
Under review as a conference paper at ICLR 2017

TAMING THE WAVES: SINE AS ACTIVATION
FUNCTION IN DEEP NEURAL NETWORKS

Giambattista Parascandolo, Heikki Huttunen & Tuomas Virtanen
Department of Signal Processing
Tampere University of Technology
Tampere, Finland
{giambattista.parascandolo,heikki.huttunen,tuomas.virtanen}@tut.fi

ABSTRACT

Most deep neural networks use non-periodic and monotonic—or at least
quasiconvex— activation functions. While sinusoidal activation functions have
been successfully used for specific applications, they remain largely ignored and
regarded as difficult to train. In this paper we formally characterize why these
networks can indeed often be difficult to train even in very simple scenarios, and
describe how the presence of infinitely many and shallow local minima emerges
from the architecture. We also provide an explanation to the good performance
achieved on a typical classification task, by showing that for several network ar-
chitectures the presence of the periodic cycles is largely ignored when the learning
is successful. Finally, we show that there are non-trivial tasks—such as learn-
ing algorithms—where networks using sinusoidal activations can learn faster than
more established monotonic functions.

1 INTRODUCTION

Most activation functions typically used nowadays in deep neural networks—such as sigmoid, tanh,
ReLU, Leaky ReLU, ELU, parametric ReLU, maxout—are non-periodic. Moreover, these functions
are all quasiconvex, and more specifically either monotonic (sigmoid, tanh, ReLU, Leaky ReLU,
ELU) or piece-wise monotonic with two monotonic segments (parametric ReLU, maxout).

Monotonicity makes sense from an intuitive point of view. At any layer of a network, neurons learn
to respond to certain patterns, i.e. those that correlate with their weights; in case of monotonic func-
tions, to a stronger positive correlation corresponds a stronger (or equal) activation, and viceversa, to
a weaker positive correlation corresponds a weaker (or equal) activation. Neurons using piece-wise
monotonic functions with two monotonic segments can be viewed as two separate neurons, each
equipped with one of the two monotonic segments, and therefore independently looking for either
the positive or the negative correlation between the weights and the input.

Excluding the trivial case of constant functions, periodic functions are non-quasiconvex, and there-
fore non-monotonic. This means that for a periodic activation function, as the correlation with the
input increases the activation will oscillate between stronger and weaker activations. This apparently
undesirable behavior might suggest that periodic functions might be just as undesirable as activation
functions in a typical learning task.

But is this really the case? As shown in Section 2, there are several examples from the literature
where sinusoidal functions were successfully used in neural networks. Moreover, as noted already in
Gaynier & Downs (1995), networks using simple monotonic activation functions—such as sigmoids,
tanh, ReLU—tend to have smaller VC dimension than those using non-monotonic functions. More
specifically, even a network with a single hidden neuron using sinusoidal activation has infinite VC
dimension1.

Neural networks using sinusoidal activation functions have been regarded as difficult to train (La-
pedes & Farber (1987)) and have been largely ignored in the last years. There are a few questions

1I.e., it can correctly classify any set of points.

1



Under review as a conference paper at ICLR 2017

that naturally arise and make an analysis of deep neural networks using periodic activation functions
interesting:

• What makes them in theory difficult to train?

• Why do they still often manage to learn in practice?

• How does the learned representation differ from the one of similar quasi-convex functions?

• Are there tasks where periodic activation functions are more apt than quasiconvex ones?

In this paper we shed some light on these questions. In Section 2 we review relevant works on
the topic of periodic activation functions. Starting from a simple example, in Section 3 we show
what makes learning with sinusoidal activations a challenging task. In Section 4 we run a series
of corroborative experiments, and show that there are tasks where sinusoidal activation functions
outperforms more established quasi-convex functions. We finally present our conclusions in Section
5.

2 RELATED WORK

Periodic activation functions, and more specifically sinusoids, have received a tiny fraction of the
attention that the research community reserved to the more popular monotonic functions. One of the
first notions of a neural network with one hidden layer using sine as activation comes from (Lapedes
& Farber, 1987, pp. 25-26). The authors define it as a generalized Fourier decomposition, and while
recognizing the potential in their approximation capacity, they report that in their experiments these
networks often exhibited numerical problems or converged to local minima.

