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Abstract

Recurrent neural networks (rnns) are powerful models of sequential data. They
have been successfully used in domains such as text and speech. However, rnns
are susceptible to overfitting; regularization is important. In this paper we develop
Noisin, a new method for regularizing rnns. Noisin injects random noise into
the hidden states of the rnn and then maximizes the corresponding marginal like-
lihood of the data. We show how Noisin applies to any rnn and we study many
different types of noise. Noisin is unbiased—it preserves the underlying rnn on
average. On language modeling benchmarks, Noisin improves over dropout by as
much as 12.2% on the Penn Treebank and 9.4% on the Wikitext-2 dataset.

1 Overview

Recurrent neural networks (rnns) are powerful models of sequential data (Robinson & Fallside,
1987; Werbos, 1988; Williams, 1989; Elman, 1990; Pearlmutter, 1995). rnns have achieved state-
of-the-art results on many tasks, including language modeling (Mikolov & Zweig, 2012; Yang et al.,
2017), text generation (Graves, 2013), image generation (Gregor et al., 2015), speech recognition
(Graves et al., 2013; Chiu et al., 2017), and machine translation (Sutskever et al., 2014; Wu et al.,
2016).

However rnns are very flexible and they overfit; regularization is crucial. Many techniques have
been developed to address overfitting in rnns. Some are based on normalization (Ioffe & Szegedy,
2015; Ba et al., 2016; Cooijmans et al., 2016) and others—including what we study in this paper—
involve auxiliary noise variables. The most successful noise-based regularizer for neural networks
is dropout (Srivastava et al., 2014; Wager et al., 2013; Noh et al., 2017; Zaremba et al., 2014; Gal &
Ghahramani, 2016). Still other noise-based regularization prunes the network by dropping updates
to the hidden units of the rnn (Krueger et al., 2016; Semeniuta et al., 2016). More recently Merity
et al. (2017) extended these techniques.

Involving noise variables in rnns has been used in contexts other than regularization. For example
Jim et al. (1996) analyze the impact of noise on convergence and long-term dependencies andBayer&
Osendorfer (2014); Chung et al. (2015); Fraccaro et al. (2016); Goyal et al. (2017) use auxiliary latent
variables to capture the high variability of complex sequential data such as music and audio.

In this paper, we develop Noisin, an effective new way to regularize an rnn. The idea is to inject
random noise into its transition function and then to fit its parameters to maximize the corresponding
marginal likelihood of the observations. We can easily apply Noisin to any flavor of rnn and we
can use many types of noise.

Noisin regularizes the rnn by smoothing its loss, averaging over local neighborhoods of the transi-
tion function. Further, Noisin requires that the noise-injected transition function be unbiased. This
means that, on average, it preserves the transition function of the original rnn.
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We examine Noisin built from the lstm and the lstm with dropout, which we call the dropout-
lstm, and we explore unbiased noise from several types of distributions. We study performance
with two large-scale language modeling tasks. Noisin improves over the lstm by as much as 37.3%
on the Penn Treebank and 39.0% on the Wikitext-2 dataset; it improves over dropout-lstm by as
much as 12.2% on the Penn Treebank and 9.4% on Wikitext-2.

2 Noisin

Noisin is built from noise-injected rnns. We define noise-injected rnns as any rnn following the
generative process

ε1:T ∼ ϕ(·;µ, γ) ; zt = gW (xt−1, zt−1, εt) and p(xt |x1:t−1) = p(xt | zt), (1)

where the likelihood p(xt | zt) is an exponential family,

p(xt|zt) = ν(xt) exp
(
(V >zt)

>xt −A(V >zt)
)
, (2)

The noise variables ε1:T are drawn from a distribution ϕ(·;µ, γ) with mean µ and scale γ. For
example, ϕ(·;µ, γ) can be a zero-mean Gaussian with variance γ2. We will study many types of
noise distributions.

The noisy hidden state zt is a parametric function gW of the previous observation xt−1, the previous
noisy hidden state zt−1, and the noise εt. Therefore conditional on the noise ε1:T , the transition
function gW defines a recurrence relation on z1:T . The function gW determines the noise-injected
rnn. In this paper, we propose functions gW that meet the criterion described below.

Unbiased noise injection. Injecting noise at each time step limits the amount of information carried
by hidden states. In limiting their capacity, noise injection is regularization.

