 0.
fort =1to T do
Select the next question ¢; by minimizing the set function:

g = argmingey\s, , By f(Si—1U{q.y} [ 071).
Obtain the examinee’s response label y;: S; < S;—1 U {(qt, yt)}-
Update examinee’s ability estimate: 6 < argmingeg ;¢ £i(6)-
Apply bias correction to adjust for response errors:

0 0" =3 cs, [7g(L = Ym) + Tsym] Abs, (1m)

Output: The examinee’s ability estimate g = 67 using the responses on the selected S.

Prediction: Using the estimated 6, predicting students’ responses (correct/incorrect) on a held-out
test set and measure predictive performance using Accuracy and AUC; 2) Ability Estimation Error:
In a simulation setting, the ground-truth ability 6* is constructed and simulate students’ response
behavior duri2ng testing. We then compute the estimation error using the Mean Squared Error (MSE)
E|l0s — 07

Experimental Implementation Details. We set the maximum test length to |S| = T = 20,
consistent with typical adaptive tests. All methods are implemented in PyTorch and trained on a Tesla
V100 GPU. Hyperparameters are tuned via grid search, with batch size 64, learning rate 0.001, and
behavioral noise parameters 7, = 0.002, w; = 0.001. Optimization is performed using Adam.

Following [9} [1], we split examinees into 70% training, 20% validation, and 10% testing. The training
set is used to estimate question parameters and train some data-driven models. During validation and
testing, we simulate adaptive testing: Specifically, for the student performance prediction task, each
examinee’s responses are divided into a candidate set V; (for question selection and ability estimation)
and a meta set M; (for evaluation via Accuracy/AUC). At each step, a question is selected from V,
ability is updated, and performance is evaluated on M;. For ability estimation error, ground-truth
abilities 0 are estimated from full responses, allowing simulated examinees to answer any question
in V for direct error computation.

Datasets. We conduct experiments on three widely used educational testing benchmark datasets:
ASSIST, NIPS-EDU, and EXAM: ASSIST [33] is derived from the online educational platform
ASSISTments and contains examinees’ practice logs on mathematics; NeurIPS-EDU [34] originates
from the NeurIPS 2020 Education Challenge, comprising a large-scale dataset collected from exami-
nees’ responses to questions on Eedi, an educational platform. EXAM is a dataset from iFLYTEK
Co., Ltd. that records junior high school students’ performances on mathematical exams. The
implementation code is available on: https://github.com/54zy/CFAT,

Compared Approaches. For ability estimation, we consider both classical IRT model and neural
network-based approaches: NeuralCDM [33]], a flexible framework that generalizes various IRT and
cognitive diagnosis models, e.g., MIRT [36] and Matrix Factorization [37,138]]. The objective of our
experiments is to compare the proposed selection algorithm against existing selection methods in terms
of their impact on ability estimation. Thus, we evaluate the following SOTA algorithms as baselines:
Random Selection serves as a benchmark by selecting questions uniformly at random, providing a
reference for assessing the improvements achieved by other algorithms; Fisher Information [14] and
KL Information [[19] are classical methods that prioritize questions based on their informativeness;
MAAT [23]] uses active learning to balance uncertainty and diversity. BOBCAT [9] and UATS [8]]
apply meta-learning to solve the nested selection problem via cross-entropy minimization. NCAT
[10] and GMOCAT [2] frame selection as reinforcement learning, leveraging transformers and
GNN:s to train a data-driven selection policy. BECAT [[7] uses a greedy heuristic based on first-order
gradient approximation, between the selected subset and the entire question pool.


https://github.com/54zy/CFAT

Table 1: The performances on Student Performance Prediction. It reports ACC and AUC at 5th, 10th,
and 20th step (subset size). Panel 1 presents results based on the IRT model for ability estimation,
while Panel 2 uses a neural network-based model (NeuralCDM). Note that information/uncertainty-
based methods (e.g., Fisher) are not applicable to deep models. Bold values indicate statistically
significant improvements (p-value < 0.01) over the best baseline.