In Sopena et al. (1999) the authors show on several small datasets that a multi layer perceptron
with one hidden layer using sinusoids improves accuracy and shortens training times compared to
its sigmoidal counterpart. For similar networks, improvements are shown in Wong et al. (2002)
for a small handwritten digit recognition task and in McCaughan (1997) for the validity of logical
arguments.

Some works have concentrated on mixing periodic and non periodic activations. In Fletcher &
Hinde (1994) the authors propose to learn a coefficient that weighs each activation between sine and
sigmoid. More recently, in Gashler & Ashmore (2016) the authors used sinusoids, linear and ReLU
activations in the first layer of a deep network for time-series prediction.

Some theoretical results were presented in Rosen-Zvi et al. (1998), where the authors analyze the
learning process for networks with zero or one hidden layers, and sinusoidal activations in all lay-
ers. In Nakagawa (1995) the author shows that a chaotic neuron model using a periodic activation
function has larger memory capacity than one with a monotonous function.

Concerning recurrent neural networks (RNNs), in Sopena & Alquezar (1994) and Alquézar Mancho
et al. (1997) the activation function for the last fully connected layer of a simple RNN was sine
instead of sigmoid, which led to higher accuracy on a next-character prediction task. Choueiki
et al. (1997) and Koplon & Sontag (1997) used sinusoidal activations in a RNN for short-term load
forecasting and fitting sequential input/output data respectively. Liu et al. (2016) studied the stability
of RNNs using non-monotonic activation functions, trying also sinusoids along others. No work so
far—to the best of the authors’ knowledge—has investigated the use of periodic activation functions
in convolutional neural networks (CNNs).

A separate line of research has focused on networks that closely mimic Fourier series approxima-
tions, so called Fourier series neural networks (Rafajłowicz & Pawlak (1997); Halawa (2008)).
Here the hidden layer is composed of two parts: each input node is connected to an individual set
of hidden nodes using sines and cosines as activations. The input-to-hidden connections have in-
dependent and fixed weights (with integer frequencies 1...K) for each input dimension. Then, the
product is computed for each possible combinations of sines and cosines across dimensions. Af-
ter that, only the hidden-to-output connections—which correspond to the Fourier coefficients—are
learned. Despite the good theoretical properties, the number of hidden units grows exponentially
with the dimensionality of the input (Halawa (2008)), rendering these networks impractical in most
situations.

2



Under review as a conference paper at ICLR 2017

3 ANALYSIS OF SINUSOIDAL ACTIVATION FUNCTIONS

Let us start with a definition of the framework studied. In this section we analyze a deep neural
network (DNN) with one hidden layer and linear activation at the output. The network receives
as input a vector x—that has an associated target y—and computes an hidden activation h and a
prediction ŷ as

h = F(Wx+ bW) (1)
ŷ = Ah+ bA (2)

where W and A are weight matrices, bW and bA are bias vectors, and F is an activation function.
As noted already in previous works, there is a clear interpretation of the variables in the network
when F = sin, in terms of a Fourier representation. The weights W and the biases bW are re-
spectively the frequencies and phases of the sinusoids, while A are the amplitudes associated, and
bA the DC term. As shown in Cybenko (1989); Jones (1992) such a network can approximate all
continuous functions on C(In), i.e. on the n-dimensional hypercube.

3.1 LEARNING WITH SINES AND LOCAL MINIMA

We can encounter issues with local minima even when learning the network parameters to solve a
very simple optimization problem. Let us assume we are trying to learn the target function g(x) =
sin(νx) for −m < x < m and some frequency ν ∈ R. x is the input to the network, and for
this analysis we treat the case of continuous and uniformly distributed data, but we argue later in
the section that similar conclusions can be expected with a limited amount of randomly distributed
samples. By training a network with a single hidden neuron, fixed hidden-to-output connection
A = a = [1] and no biases, i.e. no phase nor DC term to learn, our problem is reduced to learning
the frequency ν as the weight W = [w].