Let zt(ε1:t) denote the unrolled recurrence at time t; it is a random variable via the noise ε1:t. Under
unbiasedness, the transition function gW must satisfy the relationship

Ep(zt(ε1:t) | zt−1) [zt(ε1:t)] = fW (xt−1, zt−1) (3)

where fW is the transition function of the underlying rnn.
What unbiasedness means is that the noise should be injected in such a way that driving the noise
to zero leads to the original rnn. Two possible choices for gW that meet this condition when εt has
zero mean are the following

gW (xt−1, zt−1, εt) = fW (xt−1, zt−1) + εt (4)
gW (xt−1, zt−1, εt) = fW (xt−1, zt−1)� (1 + εt). (5)

These choices of gW correspond to additive noise and multiplicative noise respectively. Note fW
can be any rnn including the rnn with dropout or the stochastic rnns (Bayer & Osendorfer, 2014;
Chung et al., 2015; Fraccaro et al., 2016; Goyal et al., 2017). For example to implement unbiased
noise injection with multiplicative noise for the lstm the only change from the original lstm is to
replace its hidden state with

zt = ot � tanh(ct)� (1 + εt).

where ot and ct are the output gate and the cell state of the lstm respectively. Such noise-injected
hidden states can be stacked to build a multi-layered noise-injected lstm that meet the unbiasedness
condition.

Objective. Noisin minimizes the expected negative log-likelihood under the injected noise,

L = Ep(ε1:T ) [log p(x1:T |z1:T (ε1:T ))] =
T∑
t=1

Ep(ε1:t)

[
log p(xt|zt(ε1:t))

]
(6)

Notice this objective is a Jensen bound on the marginal log-likelihood of the data,

L ≤ logEp(ε1:T ) [p(x1:T |z1:T (ε1:T ))] = log p(x1:T ).
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The expectations in the objective of Equation 6 are intractable due to the nonlinearities in the model
and the form of the noise distribution. We approximate the objective using Monte Carlo;

L̂ =
1

K

K∑
k=1

T∑
t=1

[
log p(xt|zt(ε(k)1:t ))

]
.

When using one sample (K = 1), the training procedure is just as easy as for the underlying rnn.
The loss becomes

L̃ = −
T∑
t=1

[
log ν(xt) + (V >zt)

>xt −A(V >zt)
]
. (7)

(This expression uses the exponential family likelihood.) Algorithm 1 summarizes the procedure
for multiplicative noise. The only change from traditional rnn training is when updating the hidden
state in lines 4 and 5.

Controling the noise level. Noisin is amenable to any rnn and any noise distribution. As with
all regularization techniques, Noisin comes with a free parameter that determines the amount of
regularization: the spread γ of the noise. Certain noise distributions have bounded variance; for
example the Bernoulli and the Beta distributions. This limits the amount of regularization one can
afford. To circumvent this, we rescale the noise to have unbounded variance. It is the scaled noise
that is used in Noisin.
Connection to ensemble methods. Noisin can be interpreted as an ensemble method. The ob-
jective in Equation 6 corresponds to averaging the predictions of infinitely many rnns at each time
step in the sequence. This is known as an ensemble method and has a regularization effect (Poggio
et al., 2002). However ensemble methods are costly as they require training all the sub-models in
the ensemble. With Noisin, at each time step in the sequence, one of the infinitely many rnns is
trained and because of parameter sharing, the rnn being trained at the next time step will use better
settings of the weights. This makes training the whole model efficient.

Connection to empirical Bayes. Consider a noise-injected rnn. Its joint distribution is

p(x1:T , z1:T ) =

T∏
t=1

p(xt|zt;V )p(zt|zt−1,xt−1;W )

Here p(xt|zt;V ) denotes the likelihood and p(zt|zt−1,xt−1;W ) is the prior over the noisy hidden
states; it is parameterized by the weights W . From the perspective of Bayesian inference this is
an unknown prior. When we optimize the objective in Equation 6, we are learning the weightsW .
This is equivalent to learning the prior over the noisy hidden states and is known as empirical Bayes
(Robbins, 1964). It consists in getting point estimates of prior parameters in a hierarchical model
and using those point estimates to define the prior.

3 Empirical Study

We presented Noisin, a method that relies on unbiased noise injection to regularize any rnn.
Noisin is simple and can be integrated with any existing rnn model. In this section, we focus
on applying Noisin to the lstm and the dropout-lstm. We use language modeling as a testbed.
Regularization is crucial in language modeling because the input and prediction matrices—which
are typically high-dimensional—scale linearly with the size of the vocabulary.

We used Noisin under two noise regimes: additive noise and multiplicative noise. We found that
additive noise uniformly performs worse than multiplicative noise for the lstm. We therefore report
results only on multiplicative noise.

We used Noisin with several noise distributions: Gaussian, Logistic, Laplace, Gamma, Bernoulli,
Gumbel, Beta, and χ-Square. We found that overall the only property that matters with these distri-
butions is the variance. The variance determines the amount of regularization for Noisin.
We also found that these distributions, when used with Noisin on the lstm perform better than the
dropout lstm on the Penn Treebank. Another interesting finding is that Noisin when applied to the
dropout-lstm performs better than the original dropout-lstm.
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Table 1: Noisin improves the performance of the lstm and the dropout-lstm by as much as 12%
on the Penn Treebank dataset. This table shows word-level perplexity scores on the medium and
large settings for both the validation (or dev) and the test set.