ASSIST (ACC/AUC) NIPS-EDU (ACC/AUC) EXAM (ACC/AUC)

@5 @10 @20 @5 @10 @20 @5 @10 @20

Random | 70.89/70.78 71.99/71.84 73.02/72.45 | 66.57/69.02 68.11/71.42 70.00/73.90 | 77.58/70.34 77.22/71.83  80.33/74.09
Fisher 71.87/71.22  72.63/72.30  73.11/73.56 | 67.70/70.62 70.59/73.51 71.23/76.33 | 77.35/70.51 79.75/72.25 83.03/75.90
KL 71.95/71.31  72.68/72.50 73.13/73.57 | 67.09/69.71 69.29/73.30 70.41/75.73 | 77.37/70.58 79.22/72.11 83.01/75.73
MAAT 72.11/71.24  72.03/72.38  73.20/73.05 | 66.44/69.31 69.10/71.12  69.27/73.40 | 75.27/70.32 77.99/72.12  80.12/73.67
BOBCAT | 72.33/71.72  72.56/72.18 73.78/73.31 | 69.55/74.41 70.99/75.66 71.71/76.44 | 80.61/68.29 83.81/72.02 83.44/72.82
NCAT 72.22/71.66  72.52/72.38 73.83/73.51 | 67.30/72.11 70.68/75.80 71.91/76.66 | 80.92/70.72 83.96/72.67 83.88/74.19
UATS 72.29/72.82  72.04/72.74 74.14/74.84 | 67.58/73.33  70.50/74.82 71.84/76.57 | 79.17/70.22 82.33/73.29 84.91/75.24
BECAT 71.92/71.34  73.01/72.73 73.96/73.63 | 66.98/73.15 71.61/75.85 72.00/76.82 | 80.93/70.74 83.80/72.88 84.20/75.03
CFAT 72.86/73.48 73.37/73.26 74.29/75.22 | 69.62/74.55 72.25/76.22 73.87/78.03 | 81.11/71.03 84.13/73.80 86.05/77.83

Method

ASSIST (ACC/AUC) NIPS-EDU (ACC/AUC) EXAM (ACC/AUC)

@5 @10 @20 @5 @10 @20 @5 @10 @20

Random | 71.21/71.02  72.53/72.08 72.51/72.83 | 67.13/69.39  68.42/71.51 70.59/74.93 | 79.80/72.48 78.33/74.52 79.31/78.22
MAAT 72.09/70.74  72.31/72.03  71.75/72.29 | 67.83/70.00  70.42/72.58  70.63/75.85 | 82.87/70.22 82.55/74.29  83.72/79.36
BOBCAT | 72.64/71.46  72.77/72.73  73.80/72.82 | 71.02/76.12  72.46/77.82  73.42/79.06 | 78.13/78.28 78.13/81.45 78.04/79.53
NCAT 72.29/71.64  72.62/72.34 73.92/73.56 | 70.43/74.12  72.84/77.92  73.44/79.09 | 82.33/78.54 83.13/81.46 81.44/79.35
UATS 73.02/72.32  72.92/73.05 73.16/72.73 | 71.87/75.13  73.13/78.12  74.14/79.70 | 81.26/77.12 82.46/80.92  83.79/80.82
BECAT 72.30/71.61  73.11/72.87 74.13/73.70 | 71.33/76.31 73.07/78.24  73.58/79.26 | 82.84/78.75 83.22/81.49 84.77/79.70
CFAT 74.13/72.92 73.45/73.98 74.53/74.38 | 71.20/76.19 74.43/78.38 74.72/81.77 | 83.33/80.98 84.12/82.87 85.12/81.66

Method

4.1 Experimental Results

We evaluate the proposed CFAT framework on two core tasks (i.e., student performance prediction
and ability estimation error) across three benchmark datasets.

Task 1: Student Performance Prediction: This task assesses the efficiency of ability estima-
tion in adaptive testing. Specifically, we compare the prediction accuracy of response labels (cor-
rect/incorrect) under different question selection strategies, where each algorithm selects the same
number of questions. As shown in Table [T} we report the AUC and ACC scores for each method
at the 5th, 10th, and 20th steps. The proposed CFAT consistently achieves the highest prediction
accuracy under limited question settings. Notably, simple greedy algorithm CFAT outperforms neural
network methods, e.g., reinforcement learning (NCAT) and meta-learning approaches (BOBCAT,
UATS), by an average margin of 2% in AUC.