Formally, we are minimizing the squared loss (sin(νx)− sin(wx))2. For a fixed choice of ν and m,
the loss landscape L(ν, w,m) wrt to w has the form

L(ν, w,m) =

∫ m

−m

(sin(νx)− sin(wx))2dx

= −2 sin (m (w − ν))
w − ν

+
2 sin (m (w + ν))

w + ν
− sin (2mw)

2w
+ c(ν,m)

(3)

where c(ν,m) is a constant term. As illustrated in Fig. 1, for a fixed choice of ν and m, the three
main terms in L(ν, w,m) are three cardinal sines (or sincs): the first is negative and centered at
w = ν, which is the only global minimum and where the loss is 0; the second term is positive and
centered at w = −ν, and is the only global maximum; the third sinc is negative and centered in
w = 0. The latter creates a local minimum for small values of w and large values of m and ν, where
the function expressed by the network is a constant sin(0) = 0.

−30 −20 −10 0 10 20 30
0

0.5

1

1.5

2

w

lo
ss

Figure 1: The loss surface when only the frequency ν = 10 of a sine needs to be learned. One of the
three sincs is centered in 0, the other two w = ±10.

We can already spot two culprits responsible for the difficulty of this learning problem:

3



Under review as a conference paper at ICLR 2017

(i) the deep local minimum centered in w = 0, produced by the sinc centeed in 0, which
“traps” small weights around zero

(ii) the infinitely many ripples created by all three sincs, each of which is a shallow local
minimum.

Also note that away from the main lobes the overall shape of the loss is almost flat, and therefore if
the optimization starts far from the global optimum the gradients will tend to be small.

Let us now make the result more general, by including again the amplitudes and bias terms, and
trying to learn a more complex function. After adding a bias/phase term to the neuron and to the
target function g(x) (b and φ respectively) and a hidden-to-output weight/amplitude term, (a and γ
respectively), we are trying to minimize (γ sin(νx+φ)− a sin(wx+ b))2. From the solution of the
integral, the equation describing the second summand in Eq. 3 gains a term aγ cos(b+φ), while the
third summand gains a term a2 cos(2b). Therefore all the sincs are still present (as shown in Fig. 2),
and so are the aforementioned side effects.

(a) y-axis is the phase b, x-axis the frequency w (b) y-axis is the amplitude a, x-axis the frequency w

Figure 2: The loss surface as a function of the network parameters when trying to learn g(x) =
1 sin(νx+0). Cold colors are smaller values. The local minima in the ripples generated by the sincs
are clearly visible.

Moreover, the local minimum centered in zero comes from the integral∫
sin2(wx)dx =

x

2
− sin(2wx)

4w
+ c, (4)

which appears after expanding the square of the sum and applying linearity to the integral in
L(ν, w,m). Note that this term is not related to the function to be learned g(x), nor to the fact
that there is a single hidden neuron, and therefore will always appear in any network with a single
layer of sinusoids trained using mean squared error.

Finally, since any function in the class that we are considering can be approximated to de-
sired precision using a finite sum of sinusoids g(x) ≈

∑M
i=0 γi sin(νix + φi), we can

turn our analysis to any target function g(x). The resulting function to be minimized[∑M
i=0 γi sin(νix+ φi)−

∑N
i=0 ai sin(wix+ bi)

]2
is again the square of the sum of multiple sinu-

soids. After squaring and applying linearity, every term will either be sin2(·) or sin(·) sin(·) (with
some amplitude terms). The former produces a sinc centered in zero, while the latter an odd pair of
sincs.

Despite all this, the problems we just described are typically not an issue for many tasks. Going
back to the example with a single sinusoid to learn, we can notice that the central local minimum
disappears when the frequency ν is small enough that the main lobe of the rightmost sinc incorpo-
rates the main lobe of the central sinc (see Fig. 3). This happens when the data has a frequency
representation with a large amount of low frequencies, which we assume to be often the case for
many realistic datasets. The size of the support m also has an effect on the width and depth of the
sincs. In a practical case at training time the integral is replaced by a sum—since only a limited
amount of training samples is available—, the sampling is typically not uniform, and there might
be noise in the data. Moreover, in the analysis we assumed that the loss surface (and therefore the

4



Under review as a conference paper at ICLR 2017

gradient) is calculated on the full training set, while in practice only mini batches of training samples
are typically used. All these factors can contribute to smooth the loss surface L, potentially making
the task easier to solve (see Fig. 3).