Medium Large
Method γ Dev Test γ Dev Test

None −− 115 109 −− 123 123
Gaussian 1.10 76.2 71.8 1.37 73.2 69.1
Logistic 1.06 76.4 72.3 1.39 73.6 69.3
Laplace 1.06 76.6 72.4 1.39 73.7 69.4
Gamma 1.06 78.2 74.5 1.39 73.6 69.5
Bernoulli 0.41 75.7 71.4 0.33 72.8 68.3
Gumbel 1.06 76.2 72.7 1.39 73.5 69.5
Beta 1.07 76.0 71.4 1.50 74.4 70.2
Chi 1.50 84.5 80.7 1.20 79.2 75.5

Medium Large
Method γ Dev Test γ Dev Test

Dropout (D) −− 80.2 77.0 −− 78.6 75.3
D + Gaussian 0.53 73.4 70.4 0.92 70.0 66.1
D + Logistic 0.53 73.0 69.9 0.84 69.8 66.4
D + Laplace 0.53 73.1 70.0 0.92 69.9 66.6
D + Gamma 0.38 73.5 70.3 0.92 71.1 68.2
D + Bernoulli 0.80 73.3 70.1 0.50 70.0 66.1
D + Gumbel 0.46 74.5 71.2 0.92 70.2 67.1
D + Beta 0.20 73.0 69.2 0.70 70.0 66.2
D + Chi 0.29 76.1 72.8 0.82 73.0 70.0

Table 2: Noisin improves the performance of the lstm and the dropout-lstm by as much as 9%
on the Wikitext-2 dataset. This table shows word-level perplexity scores on the medium and large
settings for both the validation (or dev) and the test set. D is short for dropout. D + Distribution
refers to Noisin applied to the dropout-lstm with the specified distribution.

Medium Large
Method γ Dev Test γ Dev Test

None −− 141 136 −− 176 140
Gaussian 1.00 92.7 87.8 1.37 87.7 83.4
Logistic 1.00 93.2 88.4 1.28 88.1 83.5
Laplace 1.00 95.3 89.8 1.28 88.0 83.4
Gamma 0.72 97.6 92.9 1.39 89.2 84.5
Bernoulli 0.54 91.2 86.6 0.41 86.9 83.0
Gumbel 1.00 95.4 90.9 1.28 88.7 84.0
Beta 0.80 91.1 87.2 1.50 86.9 82.9
Chi 0.20 111 105 1.50 99.0 92.9

Medium Large
Method γ Dev Test γ Dev Test

Dropout (D) −− 88.7 84.8 −− 95.0 91.0
D + Gaussian 0.50 86.3 82.3 0.69 81.4 77.7
D + Logistic 0.40 86.4 82.5 0.77 81.6 78.1
D + Laplace 0.40 85.6 82.1 0.61 83.2 79.1
D + Gamma 0.30 86.5 82.4 0.61 85.5 81.3
D + Bernoulli 0.50 100.6 94.4 0.64 80.8 76.8
D + Gumbel 0.30 86.4 82.4 0.53 83.7 80.1
D + Beta 0.10 86.2 82.3 0.60 81.5 77.9
D + Chi 0.20 92.0 87.4 0.29 87.1 82.8

Experimental settings. To assess the capabilities of Noisin as a regularizer on its own, we used
the basic settings for rnn training (Zaremba et al., 2014). We did not use weight decay or pointers
(Merity et al., 2016). We considered two settings in our experiments: a medium-sized network and
a large network. The medium-sized network has 2 layers with 650 hidden units each. This results
in a model complexity of 13 million parameters. The large network has 2 layers with 1500 hidden
units each. This leads to a model complexity of 51 million parameters. For the dropout-lstm, the
values used for dropout on the input, recurrent, and output layers were 0.5, 0.4, 0.5 respectively. The
models were implemented in PyTorch. The source code is available upon request.

Results. The results on the Penn Treebank are illustrated in Table 1. The best results for the non-
regularized lstm correspond to a small network. This is because larger networks overfit and require
regularization. In general Noisin improves any given rnn including dropout-lstm. For example
Noisin with multiplicative Bernoulli noise performs better than dropout rnn for both medium and
large settings. Noisin improves the performance of the dropout-lstm by as much as 12.2% on
this dataset. We observe the same trend on the Wikitext-2 dataset as for the Penn Treebank dataset:
Noisin improves the underlying lstm and dropout-lstm. For the dropout-lstm, it improves its
generalization capabilities by as much as 9% on this dataset. (See Table 2.)

4 Discussion

We proposed Noisin, a simple method for regularizing rnns. Noisin injects noise into the hid-
den states such that the underlying rnn is preserved. Noisin maximizes a lower bound on the log
marginal likelihood of the data—the expected log-likelihood under the injected noise. On a lan-
guage modeling benchmark Noisin improves the generalization capabilities of both the lstm and
the dropout-lstm.
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