These results support our central claim: formulating the subset selection problem with a closed-form
objective yields better performance than complex nested paradigm. Furthermore, CFAT outperforms
the gradient-based BECAT. It highlights the advantage of incorporating second-order information
(i.e., the Hessian matrix) over relying solely on first-order gradients. This superiority is observed both
theoretically and empirically at scale. Although our theoretical derivation is grounded in the classical
IRT model, the CFAT framework also demonstrates strong performance when applied to neural
network ability estimation models (Neural CDM). This suggests that our subset selection formulation
and its approximation are generalizable and extensible across different modeling paradigms.

Task 2: Ability Estimation Error: To evaluate the accuracy of ability estimation, we adopt a widely
used simulation protocol in adaptive testing. Specifically, we treat the ability estimate derived from
an examinee’s full response data, denoted as 6*, as the ground truth. During the testing process, this
ground-truth ability allows us to simulate response labels for any question, while the tested algorithms
only have access to observed response data and not the true ability. Figure [2]illustrates the estimation
error ||#* — 0*|| over the testing process, where 6° denotes the estimated ability at step . The results
show that our proposed CFAT achieves comparable estimation accuracy using only 30%—45% of the
questions required by random selection. Compared to recent SOTA methods (e.g., UATS), CFAT
reduces the number of required questions by at least 15%.

Although CFAT exhibits a relatively slower start in the early stages of testing, its estimation error
decreases rapidly as more questions are selected. This initial lag is somewhat less favorable compared
to other data-driven methods (e.g., meta learning) that are good at mitigating the cold-start problem
[39]. These empirical observations align well with the analysis in Theorem[I] which demonstrates
that the submodular nature guarantees the near-optimality of the greedy question selection algorithm
as the selected subset grows.
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Figure 3: Characteristics of selected questions across different methods. We randomly sample 10
examinees and compare the question subsets selected by CFAT with several SOTA baselines. The
distributions of question difficulty and discrimination parameters are visualized.

Analysis of Computational Efficiency and Subset Characteristics. We compare the computa-
tional efficiency of different question selection algorithms to assess their practical applicability
in large-scale testing (note: no acceleration techniques or engineering optimizations are applied).
Specifically, in Figure 2b), we report the average time required to select a single question. CFAT
demonstrates higher efficiency compared to SOTA methods e.g., MAAT and BECAT-achieving
approximately 12x speedup over BECAT. Notably, CFAT matches the speed of the classical Fisher
information method, while simultaneously delivering at least a 20% improvement in estimation
accuracy, as evidenced in Figure[Ja). Meanwhile, Figure [3]illustrates the characteristics of question
subsets selected by different methods, along with the true ability estimates §* of 10 randomly sampled
examinees. As shown, the questions selected by CFAT tend to have higher discrimination and are
well-aligned with the examinees’ ability levels (i.e., question difficulty closely matches ability). In
contrast, other methods often prioritize diverse questions, many of which are “outliers”—either too
easy or too difficult for the examinees. Such low-discrimination or mismatched questions tend to be
less informative and may hinder accurate ability estimation [40].

Reliability under Guessing and Slipping Noise.
In real-world scenarios, examinee’s responses may
be affected by guessing (label flipping 0 — 1) or slip-
ping (label flipping 1 — 0)[41]]. To model this, label
noise is introduced in above simulation by flipping
response labels with a certain probability. Table 2]
illustrates the estimation error across different algo-

Table 2: MSE for different selection algo-
rithms in ASSIST under varying levels of la-
bel perturbation (Step=20). Perturbation is
applied to the examinee’s response label. ‘No
Pert.” denotes MSE without any label noise.

