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ABSTRACT

We prove a multiclass boosting theory for the ResNet architectures which simulta-
neously creates a new technique for multiclass boosting and provides a new algo-
rithm for ResNet-style architectures. Our proposed training algorithm, BoostRes-
Net, is particularly suitable in non-differentiable architectures. Our method only
requires the relatively inexpensive sequential training of T “shallow ResNets”.
We prove that the training error decays exponentially with the depth T if the weak
module classifiers that we train perform slightly better than some weak baseline.
In other words, we propose a weak learning condition and prove a boosting the-
ory for ResNet under the weak learning condition. A generalization error bound
based on margin theory is proved and suggests that ResNet could be resistant to
overfitting using a network with l1 norm bounded weights.

1 INTRODUCTION

Why do residual neural networks (ResNets) (He et al., 2016) and the related highway net-
works (Srivastava et al., 2015) work? And if we study closely why they work, can we come up
with new understandings of how to train them and how to define working algorithms?

Deep neural networks have elicited breakthrough successes in machine learning, especially
in image classification and object recognition (Krizhevsky et al., 2012; Sermanet et al., 2013;
Simonyan & Zisserman, 2014; Zeiler & Fergus, 2014) in recent years. As the number of lay-
ers increases, the nonlinear network becomes more powerful, deriving richer features from input
data. Empirical studies suggest that challenging tasks in image classification (He et al., 2015;
Ioffe & Szegedy, 2015; Simonyan & Zisserman, 2014; Szegedy et al., 2015) and object recogni-
tion (Girshick, 2015; Girshick et al., 2014; He et al., 2014; Long et al., 2015; Ren et al., 2015) often
require “deep” networks, consisting of tens or hundreds of layers. Theoretical analyses have further
justified the power of deep networks (Mhaskar & Poggio, 2016) compared to shallow networks.

However, deep neural networks are difficult to train despite their intrinsic representational power.
Stochastic gradient descent with back-propagation (BP) (LeCun et al., 1989) and its variants are
commonly used to solve the non-convex optimization problems. A major challenge that exists for
training both shallow and deep networks is vanishing or exploding gradients (Bengio et al., 1994;
Glorot & Bengio, 2010). Recent works have proposed normalization techniques (Glorot & Bengio,
2010; LeCun et al., 2012; Ioffe & Szegedy, 2015; Saxe et al., 2013) to effectively ease the problem
and achieve convergence. In training deep networks, however, a surprising training performance
degradation is observed (He & Sun, 2015; Srivastava et al., 2015; He et al., 2016): the training per-
formance degrades rapidly with increased network depth after some saturation point. This training
performance degradation is representationally surprising as one can easily construct a deep network
identical to a shallow network by forcing any part of the deep network to be the same as the shal-
low network with the remaining layers functioning as identity maps. He et al. (He et al., 2016)
presented a residual network (ResNet) learning framework to ease the training of networks that are
substantially deeper than those used previously. And they explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs by adding identity loops to the layers. It
is shown in (Hardt & Ma, 2016) that identity loops ease the problem of spurious local optima in
shallow networks. Srivastava et al. (Srivastava et al., 2015) introduce a novel architecture that en-
ables the optimization of networks with virtually arbitrary depth through the use of a learned gating
mechanism for regulating information flow.
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Empirical evidence overwhelmingly shows that these deep residual networks are easier to optimize
than non-residual ones. Can we develop a theoretical justification for this observation? And does
that justification point us towards new algorithms with better characteristics?

1.1 SUMMARY OF RESULTS

We propose a new framework, multi-channel telescoping sum boosting (defined in Section 4), to
characterize a feed forward ResNet in Section 3. We show that the top level (final) output of a
ResNet can be thought of as a layer-by-layer boosting method (defined in Section 2). Error bounds
for telescoping sum boosting are provided.

We introduce a learning algorithm (BoostResNet) guaranteed to reduce error exponentially as depth
increases so long as a weak learning assumption is obeyed. BoostResNet adaptively selects training
samples or changes the cost function (Section 4 Theorem 4.2). In Section 4.4, we analyze the
generalization error of BoostResNet and provide advice to avoid overfitting. The procedure trains
each residual block sequentially, only requiring that each provides a better-than-a-weak-baseline in
predicting labels.

BoostResNet requires radically lower computational complexity for training than end-to-end back
propagation (e2eBP). Memorywise, BoostResNet requires only individual layers of the network to
be in the graphics processing unit (GPU) while e2eBP inevitably keeps all layers in the GPU. For
example, in a state-of-the-art deep ResNet, this might reduce the RAM requirements for GPU by a
factor of the depth of the network. Similar improvements in computation are observed since each
e2eBP step involves back propagating through the entire deep network.

Experimentally, we compare BoostResNet with e2eBP over two types of feed-forward ResNets,
multilayer perceptron residual network (MLP-ResNet) and convolutional neural network residual
network (CNN-ResNet), on multiple datasets. BoostResNet shows substantial computational per-
formance improvements and accuracy improvement under the MLP-ResNet architecture. Under
CNN-ResNet, a faster convergence for BoostResNet is observed.

One of the hallmarks of our approach is to make an explicit distinction between the classes of the
multiclass learning problem and channels that are constructed by the learning procedure. A channel
here is essentially a scalar value modified by the rounds of boosting so as to implicitly minimize the
multiclass error rate. Our multi-channel telescoping sum boosting learning framework is not limited
to ResNet and can be extended to other, even non-differentiable, nonlinear hypothesis units, such as
decision trees or tensor decompositions.

1.2 RELATED WORKS

Training deep neural networks has been an active research area in the past few years. The main
optimization challenge lies in the highly non-convex nature of the loss function. There are two main
ways to address this optimization problem: one is to select a loss function and network architecture
that have better geometric properties (details refer to appendix A.1), and the other is to improve the
network’s learning procedure (details refer to appendix A.2).

Many authors have previously looked into neural networks and boosting, each in a different way.
Bengio et al. (2006) introduce single hidden layer convex neural networks, and propose a gradient
boosting algorithm to learn the weights of the linear classifier. The approach has not been gen-
eralized to deep networks with more than one hidden layer. Shalev-Shwartz (2014) proposes a
selfieBoost algorithm which boosts the accuracy of an entire network. Our algorithm is different as
we instead construct ensembles of classifiers. Veit et al. (2016) interpret residual networks as a col-
lection of many paths of differing length. Their empirical study shows that residual networks avoid
the vanishing gradient problem by introducing short paths which can carry gradient throughout the
extent of very deep networks. The authors of AdaNet (Cortes et al., 2016) consider ensembles of
neural layers with a boosting-style algorithm and provide a method for structural learning of neu-
ral networks by optimizing over the generalization bound, which consists of the training error and
the complexity of the AdaNet architecture. AdaNet uses the traditional boosting framework where
weak classifiers are being boosted. Therefore, to obtain low training error guarantee, AdaNet maps
the feature vectors (hidden layer representations) to a classifier space and boosts the weak classi-
fiers. Our BoostResNet, instead, boosts representations (feature vectors) over multiple channels,
and therefore produces a less “bushy” architecture. BoostResNet focuses on a ResNet architecture,
provides a new training algorithm for ResNet, and proves a training error guarantee for deep ResNet
architecture. A ResNet-style architecture is a special case of AdaNet, so AdaNet generalization
guarantee applies here and our generalization analysis is built upon their work.
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2 PRELIMINARIES

Linear Classifier

w⊤gT+1(x)
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fT (gT (x))

...