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

w

lo
ss

Figure 3: The loss surface when only the frequency of the target sinusoid needs to be learned, only
a set of non-uniformly distributed samples is available at training time, and for a low frequency ν of
the target function. Note that the central local minimum has disappeared.

On these premises, we can expect that learning will be difficult when g(x) has large high frequency
components (disjoint sincs). If network weights are initialized with small enough values, the weights
might remain trapped inside the local minima of the central sincs. For large initialization the network
might still be unable to find the global minimum due to the absence of overall curvature and the
presence of shallow local minima. The optimization will be hard also if g(x) has low frequency
components and the weights are initialized with large values. We speculate that a large initialization
of the weights, typical in the past, was the main reason why these networks were regarded as difficult
to train even with a single hidden layers.

Extending the analysis to deeper networks using sinusoids is not as simple. Already for two hidden
layers the resulting function is of the form sin(sin(·)), whose integral is not known analytically in
closed form.

3.2 INITIALIZATION AND USE OF PERIODICITY

As a consequence of the results presented in Section 3.1, the correct initialization range of the
weights using sine might be very different from the one used for other activation functions. If the
weights are very small, the sinusoid acts in its central linear region (Fig. 4).

While for inherently periodic tasks it is reasonable to assume that the network might indeed perform
better, several tasks analyzed in Section 2 are not clearly periodic. None of the aformentioned works
has analyzed the possibility that the network used mostly the monotonic segment of the sinusoid
around zero, which is very similar to the tanh (Fig. 4). Especially in the typical training scenario—
where the input data x is normalized to have zero mean and unit variance, and the network initializa-
tion is done using small weights W and zero biases—most pre-activations z = Wx+ b are likely
to be such that |z|< π/2.

In Section 4 we run a series of experiments to investigate if and how much a network trained using
sine as activation actually relies on the periodic part.

4 EXPERIMENTS

In this section we train several networks using sin as activation function on the MNIST and Reuters
dataset. We then investigate how much of the periodicity is actually used by replacing the activation
function in the trained network with the truncated sin, (abbreviated as tr. sin), defined as

tr. sin =


0, if − π/2 < x

sin(x), if − π/2 ≤ x ≤ π/2
1, if x > π/2

(5)

5



Under review as a conference paper at ICLR 2017

−4 −2 0 2 4

1.0

0.5

0.0

0.5

1.0

x

f
(x
)

tanh(x)

sin(x)

Figure 4: sin(x) and tanh(x) are very similar for −π/2 < x < π/2. The network might end
up using only this part of the sine, therefore treating it as a monotonic function and ignoring its
periodicity.

We also train the same networks using the monotonic function tanh for comparison. We then run
experiments on a couple of algorithmic task where the nature of the problem makes the periodicity
of the sinusoid potentially beneficial.

4.1 MNIST

We experiment with the MNIST dataset, which consists of 8-bits gray-scale images, each sized 28 x
28 pixel, of hand-written digits from 0 to 9. The dataset has 60,000 samples for training and 10,000
samples for testing. It is simple to obtain relatively high accuracy on this dataset, given that even a
linear classifier can achieve around 90% accuracy. Since the data is almost linearly separable, it is
reasonable to expect that using sine as activation function will not make much use of the periodic
part of the function. We test a DNN, a CNN and an RNN on this problem, using sine as activation
function, and compare the results to the same network trained using tanh.

On all experiment on MNIST we scale the images linearly between 0 and 1. All networks have an
output layer with 10 nodes, use softmax and are trained with cross-entropy as loss. The batch size
is 128 and the optimizer used is Adam (Kingma & Ba (2015)) with the hyper-parameters proposed
in the original paper.