rithms as the flipping probability increases. Previous —_Method | NoPert. 5% Pert. 10% Pert. 20% Pert.
approaches exhibit significant performance degrada-  random ‘ 03765 4%.3:02672) ( fd‘,‘191376|) ( :)dgéssll@
tion under noise. In contrast, CFAT consistently main- T Ry E————;

tains lower estimation error, outperforming its ablated " ‘ 03599 (400039)  (+0.1145)  (+02270)
version (CFAT w/o correction), which lacks the bias  pgcar ‘ 03607 03741 OdsL4 o 0.0008
correction term. Notably, under high noise levels (+O ‘2375) (; '295 6) (+O ‘3478)
(e.g., 20% label flipping), CFAT still achieves stable =~ SMOCAT ‘ 02322 (100053) (+0.0634)  (+0.1156)
and accurate ability estimates. These results empir- ~CFEAT | 50 0204 03121 04324

ically validate our theoretical analysis in Section[3.3] (wlo correction) (ﬁ)f;;? ”00‘210;529) (z)‘;:;;z)
highlighting the effectiveness of incorporating a cor- ~ CFAT ‘ 01738 (10.0040) (+0.0344)  (+0.1032)

rection term when estimating the ability 6.




5 Conclusion

This paper addresses the subset selection problem in ability estimation: how to select a small question
subset such that the estimated ability closely approximates the true ability. Instead of relying on the
traditional nested optimization paradigm, we derive a closed-form objective that allows for direct
optimization. It shows that a simple greedy algorithm can effectively solve this problem, and partially
correct the bias of the ability estimator. Extensive experiments demonstrate that it is computationally
efficient, yields more accurate ability estimates, better adapts to individuals, and remains robust under
high-noise conditions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions of the paper,
including the formulation of a closed-form objective for subset selection in ability estimation
and the development of an efficient greedy algorithm. These claims are supported by both
theoretical analysis and extensive empirical results, as detailed in Sections 3 and 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: As discussed in Section [3.1] the proposed theoretical results are derived under
the assumptions of IRT models, and may not directly hold for complex neural networks.
However, we address this limitation by employing quasi-Newton approximations (Appendix
[A). Additionally, as noted in Section while the computational cost of our method is not
best, it achieves the best overall accuracy among the compared approaches.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: See Appendix [B]and|[C]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Sectionfd] It provides all the details.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have uploaded the code to the anonymous link https://github.com/
54zy/CFAT (See Section [4).

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section ]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The main results (Figure [2(a)) in Section . 1] report the deviation over 10
repetitions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Figure 2[b) reports the time cost of each method.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work adheres to the NeurIPS Code of Ethics in all respects.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The item selection process in adaptive testing is inherently personalized, and
societal impacts such as fairness constitute a separate line of research within the field. Due
to the page limitation, we put it into Appendix

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

16


https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use the NIPS-EDU and ASSIST, which is publicly available under the CC

BY 4.0, MIT License. We have properly cited the original source in the paper and included
the version and URL where applicable.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new EXAM as part of this work. At submission time, all links
and files have been anonymized to preserve double-blind review.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Complete Algorithmic Procedure of CFAT

This section presents the complete optimization process of CFAT in practical adaptive testing. Algo-
rithm [2] provides a detailed illustration of the gradient-based ability estimation procedure. However,
during the actual question selection phase of CFAT, computing the inverse of the Hessian matrix is
required. While this is tractable for traditional IRT models, it becomes computationally infeasible
for neural network-based models due to the high dimensionality and complexity of their parameter
spaces. To address this, Algorithm [3|introduces an efficient approximation of the Hessian inverse
using a quasi-Newton method [42]). This enables the practical deployment of CFAT in neural network
settings, and forms the basis of our complete CFAT algorithm tailored for deep learning adaptive
testing systems.

Algorithm 2: Full Procedure of CFAT

Require: V' - Question pool, pg - Parameterized probability model (IRT or neural network), 7 -
Guessing probability, 74 - Slipping probability.
Initialize: Initialize the ability estimate #° and responses data Sy < ().
fort =1to 1 do
Select the next question ¢; by minimizing the set function:
@ = argmingeys, , By f(Se—1 U{q,y} | 071).
Obtain the examinee’s response label y;: Sy <— Si—1 U {(qs, y¢) }-
Initialize examinee’s ability estimate 0 <+ 6% ".
Update examinee’s ability estimate:
for k =1to K do
| Update 6}: 0}, < 0, —aV& (0] _,).
Apply bias correction to adjust for response errors:
| 03( — 9%( - Zmest [ﬂ'g(l - ywz) + Wsym]AQSt (m)
Output: The examinee’s ability estimate g = 6% using the responses on the selected S.