Figure 1: The architecture of
a residual network (ResNet).

A residual neural network (ResNet) is composed of stacked enti-
ties referred to as residual blocks. Each residual block consists of a
neural network module and an identity loop (shortcut). Commonly
used modules include MLP and CNN. Throughout this paper, we
consider training and test examples generated i.i.d. from some dis-
tribution D over X × Y , where X is the input space and Y is the
label space. We denote by S = ((x1, y1), (x2, y2), . . . , (xm, ym))
a training set of m examples drawn according to Dm.

A Residual Block of ResNet ResNet consists of residual blocks.
Each residual block contains a module and an identity loop. Let
each module map its input x̃ to ft(x̃) where t denotes the level of
the modules. Each module ft is a nonlinear unit with n channels,
i.e., ft(·) ∈ R

n. In multilayer perceptron residual network (MLP-

ResNet), ft is a shallow MLP, for instance, ft(x̃) = Ṽ ⊤
t σ(W̃⊤

t x̃)

where W̃t ∈ R
n×k, Ṽt ∈ R

k×n and σ is a nonlinear operator such
as sigmoidal function or relu function. Similarly, in convolutional
neural network residual network (CNN-ResNet), ft(·) represents
the t-th convolutional module. Then the t-th residual block outputs
gt+1(x)

gt+1(x) = ft(gt(x)) + gt(x), (1)

where x is the input fed to the ResNet. See Figure 1 for an illustration of a ResNet, which consists
of stacked residual blocks (each residual block contains a nonlinear module and an identity loop).

Output of ResNet Due to the recursive relation specified in Equation (1), the output of the T -th
residual block is equal to the summation over lower module outputs, i.e., gT+1(x) = fT (gT (x)) +

gT (x) =
∑T

t=1 ft(gt(x)), where g1(x) = x. For binary classification tasks, the final output of a
ResNet given input x is rendered after a linear classifier w ∈ R

n on representation gT+1(x) (In the
multiclass setting, let C be the number of classes; the linear classifier W ∈ R

n×C is a matrix instead
of a vector.):

ŷ = σ̃ (F (x)) = σ̃(w⊤gT+1(x)) = σ̃

(
w⊤

T∑

t=1

ft(gt(x))

)
(2)

where F (x) = w⊤gT+1(x) and σ̃(·) denotes a map from classifier outputs (scores) to labels.
For instance σ̃(z) = sign(z) for binary classification (σ̃(z) = argmax

i
zi for multiclass clas-

sification). The parameters of a depth-T ResNet are {w, {ft(·), ∀t ∈ T }}. A ResNet training
involves training the classifier w and the weights of modules ft(·) ∀t ∈ [T ] when training examples
(x1, y1), (x2, y2), . . . , (xm, ym) are available.

Boosting Boosting (Freund & Schapire, 1995) assumes the availability of a weak learning algo-
rithm which, given labeled training examples, produces a weak classifier (a.k.a. base classifier).
The goal of boosting is to improve the performance of the weak learning algorithm. The key idea
behind boosting is to choose training sets for the weak classifier in such a fashion as to force it to
infer something new about the data each time it is called. The weak learning algorithm will finally
combine many weak classifiers into a single strong classifier whose prediction power is strong.

From empirical experience, ResNet remedies the problem of training error degradation (instability
of solving non-convex optimization problem using SGD) in deeper neural networks. We are curi-
ous about whether there is a theoretical justification that identity loops help in training. More im-
portantly, we are interested in proposing a new algorithm that avoids end-to-end back-propagation
(e2eBP) through the deep network and thus is immune to the instability of SGD for non-convex
optimization of deep neural networks.

3 RESNET IN TELESCOPING SUM BOOSTING FRAMEWORK

As we recall from Equation (2), ResNet indeed has a similar form as the strong classifier in boosting.
The key difference is that boosting is an ensemble of estimated hypotheses whereas ResNet is an
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ensemble of estimated feature representations
∑T

t=1 ft(gt(x)). To solve this problem, we introduce
an auxiliary linear classifier wt on top of each residual block to construct a hypothesis module.
Formally, a hypothesis module is defined as

ot(x)
def
= w⊤

t gt(x) ∈ R (3)

in the binary classification setting. Therefore ot+1(x) = w⊤
t+1[ft(gt(x)) + gt(x)] as gt+1(x) =

ft(gt(x)) + gt(x). We emphasize that given gt(x), we only need to train ft and wt+1 to train
ot+1(x). In other words, we feed the output of previous residual block (gt(x)) to the current module
and train the weights of current module ft(·) and the auxiliary classifier wt+1.

Now the input, gt+1(x), of the t + 1-th residual block is the output, ft(gt(x)) + gt(x), of the t-th

residual block. As a result, ot(x) =
∑t−1

t′=1 w
⊤
t ft′(gt′(x)). In other words, the auxiliary linear

classifier is common for all modules underneath. It would not be realistic to assume a common
auxiliary linear classifier, as such an assumption prevents us from training the T hypothesis module
sequentially. We design a weak module classifier using the idea of telescoping sum as follows.

Definition 3.1. A weak module classifier is defined as

ht(x)
def
= αt+1ot+1(x) − αtot(x) (4)

where ot(x)
def
= w⊤

t gt(x) is a hypothesis module, and αt is a scalar. We call it a “telescoping sum
boosting” framework if the weak learners are restricted to the form of the weak module classifier.

ResNet: Ensemble of Weak Module Classifiers Recall that the T -th residual block of a ResNet
outputs gT+1(x), which is fed to the top/final linear classifier for the final classification. We show
that an ensemble of the weak module classifiers is equivalent to a ResNet’s final output. We state it
formally in Lemma 3.2. For purposes of exposition, we will call F (x) the output of ResNet although
a σ̃ function is applied on top of F (x), mapping the output to the label space Y .

Lemma 3.2. Let the input gt(x) of the t-th module be the output of the previous module, i.e.,
gt+1(x) = ft(gt(x)) + gt(x). Then the summation of T weak module classifiers divided by αT+1 is
identical to the output, F (x), of the depth-T ResNet,

F (x) = w⊤gT+1(x) ≡
1

αT+1

T∑

t=1

ht(x), (5)

where the weak module classifier ht(x) is defined in Equation (4).

See Appendix B for the proof. Overall, our proposed ensemble of weak module classifiers is a new
framework that allows for sequential training of ResNet. Note that traditional boosting algorithm
results do not apply here. We now analyze our telescoping sum boosting framework in Section 4.
Our analysis applies to both binary and multiclass, but we will focus on the binary class for simplicity
in the main text and defer the multiclass analysis to the Appendix F.

4 TELESCOPING SUM BOOSTING FOR BINARY CLASSIFICATION

Below, we propose a learning algorithm whose training error decays exponentially with the number
of weak module classifiers T under a weak learning condition. We restrict to bounded hypothesis
modules, i.e., |ot(x)| ≤ 1.

4.1 WEAK LEARNING CONDITION

The weak module classifier involves the difference between (scaled version of) ot+1(x) and ot(x).