DNN We use a DNN with 1 to 2 hidden layers, each with 256 hidden neurons. We initialize the
weights in all layers using a normal distribution with standard deviation σ in the set 1, 0.1, 0.01.
The input images are flattened to vectors of size 28× 28 = 784, which makes the task referred to as
permutation invariant MNIST. The networks are trained for 20 epochs.

RNN The input images are presented as a sequence of 28 rows, each containing 28 values, starting
from the top to the bottom. We use a RNN with 1 hidden layer with 128 hidden neurons. We
experiment separately with vanilla RNNs and LSTMs. When the latter are used with sine, the
function is used in place of the inner tanh activation. We initialize the weights in all recurrent layers
using a normal distribution with standard deviation of 0.1.

The DNN results are reported in Table 1. As expected, replacing the activation from tanh to trun-
cated sin does not affect much the results. For this reason we will not report this value on the
following tables. For the same reason, switching sin to either tanh or to truncated sin has almost
the same effect, so we will only report the latter from here onwards. When using small values of
σ = {0.1, 0.01} for the initialization, all networks equipped with sines obtained very similar results
to the networks trained with tanh. Even though for these networks between 27% to 47% of the acti-
vations fall outside of the range [−π/2, π/2], replacing sin with tr. sin does not reduce the accuracy
by more than 2.5%. We can therefore conclude that the network is ignoring for the most part the
periodicity of the function. On the contrary, the tanh is more significantly relying on the saturated
part, and as σ increases so does the drop in the accuracy when switching the activation function to
sine (reaching random guessing accuracy for σ = 1).

6



Under review as a conference paper at ICLR 2017

As expected from the results presented in Section 3, the networks with sine had difficulty to converge
for large initialization σ = 12. Also notice that adding weight decay allowed the same network with
1 hidden layer to converge, reaching a solution that scarcely uses the periodic part of the function.
Finally, results show that even for deeper networks with eight hidden layers, sinusoid can learn
the task quite effortlessly, and still does so scarcely relying on the segment of the function outside
[−π/2, π/2].
A somewhat similar but less evident behavior emerged from the RNNs, as shown in Table 2. Espe-
cially for the LSTMs, the network using tanh relied on larger pre-activations much more than the
network using sin.

Table 1: MNIST results for DNNs. For each row, we train a network using either tanh or sin and
report the results on the test data. We then replace the activation in the trained models with the one
followed by→, and directly recompute the accuracy on the test set without retraining the networks.
The last column reports the percentage of hidden activations for the sin networks that exceeds the
central monotonic segment of the sinusoid.

Network tanh tanh→ tr. sin tanh→ sin sin sin→ tanh sin→ tr. sin %|z|> π/2

DNN 1-L init 0.01 98.0 98.1 98.0 98.0 95.2 95.6 38%
DNN 2-L init 0.01 98.2 98.2 81.4 98.2 95.1 95.6 27%, 48%
DNN 1-L init 0.1 98.1 98.1 78.1 98.1 96.1 96.3 47%
DNN 2-L init 0.1 98.2 98.2 81.3 98.1 96.1 96.5 29%, 47%
DNN 1-L init 1 95.6 95.5 10.0 16.9 13.6 13.8 86%
DNN 2-L init 1 92.8 92.5 10.0 10.0 10.0 10.0 -

DNN 1-L init 1, 10−4L2 96.8 92.5 10.0 97.7 96.0 96.1 14%
DNN 8-L init 0.1 97.8 97.8 59.5 97.0 92.7 93.7 all ≈40%

Table 2: MNIST results for RNN and LSTM.

Network tanh tanh→ sin sin sin→ tr. sin

RNN init 0.1 96.3 81.3 97.4 94.1
LSTM init 0.1 97.3 77.6 97.2 93.7

Similar experiments with the Reuters dataset (ref) showed the same behavior, as seen in table 3.
Each sequence of words corresponding to a data sample from the dataset is first converted to a
vector of size 1000, where the ith entry represents the amount of times that the ith most frequent
word in the dataset appears in the sentence. The DNN has 128 hidden neurons, networks are trained
for 20 epochs and test results are computed on a held-out 20% of the data.