Algorithm 3: Full Procedure of CFAT (Approximate)

Require: V' - Question pool, pg - Parameterized probability model (IRT or neural network), 7 -
Guessing probability, 75 - Slipping probability, « - learning rate.

Initialize: Initialize the ability estimate §° and responses data Sy < (), the approximation of the

inverse of Hessian matrix H ;" © ¢ I and the examinee’s ability estimate 69.
fort =1to T do
Let H™! «+ 7—[1}1 =y and select the next question g; by minimizing the set function:
@ = argmingeys, , By f(Se—1 U{q,y} | 071,
Obtain the examinee’s response label y;: Sy < Si—1 U {(qs, y¢) }-
Initialize examinee’s ability estimate 6 < 6% *.
Update examinee’s ability estimate:
for k =1to K do
Calculate the search direction: dj, + —H; ', ® Y ies V0O ).
Update 0%: 0% <+ 0}, + ady.

Letuy, = 0f — 0, and v, <= >, oo VEi(0],) — >, cs V(0 _1).
Update the approximation of the inverse of Hessian matrix H:
1 I
0, o, waf HE oo
Hk — Hk—l + T - _1 (t)
U Vk vE ML v

Apply bias correction to adjust for response errors:
93( — 91}( - Zmest [77!](1 - ym) + Wsym]AGSt (m)
Output: The examinee’s ability estimate g = 6% using the responses on the selected S.
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B Proofs of Theorem 1

Theorem 1 (e-Submodularity of the Set Function). Estimating the ability parameter 0 using IRT,
the loss function ((0) is assumed to be p-strongly convex [[7]]. Assume that the gradient norm and
Hessian’s spectral norm are bounded by ||V ol;(0)|| < G and |V3¢;(0)|| < H. The subset selection

objective f(S) = |H71(S,0%) Y ;s VE:(07)|| is e-submodular; and e = 262(5‘1;{1) + H221|LIAC|;2’ ie.,
for any subsets A C B CV:

(1)

FAU{a}) = F(A) > f(BU{x}) - f(B) - <2G(“+H) 2HG >

+
12| Al 2 A2

Proof. Based on Lemmal[I] the objective function can be formulated as:

)

£(8) = HHl(S,f)*)ZV&(9*)

i€S

where 7(S,0) = 3,5 V2{;(0) is Hessian matrix.

We assume the following boundedness conditions on the loss function ¢;(#) over the set V: 1) The
gradient norm is upper-bounded: ||Vyl;(0)|| < G; 2) The spectral norm of the Hessian is also
bounded: ||[V24;(0)|| < H.

For IRT-based ability estimation, the loss function ¢(6) is known to be u-strongly convex [7].
As a result, the Hessian matrix satisfies: H(x,0) > pl,. This implies that all eigenvalues of
H(z,0) satisfy Apin(H(z,0)) > p. Considering the inverse Hessian matrix H(z, 0) ™!, we have
AH(x,0)71) = m. Thus, the largest eigenvalue of H(x, ) ! satisfies:

1 < 1
)\min(H(xa 0)) - :u

Since the spectral norm (2-norm) of a symmetric matrix is equal to its largest eigenvalue, we conclude:

Amax (H(z,0)71) = (12)

1
[H(z,0)~ | < o (13)

Define: Hs = H(S,0") as the Hessian of the current subset S. gg = >, .o V{;(0*) as the
cumulative gradient for the current subset. When we add a new element « to .S, the function gain is
given by:

Az, 8) = f(SU{z}) = (S) = [[(Hs + V5la(67)) " gs + Vola(07))|| — || Hs gs]|. (14

To prove that the function is e-submodular, we must show that for any subsets A C B C V, the
following inequality holds:

A(x,A) > A(xz,B) —e€, wheree > 0. (15)
For simplicity, we define AH = V3/,(6*) and Ag = Vg, (0*). Now, applying the first-order
approximation of the inverse matrix [43]:
(Hs + AH) P = HG' — HG'AHHG + O(|AH|?). (16)
Substituting this into Eq.(14) for A(z, S):
Az, S) ~ ||Hg'gs + Hg'Ag — Hg ' AHHG g5 — Hg'AHHG Ag|| - [[Hg'gs||. (D)
Using the triangle inequality, the gain associated with subset A satisfies:
Az, A) ~ [[Hy ga + Ha ' Ag — Ha AR ga — HL AHH L Ag|| — |[Ha 94|
> |[Hatga + Hy ' Agl| — | Ha ' AHHL g4 + HI AHH L Ag|| — ||Ha' 94|
> ([ gall = [1HA Agl| = M AHH gal| = [[HATAHHL Agl| = |13 94
= = [[Ha Agll = 5T AMHL ga| = [[Ha AR Ag (18)
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Using norm bounds, we can further estimate:

G HG HG

Az, A) > — - — .
(o A)2 =012~ eTa] ~ perap

19)

Similarly, for subset B, we obtain:

Az, B) = |[H5' g5 + Hp' Ag — M ' AHH G g5 — Hp' AHHG Ag|| — | HE 95|

<|[Hp'gnl + [#5" Mgl + |15 AHME g | + |75 AHHE Ag|| — |7y g5
G HG HG
< + + . (20)
plBl - Bl p? Bl
Since A C B, the difference:
2G(p+H) 2HG
Az, A) — A(z,B) > — - . 21
w2 Al w2 A2
Thus, the parameter € = 2(’152“‘;{{) + 521‘{ AC"YQ. This completes the proof. O

C Proofs of Lemma 2

Lemma 2. When using IRT for ability estimation, the function f(S) is Lipschitz continuous with
respect to 0. Furthermore, with probability at least 1 — 0, the approximation error incurred by using

0t satisfies the upper bound: |f(S | 0Y) — f(9)] < (% + %) 5%, where 11, po, M, H, G,

and C' are model-dependent constants characterizing the properties of the objective function.

Proof. We first should prove that f(S | 0) = H (Yies Vg&(@))_l Yics Vg&(G)H is Lipschitz
continuous with respect to 6, we analyze its sensitivity to small changes in 6.

Since the gradient V¢;(0) is continuously differentiable in 6, the Mean Value Theorem guarantees
the existence of some &; between 6, and 65 such that

Voli(61) — Voli(62) = Vili(&)(01 — 62). (22)
Assuming that || V2/;(6)| < H and taking the norm and summing over i € S gives

D Voli(01) = Y Vali(02)

i€S €S

<3 V26| 161 — 6ol < HISIIIOL — 6. (23)

i€S

Similarly, assuming ||Vi¢;(0)|| < M, there exists some 7; between 6; and 6 such that
> Vili(t) = > Vili(t:)
€S €S

Define: H(0) = >",. s Vali(0) and g(0) = >, 5 Voli(6). We analyze

< ST (IVEem)]| 16, — b2l < M|S||6y — 2]l (24)
€S

[F(S,01) — f(S.02)] = [I[H(61) " g(61) ]| — 1H(62)" "9 (62)]l|
< [H(01) " g(61) — H(02) " g(62)]
= | H(01) " g(01) — H(01) " g(02) +H(01) " g(02) — H(B2) " g(62)]]
< N#H(0) 7 (g(01) = 9(0) | + [(H(01) 7" = H(62)"N)g(B2)]. (25
For the first term, using matrix norm properties:
17£(61)7  (g(01) — g(0))I| < [ H(01) "I - [lg(61) — g(B2)]I- (26)

Assuming ||H(67) 7Y < ‘S| in a well-conditioned region (similar to Theorem 1), we obtain:

M) (9(61) — g(6a)]) < ;Hlnel 6. @7
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For the second term, using:
H(0) ' — ”H(92)’1 = H(01) " (H(02) — H(61))H(02) ",

and assuming ||H(62) 71| < , we obtain:

\S\u

I(H(01) ™ = H(02) " )g(02)]] < IHE) 7 IIIH(02) — HO)HG) " lg@)]. 28)

Using our previous bound ||H(62) — H(61)|| < M]|S|||61 — 6] and assuming ||g(#)| < |S|G ina
bounded region, we get:

MG
[(H(01) ™" = H(02) M) g(62)]| < T||91 — 02]]. (29)
Thus I MG
(S| 62) — £(S | 62)] < ( ) 161 — 6. (30)
i e