Let γ̃t
def
= Ei∼Dt−1 [yiot(xi)] > 0 be the edge of the hypothesis module ot(x), where Dt−1 is the

weight of the examples. As the hypothesis module ot(x) is bounded by 1, we obtain |γ̃t| ≤ 1.
So γ̃t characterizes the performance of the hypothesis module ot(x). A natural requirement would
be that ot+1(x) improves slightly upon ot(x), and thus γ̃t+1 − γ̃t ≥ γ′ > 0 could serve as a
weak learning condition. However this weak learning condition is too strong: even when current
hypothesis module is performing almost ideally (γ̃t is close to 1), we still seek a hypothesis module
which performs consistently better than the previous one by γ′. Instead, we consider a much weaker
learning condition, inspired by training error analysis, as follows.
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Definition 4.1 (γ-Weak Learning Condition). A weak module classifier ht(x) = αt+1ot+1 − αtot

satisfies the γ-weak learning condition if
γ̃2
t+1−γ̃2

t

1−γ̃2
t
≥ γ2 > 0 and the covariance between

exp(−yot+1(x)) and exp(yot(x)) is non-positive.

The weak learning condition is motivated by the learning theory and it is met in practice (refer to
Figure 4).
Interpretation of weak learning condition For each weak module classifier ht(x), γt

def
=√

γ̃2
t+1−γ̃2

t

1−γ̃2
t

characterizes the normalized improvement of the correlation between the true labels

y and the hypothesis modules ot+1(x) over the correlation between the true labels y and the hypoth-
esis modules ot(x). The condition specified in Definition 4.1 is mild as it requires the hypothesis
module ot+1(x) to perform only slightly better than the previous hypothesis module ot(x). In resid-
ual network, since ot+1(x) represents a depth-(t+1) residual network which is a deeper counterpart
of the depth-t residual network ot(x), it is natural to assume that the deeper residual network im-
proves slightly upon the shallower residual network. When γ̃t is close to 1, γ̃2

t+1 only needs to be

slightly better than γ̃2
t as the denominator 1− γ̃2

t is small. The assumption of the covariance between
exp(−yot+1(x)) and exp(yot(x)) being non-positive is suggesting that the weak module classifiers
should not be adversarial, which may be a reasonable assumption for ResNet.

4.2 BOOSTRESNET

We now propose a novel training algorithm for telescoping sum boosting under binary-class clas-
sification as in Algorithm 1. In particular, we introduce a training procedure for deep ResNet in
Algorithm 1 & 2, BoostResNet, which only requires sequential training of shallow ResNets.

The training algorithm is a module-by-module procedure following a bottom-up fashion as the out-
puts of the t-th module gt+1(x) are fed as the training examples to the next t+1-th module. Each of
the shallow ResNet ft(gt(x)) + gt(x) is combined with an auxiliary linear classifier wt+1 to form
a hypothesis module ot+1(x). The weights of the ResNet are trained on these shallow ResNets.
The telescoping sum construction is the key for successful interpretation of ResNet as ensembles
of weak module classifiers. The innovative introduction of the auxiliary linear classifiers (wt+1)
is the key solution for successful multi-channel representation boosting with theoretical guarantees.
Auxiliary linear classifiers are only used to guide training, and they are not included in the model
(proved in Lemma 3.2). This is the fundamental difference between BoostResNet and AdaNet.
AdaNet (Cortes et al., 2016) maps the feature vectors (hidden layer representations) to a classifier
space and boosts the weak classifiers. Our framework is a multi-channel representation (or infor-
mation) boosting rather than a traditional classifier boosting. Traditional boosting theory does not
apply in our setting.

Algorithm 1 BoostResNet: telescoping sum boosting for binary-class classification

Input: m labeled samples [(xi, yi)]m where yi ∈ {−1,+1} and a threshold γ
Output: {ft(·), ∀t} and wT+1 ⊲ Discard wt+1, ∀t 6= T

1: Initialize t← 0, γ̃0 ← 0, α0 ← 0, o0(x)← 0
2: Initialize sample weights at round 0: D0(i)← 1/m, ∀i ∈ [m]
3: while γt > γ do
4: ft(·), αt+1,wt+1, ot+1(x)← Algorithm 2(gt(x), Dt, ot(x), αt)

5: Compute γt ←
√

γ̃2
t+1−γ̃2

t

1−γ̃2
t

⊲ where γ̃t+1 ← Ei∼Dt
[yiot+1(xi)]

6: Update Dt+1(i)← Dt(i) exp(−yiht(xi))
m∑

i=1

Dt(i) exp[−yiht(xi)]
⊲ where ht(x) = αt+1ot+1(x)− αtot(x)

7: t← t+ 1
8: end while
9: T ← t− 1

Theorem 4.2. [ Training error bound ] The training error of a T -module telescoping sum boosting
framework using Algorithms 1 and 2 decays exponentially with the number of modules T ,

Pr
i∼S

(
σ̃

(
∑

t

ht (xi)

)
6= yi

)
≤ e−

1
2Tγ2
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Algorithm 2 BoostResNet: oracle implementation for training a ResNet module

Input: gt(x),Dt,ot(x) and αt

Output: ft(·), αt+1, wt+1 and ot+1(x)

1: (ft, αt+1,wt+1)← arg min
(f,α,v)

m∑
i=1

Dt(i) exp
(
−yiαv⊤ [f(gt(xi)) + gt(xi)] + yiαtot(xi)

)

2: ot+1(x)← w⊤
t+1 [ft(gt(x)) + gt(x)]

if ∀t ∈ [T ] the weak module classifier ht(x) satisfies the γ-weak learning condition defined in
Definition 4.1.

The training error of Algorithms 1 and 2 is guaranteed to decay exponentially with the ResNet depth
even when each hypothesis module ot+1(x) performs slightly better than its previous hypothesis
module ot(x) (i.e., γ > 0). Refer to Appendix F for the algorithm and theoretical guarantees for
multiclass classification.

4.3 ORACLE IMPLEMENTATION FOR RESNET

In Algorithm 2, the implementation of the oracle at line 1 is equivalent to

(ft, αt+1,wt+1) = arg min
(f,α,v)

1

m

m∑

i=1

exp
(
−yiαv⊤ [f(gt(xi)) + gt(xi)]

)
(6)

The minimization problem over f corresponds to finding the weights of the t-th nonlinear mod-
ule of the residual network. Auxiliary classifier wt+1 is used to help solve this minimization
problem with the guidance of training labels yi. However, the final neural network model in-
cludes none of the auxiliary classifiers, and still follows a standard ResNet structure (proved in
Lemma 3.2). In practice, there are various ways to implement Equation (6). For instance, Janzamin
et. al. (Janzamin et al., 2015) propose a tensor decomposition technique which decomposes a tensor
formed by some transformation of the features x combined with labels y and recovers the weights
of a one-hidden layer neural network with guarantees. One can also use back-propagation as numer-
ous works have shown that gradient based training are relatively stable on shallow networks with
identity loops (Hardt & Ma, 2016; He et al., 2016).