Table 3: Reuters results for DNNs. On the training data all the original architectures — i.e. without
changing the activation function after training — reach an accuracy > 90%

Network tanh tanh→ sin sin sin→ tr. sin

DNN 2-L init 0.01 75.9 71.6 76.1 76.3
DNN 2-L init 0.1 77.0 76.0 77.3 77.9
DNN 2-L init 1 61.6 3.2 16.4 8.5

4.2 LEARNING ALGORITHMIC TASKS

We test the networks using sine as activation on a couple of algorithmic tasks, such as sum or
difference of D-digits numbers in base 10. In both tasks the data is presented as a sequence of
one-hot encoded vectors, where the size of the vector at each timestep is 12: the first 10 entries
correspond to the numbers from 0 to 9, the last two entries correspond to the operator symbol—‘+’

2The network with sin, 1-L and σ = 1 reaches an accuracy of 40% on the training data after 20 epochs and
83% after 1000 epochs. With two hidden layers it has random guessing accuracy on the training data after 20
epochs, and after 100 epochs 100% accuracy on training data and random guessing accuracy on test data.

7



Under review as a conference paper at ICLR 2017

or ‘−’ in case of sum or difference respectively—and the ˙blank˙ symbol used for padding. The
length of an input sequence is D + 1 +D, while the output sequence has length D + 1. If a string
is shorter than the total length, the remaining entries are padded with the ˙blank˙ symbol.

For the task sum (difference) the network is expected to produce the result of the sum (difference) of
two positive integers fed as input. We run experiments with the number of digits D = 8. The order
of the digits of each number is inverted, which was shown to improve the performance in several
tasks using encoder-decoder (ENC-DEC) architectures.

We use an encoder-decoder architecture based on vanilla RNN or LSTM. The networks have 128
hidden units in every layer, one recurrent layer for encoding and one recurrent layer for decoding.
The decoder has also a fully connected output layer with softmax at each step. The encoder ”reads”
the input sequence one symbol at a time and updates its hidden state. At the end of the input
sequence, the hidden state from the encoder is fed at each step for D + 1 times as input to the
decoder. The decoder produces the output, one digit at a time.

The networks are trained for 5000 iterations3 using Adam as optimizer, cross-entropy as loss and a
batch size of 128. The feed-forward and recurrent weights are initialized using a normal distribution
with the widely used schemes proposed in Glorot & Bengio (2010) and Saxe et al. (2013) respec-
tively, we clip gradients at 1 and decay the learning rate by 10−5 at every iteration. Samples are
generated at each iteration and we do not use a separate validation or test set, since the number of
possible samples is so large that overfitting is not an issue. The accuracy for a given prediction is 1
only if every digit in the sequence is correctly predicted. The results reported in Fig. 5 are computed
at every iteration on the newly generated samples before they are used for training.

0 1000 2000 3000 4000 5000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

ENC-DEC on sum with 8 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

0 1000 2000 3000 4000 5000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

ENC-DEC on dif with 8 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

Figure 5: Accuracy curves of the ENC-DEC LSTM and RNN using sine or tanh. The number of
digits for each sequence is sampled uniformly in {1, ..., D}. For uniform sampling of the addends
in {0, ..., 10D−1}—which prevents small addends to appear very often—the experiments are in the
appendix.

The networks using sine learn the tasks faster and with higher accuracy than those using tanh. While
in vanilla RNNs the difference is quite evident, the improvement is less striking for the LSTM. In
all the models switching the activation from sine to truncated sine, or from tanh to sine brings the
accuracy almost to 0, indicating that the network is effectively using the periodic part of the function.

5 CONCLUSIONS

Neural networks with a single hidden layer using sinusoidal activation functions have been largely
ignored and regarded as difficult to train. In this paper we analyzed these networks, characterizing
the loss surface, and showing in what conditions they are especially difficult to train. By looking into
the hidden activations of networks succesfully trained on a simple classification task, we showed that
when learning is successful the networks often scarcely rely on the periodicity of the sinusoids.

Finally, we showed on a pair of simple algorithmic tasks where the periodicity is intuitively ben-
eficial, that neural networks using sinusoidal activation functions can potentially learn faster and
better than those using established monotonic functions on certain tasks. This encourages future

3Here we refer to one iteration as the processing of 128 minibatches.