0" is obtained via Maximum Likelihood Estimation (MLE), we have: /|S:|(6% — 6*) 4
N(0,171(6*)), where I(6*) is the Fisher information matrix. This follows the asymptotic nor-
mality of MLE [44]]. This implies that, with high probability, the estimation error satisfies

6" — 6%| < ¢@) with probability at least 1 — 6, (31)

VI8

for some constant C'(§) depending on the trace and spectral norm of I~(6*). Since f(S]0) is
Lipschitz continuous in ¢, with probability at least 1 — 4,

H MG . H MG\ C(5)
S| e < ( ) ot — 0% < < ) 32
O R O B e reed L S (v By o B

This guarantees that for sufficiently large ||, the error introduced by using 6* in place of 6* is small
with high probability.

O
D Full Derivation of Bias-Corrected Estimate
We begin by defining the perturbed objective'
9;’,( ) = arg mm 5] 2&(0) — U (0) + 4 (6). (33)
i€S
Since Hg(m) minimizes the objective, it satisfies the first-order optimality condition:
= 1] Z V(0 1)) = YV (08 () + YV (0 1))- (34)

€S

We now apply a first-order Taylor expansion of the gradient around g:

|S|Zw (0s) — YVl (0s) + 7V (05)

€S

|5|ZV 0:(05) — YV, (03) + V20 (95)1 (eg(m)—es). (35)

€S
Choosing v = W and noting that s satisfies the original optimality condition . ¢ V/;(fs) = 0,
we simplify:
1 1 _~
0~ — Evgm(GS) + Evem(GS)
Z V20;(0s) + S L9200 (05) | (Bsmy — 05). (36)
zES\q

23



Let H(S\ ¢, 05) = Yics\g,, V>4i(0s), and H(gm, 05) = V2, (0s), we obtain:

~ -1 ~
O(m) — 05 ~ |H(S\ G, 05) + H(qm, 95)] (wm(as) - wm(as)) . 37)
Now, recall the definitions of the original and flipped losses:
U (0) = —Ym 10g po(gim, 1) — (1 = Ym) log po(gm. 0), (38)
Zm(e> = _(1 - ym) Inge(va 1) —Ym 1ng9(Qm7 O) (39

Taking the gradient difference:
Vi (0s) = Vim(0s) = V [=4m 108 pg(gm, 1) = (1 = Ym) 108 o (g, 0)]

— V [—(1 = ym)10og pg(gm: 1) — Ym l0g Po(qm., 0)]
pG(va 1)

— (1-24,)V1o . (40)
(1= 2ym) ® 16 (qm, 0)
Substituting back, we obtain the final expression:
=~ -1 po(gm, 1)
Os(m) =~ 0 S\ ¢m, 0 . 1—2y,,)Vlog ——=. 41
S(m) = 05 + [H( \ qm, 0s) +H(q s)} ( Ym) nge(qm,()) (41)

E Limitations and Broader Impact

Despite the promising results of CFAT, several limitations remain that open avenues for future
research. For example, while CFAT incorporates analytical corrections for guessing and slipping,
it assumes these behavioral perturbations follow simple, predefined patterns. In practice, examinee
behavior can be more complex and context-dependent. Future work could integrate richer cognitive
models or leverage response time, clickstream, or eye-tracking data to better capture behavioral
variability.

CFAT offers a scalable, interpretable, and computationally efficient solution for adaptive testing, with
potential for broad societal benefits:

* Democratization of High-Quality Assessment: By reducing the number of required questions
and computational overhead, CFAT can enable real-time, low-cost testing in low-resource
settings, such as developing countries, where infrastructure is limited.

* Fairer and More Inclusive Testing: The bias-correction mechanism in CFAT helps mitigate
the influence of irregular behaviors (e.g., guessing), potentially leading to fairer assessments
across diverse populations. This is particularly important in high-stakes testing scenarios,
where small inaccuracies can have significant consequences.

* Privacy: CFAT does not rely on large-scale user data or extensive training, reducing the need
for data collection and storage. This not only preserves user privacy but also reduces the
environmental footprint of deploying large-scale Al-driven assessment systems.
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