Computational and Memory Efficiency It is worth noting that BoostResNet training is memory
efficient as the training process only requires parameters of two consecutive residual blocks to be in
memory. Given that the limited GPU memory being one of the main bottlenecks for computational
efficiency, BoostResNet requires significantly less training time than e2eBP in deep networks as
a result of reduced communication overhead and the speed-up in shallow gradient forwarding and
back-propagation. Let M1 be the memory required for one module, and M2 be the memory required
for one linear classifier, the memory consumption is M1 +M2 by BoostResNet and M1T +M2 by
e2eBP. Let the flops needed for gradient update over one module and one linear classifier be C1 and
C2 respectively, the computation cost is C1 + C2 by BoostResNet and C1T + C2 by e2eBP.

4.4 GENERALIZATION ERROR ANALYSIS

In this section, we analyze the generalization error to understand the possibility of overfitting under

Algorithm 1. The strong classifier or the ResNet is F (x) =
∑

t ht(x)

αT+1
. Now we define the margin

for example (x, y) as yF (x). For simplicity, we consider MLP-ResNet with n multiple channels
and assume that the weight vector connecting a neuron at layer t with its preceding layer neurons is
l1 norm bounded by Λt,t−1. Recall that there exists a linear classifier w on top, and we restrict to
l1 norm bounded classifiers, i.e., ‖w‖1 ≤ C0 < ∞. The expected training examples are l∞ norm

bounded r∞
def
= ES∼D

[
maxi∈[m]‖xi‖∞

]
< ∞. We introduce Corollary 4.3 which follows directly

from Lemma 2 of (Cortes et al., 2016).

Corollary 4.3. (Cortes et al., 2016) Let D be a distribution over X × Y and S be a sample of m
examples chosen independently at random according toD. With probability at least 1−δ, for θ > 0,
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the strong classifier F (x) (ResNet) satisfies that

Pr
D

(yF (x) ≤ 0) ≤ Pr
S
(yF (x) ≤ θ) +

4C0r∞
θ

√
log(2n)

2m

T∑

t=1

Λt +
2

θ

√
logT

m
+ β(θ,m, T, δ) (7)

where Λt
def
=
∏t

t′=1 2Λt′,t′−1 and β(θ,m, T, δ)
def
=

√⌈
4
θ2 log

(
θ2m
log T

)⌉
log T
m

+
log 2

δ

2m .

From Corollary 4.3, we obtain a generalization error bound in terms of margin bound

PrS (yF (x) ≤ θ) and network complexity 4C0r∞
θ

√
log(2n)

2m

∑T
t=1 Λt +

2
θ

√
log T
m

+ β(θ,m, T, δ).

Larger margin bound (larger θ) contributes positively to generalization accuracy, and l1 norm

bounded weights (smaller
∑T

t=1 Λt ) are beneficial to control network complexity and to avoid

overfitting. The dominant term in the network complexity is 4C0r∞
θ

√
log(2n)

2m

∑T
t=1 Λt which scales

as least linearly with the depth T . See appendix D for the proof.

This corollary suggests that stronger weak module classifiers which produce higher accuracy pre-
dictions and larger edges, will yield larger margins and suffer less from overfitting. The larger the

value of θ, the smaller the term 4C0r∞
θ

√
log(2n)

2m

∑T
t=1 Λt+

2
θ

√
log T
m

+β(θ,m, T, δ) is. With larger

edges on the training set and when γ̃T+1 < 1, we are able to choose larger values of θ while keeping
the error term zero or close to zero.

5 EXPERIMENTS

We compare our proposed BoostResNet algorithm with e2eBP training a ResNet on the
MNIST (LeCun et al., 1998), street view house numbers (SVHN) (Netzer et al., 2011), and CIFAR-
10 (Krizhevsky & Hinton, 2009) benchmark datasets. Two different types of architectures are tested:
a ResNet where each module is a fully-connected multi-layer perceptron (MLP-ResNet) and a more
common, convolutional neural network residual network (CNN-ResNet). In each experiment the
architecture of both algorithms is identical, and they are both initialized with the same random seed.
As a baseline, we also experiment with standard boosting (AdaBoost.MM Mukherjee & Schapire
(2013)) of convolutional modules in appendix H.2 for SVHN and CIFAR-10 datasets. Our exper-
iments are programmed in the Torch deep learning framework for Lua and executed on NVIDIA
Tesla P100 GPUs. All models are trained using the Adam variant of SGD Kingma & Ba (2014).

MLP-ResNet on MNIST The MNIST database (LeCun et al., 1998) of handwritten digits has a
training set of 60,000 examples, and a test set of 10,000 examples. The data contains ten classes.
We test the performance of BoostResNet on MLP-ResNet using MNIST dataset, and compare it
with e2eBP baseline. Each residual block is composed of an MLP with a single, 1024-dimensional
hidden layer. The training and test error between BoostResNet and e2eBP is in Figure 2 as a function
of depth. Surprisingly, we find that training error degrades for e2eBP, although the ResNet’s identity
loop is supposed to alleviate this problem. Our proposed sequential training procedure, BoostResNet,
relieves gradient instability issues, and continues to perform well as depth increases.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

T
ra

in
in

g
 A

cc
u
ra

cy

Number of Residual Blocks

BoostResNet
e2eBP

(a) depth vs training accuracy

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

T

e
�
�

A
cc

u
ra

cy

BoostResNet

Number of Residual Blocks

e2eBP

(b) depth vs test accuracy

Figure 2: Comparison of BoostResNet (ours, blue) and e2eBP (baseline, red) on multilayer percep-
tron residual network on MNIST dataset.

CNN-ResNet on SVHN SVHN (Netzer et al., 2011) is a real-world image dataset, obtained from
house numbers in Google Street View images. The dataset contains over 600,000 training images,
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and about 20,000 test images. We fit a 50-layer, 25-residual-block CNN-ResNet using both Boost-
ResNet and e2eBP (figure 3a). Each residual block is composed of a CNN using 15 3 × 3 filters.
We refine the result of BoostResNet by initializing the weights using the result of BoostResNet and
run end-to-end back propagation (e2eBP). From figure 3a, our BoostResNet converges much faster
(requires much fewer gradient updates) than e2eBP. The test accuracy of BoostResNet is comparable
with e2eBP.
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Figure 3: Convergence performance comparison between e2eBP and BoostResNet on the SVHN
and CIFAR-10 dataset. The vertical dotted line shows when BoostResNet training stopped, and we
began refining the network with standard e2eBP training.

CNN-ResNet on CIFAR-10 The CIFAR-10 dataset is a benchmark dataset composed of 10
classes of small images, such as animals and vehicles. It consists of 50,000 training images and
10,000 test images. We again fit a 50-layer, 25-residual-block CNN-ResNet using both BoostResNet
and e2eBP (figure 3b). BoostResNet training converges to the optimal solution faster than e2eBP.
Unlike in the previous two datasets, the efficiency of BoostResNet comes at a cost when training
with CIFAR-10. We find that the test accuracy of the e2eBP refined BoostResNet to be slightly lower
than that produced by e2eBP.

Weak Learning Condition Check The weak learning condition (Definition 4.1) inspired by learn-
ing theory is checked in Figure 4. The required better than random guessing edge γt is depicted in
Figure 4a, it is always greater than 0 and our weak learning condition is thus non-vacuous. In Fig-
ure 4b, the representations we learned using BoostResNet is increasingly better (for this classification
task) as the depth increases.