8



Under review as a conference paper at ICLR 2017

work to investigate the use of periodic functions, the effect at different layers, and the potential of
incorporating these functions in other models using quasi-convex functions.

ACKNOWLEDGMENTS

The authors wish to acknowledge CSC IT Center for Science, Finland, for computational resources.

REFERENCES

René Alquézar Mancho et al. Symbolic and connectionist learning techniques for grammatical
inference. 1997.

M Hisham Choueiki, Clark A Mount-Campbell, and Stanley C Ahalt. Implementing a weighted least
squares procedure in training a neural network to solve the short-term load forecasting problem.
IEEE Transactions on Power systems, 12(4):1689–1694, 1997.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

GP Fletcher and CJ Hinde. Learning the activation function for the neurons in neural networks. In
ICANN94, pp. 611–614. Springer, 1994.

Michael S Gashler and Stephen C Ashmore. Modeling time series data with deep fourier neural
networks. Neurocomputing, 188:3–11, 2016.

RJ Gaynier and T Downs. Sinusoidal and monotonic transfer functions: Implications for vc dimen-
sion. Neural networks, 8(6):901–904, 1995.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Aistats, volume 9, pp. 249–256, 2010.

Krzysztof Halawa. Fast and robust way of learning the fourier series neural networks on the basis of
multidimensional discrete fourier transform. In International Conference on Artificial Intelligence
and Soft Computing, pp. 62–70. Springer, 2008.

Lee K Jones. A simple lemma on greedy approximation in hilbert space and convergence rates for
projection pursuit regression and neural network training. The annals of Statistics, pp. 608–613,
1992.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
conference on learning representations, 2015.

Renée Koplon and Eduardo D Sontag. Using fourier-neural recurrent networks to fit sequential
input/output data. Neurocomputing, 15(3):225–248, 1997.

Alan Lapedes and Robert Farber. Nonlinear signal processing using neural networks: Prediction
and system modelling. Technical report, 1987.

Peng Liu, Zhigang Zeng, and Jun Wang. Multistability of recurrent neural networks with non-
monotonic activation functions and mixed time delays. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 46(4):512–523, 2016.

David B McCaughan. On the properties of periodic perceptrons. In Neural Networks, 1997., Inter-
national Conference on, volume 1, pp. 188–193. IEEE, 1997.

Masahiro Nakagawa. An artificial neuron model with a periodic activation function. Journal of the
Physical society of Japan, 64(3):1023–1031, 1995.

E Rafajłowicz and M Pawlak. On function recovery by neural networks based on orthogonal expan-
sions. Nonlinear Analysis: Theory, Methods & Applications, 30(3):1343–1354, 1997.

Michal Rosen-Zvi, Michael Biehl, and Ido Kanter. Learnability of periodic activation functions:
General results. Physical Review E, 58(3):3606, 1998.

9



Under review as a conference paper at ICLR 2017

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

JM Sopena and R Alquezar. Improvement of learning in recurrent networks by substituting the
sigmoid activation function. In ICANN94, pp. 417–420. Springer, 1994.

Josep M Sopena, Enrique Romero, and Rene Alquezar. Neural networks with periodic and mono-
tonic activation functions: a comparative study in classification problems. In Artificial Neural
Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470), volume 1,
pp. 323–328. IET, 1999.

Kwok-wo Wong, Chi-sing Leung, and Sheng-jiang Chang. Handwritten digit recognition using
multilayer feedforward neural networks with periodic and monotonic activation functions. In
Pattern Recognition, 2002. Proceedings. 16th International Conference on, volume 3, pp. 106–
109. IEEE, 2002.

10



Under review as a conference paper at ICLR 2017

A APPENDIX

We report here similar experiments to Section 4.2 but using uniform sampling of the addends, instead
of uniform sampling of the number of digits of each addend.