0 10 20 30 40 50
0

0.1

0.2

γt

depth T

(a) γt

0 10 20 30 40 50
0.7

0.8

0.9

γ̃t

depth T

(b) γ̃t

Figure 4: Visualization of required larger than 0 edge γt and edge for each residual block γ̃t. The
x-axis represents depth, and the y-axis represents γt or γ̃t values. The plots are for a convolutional
network composed of 50 residual blocks and trained on the SVHN dataset.

6 CONCLUSIONS AND FUTURE WORKS

Our proposed BoostResNet algorithm achieves exponentially decaying (with the depth T ) training
error under the weak learning condition. BoostResNet is much more computationally efficient com-
pared to end-to-end back-propagation in deep ResNet. More importantly, the memory required by
BoostResNet is trivial compared to end-to-end back-propagation. It is particularly beneficial given
the limited GPU memory and large network depth. Our learning framework is natural for non-
differentiable data. For instance, our learning framework is amenable to take weak learning oracles
using tensor decomposition techniques. Tensor decomposition, a spectral learning framework with
theoretical guarantees, is applied to learning one layer MLP in (Janzamin et al., 2015). We plan to
extend our learning framework to non-differentiable data using general weak learning oracles.
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Appendix: Learning Deep ResNet Blocks Sequentially
using Boosting Theory

A RELATED WORKS

A.1 LOSS FUNCTION AND ARCHITECTURE SELECTION

In neural network optimization, there are many commonly-used loss functions and criteria,
e.g., mean squared error, negative log likelihood, margin criterion, etc. There are extensive
works (Girshick, 2015; Rubinstein & Kroese, 2013; Tygert et al., 2015) on selecting or modifying
loss functions to prevent empirical difficulties such as exploding/vanishing gradients or slow learn-
ing (Balduzzi et al., 2017). However, there are no rigorous principles for selecting a loss function
in general. Other works consider variations of the multilayer perceptron (MLP) or convolutional
neural network (CNN) by adding identity skip connections (He et al., 2016), allowing information
to bypass particular layers. However, no theoretical guarantees on the training error are provided de-
spite breakthrough empirical successes. Hardt et al. (Hardt & Ma, 2016) have shown the advantage
of identity loops in linear neural networks with theoretical justifications; however the linear setting
is unrealistic in practice.

A.2 LEARNING ALGORITHM DESIGN

There have been extensive works on improving BP (LeCun et al., 1989). For instance, mo-
mentum (Qian, 1999), Nesterov accelerated gradient (Nesterov, 1983), Adagrad (Duchi et al.,
2011) and its extension Adadelta (Zeiler, 2012). Most recently, Adaptive Moment Estimation
(Adam) (Kingma & Ba, 2014), a combination of momentum and Adagrad, has received substan-
tial success in practice. All these methods are modifications of stochastic gradient descent (SGD),
but our method only requires an arbitrary oracle, which does not necessarily need to be an SGD
solver, that solves a relatively simple shallow neural network.

B PROOF FOR LEMMA 3.2: THE STRONG LEARNER IS A RESNET

Proof. In our algorithm, the input of the next module is the output of the current module

gt+1(x) = ft(gt(x)) + gt(x), (8)

we thus obtain that each weak learning module is

ht(x) = αt+1w
⊤
t+1(ft(gt(x)) + gt(x))− αtw

⊤
t gt(x) (9)

= αt+1w
⊤
t+1gt+1(x)− αtw

⊤
t gt(x), (10)

and similarly

ht+1 = αt+2w
⊤
t+2gt+2(x)− αt+1w

⊤
t+1gt+1(x). (11)

Therefore the sum over ht(x) and ht+1(x) is

ht(x) + ht+1(x) = αt+2w
⊤
t+2gt+2(x) − αtw

⊤
t gt(x) (12)

And we further see that the weighted summation over all ht(x) is a telescoping sum

T∑

t=1

ht(x) = αT+1w
⊤
T+1gT+1(x)− α1w

⊤
1 g1(x) = αT+1w

⊤
T+1gT+1(x). (13)

C PROOF FOR THEOREM 4.2: BINARY CLASS TELESCOPING SUM BOOSTING

THEORY

Proof. We will use a 0-1 loss to measure the training error. In our analysis, the 0-1 loss is bounded
by exponential loss.

12
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The training error is therefore bounded by

Pr
i∼D1

(p(αT+1w
⊤
T+1gT+1(xi)) 6= yi) (14)

=
m∑

i=1

D1(i)1{σ̃(αT+1w
⊤
T+1gT+1(xi)) 6= yi} (15)

=

m∑

i=1

D1(i)1

{
σ̃

(
T∑

t=1

ht(xi)

)
6= yi

}
(16)

≤
m∑

i=1

D1(i) exp

{
−yi

T∑

t=1

ht(xi)

}
(17)

=

m∑

i=1

DT+1(i)

T∏

t=1

Zt (18)

=

T∏

t=1

Zt (19)

where Zt =
m∑
i=1

Dt(i) exp (−yiht(xi)).

We choose αt+1 to minimize Zt.

∂Zt

∂αt+1
= −

m∑

i=1

Dt(i)yiot+1 exp (−yiht(xi)) (20)

= −Zt

m∑

i=1

Dt+1(i)yiot+1(i) = 0 (21)

Furthermore each learning module is bounded as we see in the following analysis. We obtain

Zt =

m∑

i=1

Dt(i)e
−yiht(xi) (22)

=

m∑

i=1

Dt(i)e
−αt+1yiot+1(xi)+αtyiot(xi) (23)

≤
m∑

i=1

Dt(i)e
−αt+1yiot+1(xi)

m∑

i=1

Dt(i)e
αtyiot(xi) (24)

=
m∑

i=1

Dt(i)e
−αt+1

1+yiot+1(xi)

2 +αt+1
1−yiot+1(xi)

2

m∑

i=1

Dt(i)e
αt

1+yiot(xi)

2 −αt
1−yiot(xi)

2 (25)

≤
m∑

i=1

Dt(i)

(
1 + yiot+1(xi)

2
e−αt+1 +

1− yiot+1(xi)

2
eαt+1

)
· (26)

m∑

i=1

Dt(i)

(
1 + yiot(xi)

2
eαt +

1− yiot(xi)

2
e−αt

)
(27)

=

m∑

i=1

Dt(i)

(
1 + yiot+1(xi)

2
e−αt+1 +

1− yiot+1(xi)

2
eαt+1

)
eαt + e−αt

2
(28)

=

m∑

i=1

Dt(i)

(
e−αt+1 + eαt+1

2
+

e−αt+1 − eαt+1

2
yiot+1(xi)

)
eαt + e−αt

2
(29)

=

(
e−αt+1 + eαt+1

2
+

e−αt+1 − eαt+1

2
γ̃t

)
eαt + e−αt

2
(30)
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Equation (24) is due to the non-positive correlation between exp(−yot+1(x)) and exp(yot(x)).
Jensen’s inequality in Equation (27) holds only when |yiot+1(xi)| ≤ 1 which is satisfied by the
definition of the weak learning module.

The algorithm chooses αt+1 to minimize Zt. We achieve an upper bound on Zt,

√
1−γ̃2

t

1−γ̃2
t−1

by

minimizing the bound in Equation (30)

Zt ≤
(
e−αt+1 + eαt+1

2
+

e−αt+1 − eαt+1

2
γ̃t

)
eαt + e−αt

2

∣∣∣∣
αt+1=

1
2 ln( 1+γ̃t

1−γ̃t
)

(31)

=

√
1− γ̃2

t

1− γ̃2
t−1

=
√
1− γ2

t (32)

Therefore over the T modules, the training error is upper bounded as follows

Pr
i∼D

(p(αT+1w
⊤
T+1gT+1(xi))) 6= yi) ≤

T∏

t=1

√
1− γ2

t ≤
T∏

t=1

√
1− γ2 = exp

(
−1

2
Tγ2

)
(33)

Overall, Algorithm 1 leads us to consistent learning of ResNet.

D PROOF FOR COROLLARY 4.3: GENERALIZATION BOUND

Rademacher complexity technique is powerful for measuring the complexity of H any family of
functions h : X → R, based on easiness of fitting any dataset using classifiers in H (where X is
any space). Let S =< x1, . . . , xm > be a sample of m points in X . The empirical Rademacher
complexity ofH with respect to S is defined to be

RS(H) def
= Eσ

[
sup
h∈H

1

m

m∑

i=1

σih(xi)

]
(34)

where σ is the Rademacher variable. The Rademacher complexity on m data points drawn from
distribution D is defined by

Rm(H) = ES∼D [RS(H)] . (35)

Proposition D.1. (Theorem 1 Cortes et al. (2014)) LetH be a hypothesis set admitting a decompo-
sition H = ∪li=1Hi for some l > 1. Hi are distinct hypothesis sets. Let S be a random sequence
of m points chosen independently from X according to some distribution D. For θ > 0 and any

H =
∑T

t=1 ht, with probability at least 1− δ,

Pr
D

(yH(x) ≤ 0) ≤ Pr
S
(yH(x) ≤ θ) +

4

θ

T∑

t=1

Rm(Hkt
) +

2

θ

√
log l

m

+

√

⌈ 4
θ2

log

(
θ2m

log l

)
⌉ log l

m
+

log 2
δ

2m
(36)

for all ht ∈ Hkt
.

Lemma D.2. Let h̃ = w̃⊤f̃ , where w̃ ∈ R
n, f̃ ∈ R

n. Let H̃ and F̃ be two hypothesis sets, and

h̃ ∈ H̃ , f̃j ∈ F̃ , ∀j ∈ [n]. The Rademacher complexity of H̃ and F̃ with respect to m points from
D are related as follows

Rm(H̃) = ‖w̃‖1Rm(F̃). (37)

D.1 RESNET MODULE HYPOTHESIS SPACE

Let n be the number of channels in ResNet, i.e., the number of input or output neurons in a module
ft(gt(x)). We have proved that ResNet is equivalent as

F (x) = w⊤
T∑

t=1

f(gt(x)) (38)
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We define the family of functions that each neuron ft,j , ∀j ∈ [n] belong to as

Ft = {x→ ut−1,j(σ ◦ ft−1)(x) : ut−1,j ∈ R
n, ‖ut−1,j‖1 ≤ Λt,t−1, ft−1,i ∈ Ft−1} (39)

where ut−1,j denotes the vector of weights for connections from unit j to a lower layer t − 1,
σ ◦ ft−1 denotes element-wise nonlinear transformation on ft−1. The output layer of each module is
connected to the output layer of previous module. We consider 1-layer modules for convenience of
analysis.

Therefore in ResNet with probability at least 1− δ,

Pr
D

(yF (x) ≤ 0) ≤ Pr
S
(yF (x) ≤ θ) +

4

θ

T∑

t=1

‖w‖1Rm(Ft) +
2

θ

√
logT

m

+

√

⌈ 4
θ2

log

(
θ2m

logT

)
⌉ logT

m
+

log 2
δ

2m
(40)

for all ft ∈ Ft.

Define the maximum infinity norm over samples as r∞
def
= ES∼D

[
maxi∈[m]‖xi‖∞

]
and the product

of l1 norm bound on weights as Λt
def
=
∏t

t′=1 2Λt′,t′−1. According to lemma 2 of Cortes et al.
(2016), the empirical Rademacher complexity is bounded as a function of r∞, Λt and n:

Rm(Ft) ≤ r∞Λt

√
log(2n)

2m
(41)

Overall, with probability at least 1− δ,

Pr
D

(yF (x) ≤ 0) ≤ Pr
S
(yF (x) ≤ θ) +

4‖w‖1r∞
√

log(2n)
2m

θ

T∑

t=1

Λt

+
2

θ

√
logT

m
+

√

⌈ 4
θ2

log

(
θ2m

logT

)
⌉ logT

m
+

log 2
δ

2m
(42)

for all ft ∈ Ft.

E PROOF FOR THEOREM E: MARGIN AND GENERALIZATION BOUND

Theorem E.1. [ Generalization error bound ] Given algorithm 1, the fraction of training examples

with margin at most θ is at most (1 + 2
1√

γ̃T+1
−1

)
θ
2 exp(− 1

2γ
2T ). And the generalization error

PrD(yF (x) ≤ 0) satisfies

Pr
D
(yF (x) ≤ 0) ≤ (1 +

2
1

γ̃T+1
− 1

)
θ
2 exp(−1

2
γ2T )

+
4C0r∞

θ

√
log(2n)

2m

T∑

t=1

Λt +
2

θ

√
logT

m
+ β(θ,m, T, δ) (43)

with probability at least 1− δ for β(θ,m, T, δ)
def
=

√⌈
4
θ2 log

(
θ2m
log T

)⌉
log T
m

+
log 2

δ

2m .

Now the proof for Theorem E is the following.
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Proof. The fraction of examples in sample set S being smaller than θ is bounded

Pr
S
(yF (x) ≤ θ) ≤ 1

m

m∑

i=1

1{yiF (xi) ≤ θ} (44)

=
1

m

m∑

i=1

1{yi
T∑

t=1

ht(xi) ≤ θαT+1} (45)

≤ 1

m

m∑

i=1

exp(−yi
T∑

t=1

ht(xi) + θαT+1) (46)

= exp(θαT+1)
1

m

m∑

i=1

exp(−yi
T∑

t=1

ht(xi)) (47)

= exp(θαT+1)
T∏

t=1

Zt (48)

To bound exp(θαT+1) =
√
(1+γ̃T+1

1−γ̃T+1
)θ, we first bound γ̃T+1: We know that

∑T
t=1

∏T
t′=t+1(1 −

γ2
t′)γ

2
t ≤ (1 − γ2)T−tγ2 for all ∀γt ≥ γ2 + ǫ if γ2 ≥ 1−ǫ

2 . Therefore ∀ γt ≥ γ2 + ǫ and γ2 ≥ 1−ǫ
2

γ̃2
T+1 = (1− γ2

T )γ̃
2
T + γ2

T (49)

=

T∑

t=1

T∏

t′=t+1

(1 − γ2
t′)γ

2
t +

T∏

t=1

(1− γ2
t )γ̃

2
1 (50)

≤
T∑

t=1

(1− γ2)T−tγ2 + (1− γ2)T γ̃2
1 (51)

=
T−1∑

t=0

(1− γ2)tγ2 + (1− γ2)T γ̃2
1 (52)