As shown on the left plots in Fig. 6, for D = 8 the networks using sin learn faster and reach higher
accuracy than the network using tanh. For the case of D = 16 and 3 recurrent layers in the encoder,
sine reaches almost 80% accuracy, while tanh never takes off in the 5000 epochs of training. A
similar behavior emerges on the task dif, as shown in Fig. 7, although with overall lower accuracy
and with none of the networks successfully learning the task with D = 16. Surprisingly, the LSTMs
almost completely fail to learn the tasks under these training setting.

0 1000 2000 3000 4000 5000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

ENC-DEC on sum with 8 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

0 1000 2000 3000 4000 5000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

ENC-DEC on sum with 16 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

0 1000 2000 3000 4000 5000

iterations

10-3

10-2

10-1

100

101

lo
ss

ENC-DEC on sum with 8 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

0 1000 2000 3000 4000 5000

iterations

10-1

100

101

lo
ss

ENC-DEC on sum with 16 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

Figure 6: Accuracy and loss curves of the ENC-DEC RNN using sine or tanh, for the task sum with
8 or 16 digits per addend. The digits are sampled uniformly.

0 1000 2000 3000 4000 5000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

ENC-DEC on dif with 8 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

0 1000 2000 3000 4000 5000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

ENC-DEC on dif with 16 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

0 1000 2000 3000 4000 5000

iterations

10-2

10-1

100

101

lo
ss

ENC-DEC on dif with 8 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

0 1000 2000 3000 4000 5000

iterations

100

101

lo
ss

ENC-DEC on dif with 16 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

Figure 7: Accuracy and loss curves of the ENC-DEC RNN using sine or tanh, for the task dif with
8 or 16 digits per addend. The digits are sampled uniformly.

11



Under review as a conference paper at ICLR 2017

More hidden neurons When the number of hidden units is doubled from 128 to 256, the standard
LSTM using tanh as activation learns faster and reaches higher accuracy than the network trained
with sine, while the vanilla RNN using sin still outperforms both the vanilla RNN and the LSTM
using tanh. These results are reported in Fig. 8 for the case of D = 8 only, since for D = 16
all networks are stuck at zero accuracy. Further investigation would be required to explain how
doubling the amount of neurons in the tanh LSTM changed the learned representation, providing
such a boost in performance.

0 1000 2000 3000 4000 5000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

ENC-DEC on sum with 8 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

0 1000 2000 3000 4000 5000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

ENC-DEC on dif with 8 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

Figure 8: Accuracy curves of the ENC-DEC RNN using sine or tanh, for the tasks sum and dif with
8 digits per addend. The digits are sampled uniformly.

Curriculum learning experiments For the D = 16 case, we also experiment with a curriculum
learning approach: while keeping the length of the input and output sequences fixed to 16+1+16 and
17 respectively, we start training by limiting the maximum number of digits to D = 8 and increase
D by 2 every 1000 iterations, so that by the 4000th iteration D = 16. As shown in Fig. 9, by using
this approach the network using sine as activation function reaches an accuracy close to 1 by the end
of the training. As shown by the steep drops in performance when D is increased, the network has
only learned to correctly perform the operation within the number of digits it was trained upon, but
it can adapt very quickly to the longer addends. The network using tanh takes more time to learn the
case with D = 8 and after that does not adapt to larger number of digits.

0 1000 2000 3000 4000 5000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

ENC-DEC on sum with 16 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

0 1000 2000 3000 4000 5000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

ENC-DEC on dif with 16 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

0 1000 2000 3000 4000 5000

iterations

0.0

0.5

1.0

1.5

2.0

2.5

lo
ss

ENC-DEC on sum with 16 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

0 1000 2000 3000 4000 5000

iterations

0.0

0.5

1.0

1.5

2.0

2.5

lo
ss

ENC-DEC on dif with 16 digits

sin RNN

tanh RNN

sin LSTM

tanh LSTM

Figure 9: Accuracy and loss curves of the ENC-DEC RNN using sine or tanh, for the tasks sum and
dif. D starts from 8 and increases by 2 every 1000 iterations until it reaches 16 digits per addend at
iteration 4000.

12


	Introduction
	Related work
	Analysis of sinusoidal activation functions
	Learning with sines and local minima
	Initialization and use of periodicity

	Experiments
	MNIST
	Learning algorithmic tasks

	Conclusions
	Appendix