= 1− (1− γ2)T + (1− γ2)T γ̃2
1 (53)

= 1− (1− γ̃2
1)(1− γ2)T (54)

Therefore

Pr
S
(yF (x) ≤ θ) ≤ exp(θαT+1)

T∏

t=1

Zt (55)

= (
1 + γ̃T+1

1− γ̃T+1
)

θ
2

T∏

t=1

Zt (56)

= (
1 + γ̃T+1

1− γ̃T+1
)

θ
2

T∏

t=1

√
1− γ2

t (57)

= (1 +
2

1
γ̃T+1

− 1
)

θ
2 exp(−1

2
γ2T ) (58)

≤ (1 +
2

1√
1−(1−γ̃2

1)(1−γ2)T
− 1

)
θ
2 exp(−1

2
γ2T ) (59)

As T →∞, PrS(yF (x) ≤ θ) ≤ 0 as exp(− 1
2γ

2T ) decays faster than (1+ 2
1√

1−(1−γ̃2
1 )(1−γ2)T

−1
)

θ
2 .
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F TELESCOPING SUM BOOSTING FOR MULTI-CALSS CLASSIFICATION

Recall that the weak module classifier is defined as

ht(x) = αt+1ot+1(x)− αtot(x) ∈ R
C , (60)

where ot(x) ∈ ∆C−1.

The weak learning condition for multi-class classification is different from the binary classification
stated in the previous section, although minimal demands placed on the weak module classifier
require prediction better than random on any distribution over the training set intuitively.

We now define the weak learning condition. It is again inspired by the slightly better than random
idea, but requires a more sophisticated analysis in the multi-class setting.

F.1 COST MATRIX

In order to characterize the training error, we introduce the cost matrix C ∈ R
m×C where each

row denote the cost incurred by classifying that example into one of the C categories. We will
bound the training error using exponential loss, and under the exponential loss function defined as in
Definition G.1, the optimal cost function used for best possible training error is therefore determined.

Lemma F.1. The optimal cost function under the exponential loss is

Ct(i, l) =

{
exp (st(xi, l)− st(xi, yi)) if l 6= yi
−
∑

l′ 6=yi

exp (st(xi, l
′)− st(xi, yi)) if l = yi (61)

where st(x) =
t∑

τ=1
hτ (x).

F.2 WEAK LEARNING CONDITION

Definition F.2. Let γ̃t+1 =
−

m∑

i=1

<Ct(i,:),ot+1(xi)>

m∑

i=1

∑

l 6=yi

Ct(i,l)
and γ̃t =

−
m∑

i=1

<Ct−1(i,:),ot(xi)>

m∑

i=1

∑

l 6=yi

Ct−1(i,l)
. A multi-class

weak module classifier ht(x) = αt+1ot+1(x) − αtot(x) satisfies the γ-weak learning condition if
γ̃2
t+1−γ̃2

t

1−γ̃2
t
≥ γ2 > 0, and Cov(< Ct(i, :), ot+1(xi) >,< Ct(i, :), ot+1(xi) >) ≥ 0.

We propose a novel learning algorithm using the optimal edge-over-random cost function for training
ResNet under multi-class classification task as in Algorithm 3.

Theorem F.3. The training error of a T -module ResNet using Algorithm 3and 4 decays exponen-
tially with the depth of the ResNet T ,

C − 1

m

m∑

i=1

Lexp
η (sT (xi)) ≤ (C − 1)e−

1
2Tγ2

(62)

if the weak module classifier ht(x) satisfies the γ-weak learning condition ∀t ∈ [T ].

The exponential loss function defined as in Definition G.1

17



Under review as a conference paper at ICLR 2018

Algorithm 3 BoostResNet: telescoping sum boosting for multi-class classification

Input: Given (x1, y1), . . . (xm, ym) where yi ∈ Y = {1, . . . , C} and a threshold γ
Output: {ft(·),∀t} and WT+1 ⊲ Discard wt+1, ∀t 6= T

1: Initialize t← 0, γ̃0 ← 1, α0 ← 0, o0 ← 0 ∈ R
C , s0(xi, l) = 0, ∀i ∈ [m], l ∈ Y

2: Initialize cost function C0(i, l)←
{

1 if l 6= yi
1− C if l = yi

3: while γt > γ do
4: ft(·), αt+1,Wt+1, ot+1(x)← Algorithm 4(gt(x),Ct, ot(x), αt)

5: Compute γt ←
√

γ̃2
t+1−γ̃2

t

1−γ̃2
t

⊲ where γ̃t+1 ←
−

m∑

i=1

Ct(i,:)·ot+1(xi)

m∑

i=1

∑

l 6=yi

Ct(i,l)

6: Update st+1(xi, l)← st(xi, l)+ ht(xi, l) ⊲ where ht(xi, l) = αt+1ot+1(xi, l)−αtot(xi, l)

7: Update cost function Ct+1(i, l)←
{

est+1(xi,l)−st+1(xi,yi) if l 6= yi
− ∑

l′ 6=yi

est+1(xi,l
′)−st+1(xi,yi) if l = yi

8: t← t+ 1
9: end while

10: T ← t− 1

Algorithm 4 BoostResNet: oracle implementation for training a ResNet module (multi-class)

Input: gt(x),st,ot(x) and αt

Output: ft(·), αt+1, Wt+1 and ot+1(x)

1: (ft, αt+1,Wt+1)← arg min
(f,α,V )

m∑
i=1

∑
l 6=yi

eαV
⊤[f(gt(xi),l)−f(gt(xi),yi)+gt(xi,l)−gt(xi,yi)]

2: ot+1(x)←W⊤
t+1 [ft(gt(x)) + gt(x)]

F.3 ORACLE IMPLEMENTATION

We implement an oracle to minimize Zt
def
=

m∑
i=1

∑
l 6=yi

est(xi,l)−st(xi,yi)eht(xi,l)−ht(xi,yi) given current

state st and hypothesis module ot(x). Therefore minimizing Zt is equivalent to the following.

min
(f,α,V )

m∑

i=1

∑

l 6=yi

est(xi,l)−st(xi,yi)e−αt(ot(xi,l)−ot(xi,yi))eαV
⊤[f(gt(xi),l)−f(gt(xi),yi)+gt(xi,l)−gt(xi,yi)]

(63)

≡ min
(f,α,V )

m∑

i=1

∑

l 6=yi

eαV
⊤[f(gt(xi),l)−f(gt(xi),yi)+gt(xi,l)−gt(xi,yi)] (64)

≡ min
α,f,v

m∑

i=1

e−αv⊤[f(xi,yi)+gt(xi,yi)]
∑

l 6=yi

eαv
⊤[f(xi,l)+gt(xi,l)] (65)

G PROOF FOR THEOREM F.3 MULTICLASS BOOSTING THEORY

Proof. To characterize the training error, we use the exponential loss function

Definition G.1. Define loss function for a multiclass hypothesis H(xi) on a sample (xi, yi) as

Lexp
η (H(xi), yi) =

∑

l 6=yi

exp ((H(xi, l)−H(xi, yi))) . (66)

Define the accumulated weak learner st(xi, l) =
t∑

t′=1

ht′(xi, l) and the loss Zt =

m∑
i=1

∑
l 6=yi

exp(st(xi, l)− st(xi, yi)) exp(ht(xi, l)− ht(xi, yi)).
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Recall that st(xi, l) =
t∑

t′=1

ht′(xi, l) = αt+1W
⊤
t+1gt+1(xi), the loss for a T -module multiclass

ResNet is thus

Pr
i∼D1

(p(αT+1W
⊤
T+1gT+1(xi)) 6= yi) ≤

1

m

m∑

i=1

Lexp
η (sT (xi)) (67)

≤ 1

m

m∑

i=1

∑

l 6=yi

exp (η(sT (xi, l)− sT (xi, yi))) (68)

≤ 1

m
ZT (69)

=

T∏

t=1

Zt

Zt−1
(70)

Note that Z0 = 1
m

as the initial accumulated weak learners s0(xi, l) = 0.

The loss fraction between module t and t−1, Zt

Zt−1
, is related to Zt−Zt−1 as Zt

Zt−1
= Zt−Zt−1

Zt−1
+1.

The Zt is bounded

Zt =
m∑

i=1

∑

l 6=yi

exp(st(xi, l)− st(i, yi) + ht(xi, l)− ht(xi, yi)) (71)

≤
m∑

i=1

∑

l 6=yi

est(xi,l)−st(xi,yi)eαt+1ot+1(xi,l)−αt+1ot+1(xi,yi)
m∑

i=1

∑

l 6=yi

est(xi,l)−st(xi,yi)e−αtot(xi,l)+αtot(xi,yi)

(72)

≤
m∑

i=1

∑

l 6=yi

est(xi,l)−st(xi,yi)

(
e−αt+1 + eαt+1

2
+

e−αt+1 − eαt+1

2
(ot+1(xi, yi)− ot+1(xi, l))

)

m∑

i=1

∑

l 6=yi

est−1(xi,l)−st−1(xi,yi)

(
eαt + e−αt

2

)
(73)

=(
e−αt+1 + eαt+1 − 2

2
Zt−1 +

eαt+1 − e−αt+1

2

m∑

i=1

< Ct(xi, :), ot+1(xi, :) >)

(
eαt + e−αt

2

)

(74)

≤(e
−αt+1 + eαt+1 − 2

2
Zt−1 +

eαt+1 − e−αt+1

2

m∑

i=1

< Ct(xi, :), Uγ̃t
(xi, :) >)

(
eαt + e−αt

2

)

(75)

=(
e−αt+1 + eαt+1 − 2

2
Zt−1 +

eαt+1 − e−αt+1

2
(−γ̃t)Zt−1)

(
eαt + e−αt

2

)
(76)

Therefore

Zt

Zt−1
≤
(
e−αt+1 + eαt+1

2
+

e−αt+1 − eαt+1

2
γ̃t

)(
eαt + e−αt

2

)
(77)

The algorithm chooses αt+1 to minimize Zt. We achieve an upper bound on Zt,

√
1−γ̃2

t

1−γ̃t−12
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by minimizing the bound in Equation (77)

Zt ≤
(
e−αt+1 + eαt+1

2
+

e−αt+1 − eαt+1

2
γ̃t

)
eαt + e−αt

2

∣∣∣∣
αt+1=

1
2 ln( 1+γ̃t

1−γ̃t
)

(78)

=

√
1− γ̃2

t

1− γ̃2
t−1

=
√
1− γ2

t (79)

Therefore over the T modules, the training error is upper bounded as follows

Pr
i∼D

(p(αT+1w
⊤
T+1gT+1(xi))) 6= yi) ≤

T∏

t=1

√
1− γ2

t ≤
T∏

t=1

√
1− γ2 = exp

(
−1

2
Tγ2

)
(80)

Overall, Algorithm 3 and 4 leads us to consistent learning of ResNet.

H EXPERIMENTS

H.1 TRAINING ERROR DEGRADATION OF E2EBP ON RESNET

We investigate e2eBP training performance on various depth ResNet. Surprisingly, we observe a
training error degradation for e2eBP although the ResNet’s identity loop is supposed to alleviate this
problem. Despite the presence of identity loops, the e2eBP eventually is susceptible to spurious local
optima. This phenomenon is explored further in Figures 5a and 5b, which respectively show how
training and test accuracies vary throughout the fitting process. Our proposed sequential training
procedure, BoostResNet, relieves gradient instability issues, and continues to perform well as depth
increases.
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(a) e2eBP training accuracy
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(b) e2eBP test accuracy

Figure 5: Convergence of e2eBP (baseline) on multilayer perceptron residual network (of various
depths) on MNIST dataset.

H.2 SVHN AND CIFAR-10 PERFORMANCE RESULTS

Besides e2eBP, we also experiment with standard boosting (AdaBoost.MM Mukherjee & Schapire
(2013)), as another baseline, of convolutional modules. In this experiment, each weak learner is a
residual block of the ResNet, paired with a classification layer. We do 25 rounds of AdaBoost.MM
and train each weak learner to convergence.

Table 1 and table 2 exhibit a comparison of BoostResNet, e2eBP and AdaBoost performance on
SVHN and CIFAR-10 dataset respectively.

On SVHN dataset, the advantage of BoostResNet over e2eBP is obvious. Using 3× 108 number of
gradient updates, BoostResNet achieves 93.8% test accuracy whereas e2eBP obtains a test accuracy
of 83%. The training and test accuracies of SVHN are listed in Table 1. BoostResNet training
allows the model to train much faster than end-to-end training, and still achieves the same test
accuracy when refined with e2eBP. To list the hyperparameters we use in our BoostResNet training
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after searching over candidate hyperparamters, we choose learning rate to be 0.004 with a 9× 10−5

learning rate decay. The gamma threshold is set to be 0.001 and the initial gamma value on SVHN
is 0.75.

On CIFAR-10 dataset, the main advantage of BoostResNet over e2eBP is the speed of training.
BoostResNet refined with e2eBP obtains comparable results with e2eBP. This is because we are
using a suboptimal architecture of ResNet which overfits the CIFAR-10 dataset. AdaBoost, on
the other hand, is known to be resistant to overfitting. Therefore, AdaBoost achieves the highest
test accuracy on CIFAR-10. To list the hyperparameters we use in our BoostResNet training after
searching over candidate hyperparamters, we choose learning rate to be 0.014 with a 3.46 × 10−5

learning rate decay. The gamma threshold is set to be 0.007 and the initial gamma value on CIFAR-
10 is 0.93.

TRAINING: BOOSTRESNET E2EBP BOOSTRESNET+E2EBP E2EBP ADABOOST

NGU 3× 10
8

3× 10
8

2× 10
10

2× 10
10

1.5× 10
9

TRAIN 96.9% 85% 98.8% 98.8% 95.6%
TEST 93.8% 83% 96.8% 96.8% 92.3%

Table 1: Accuracies of SVHN task. NGU is the number of gradient updates taken by the algorithm
in training.

TRAINING: BOOSTRESNET E2EBP BOOSTRESNET+E2EBP E2EBP ADABOOST

NGU 3× 10
9

3× 10
9

1× 10
11

1× 10
11

1.5× 10
10

TRAIN 92.1% 82% 99.6% 99.7% 95.6%
TEST 82.1% 80% 88.1% 90.0% 92.3%

Table 2: Accuracies of CIFAR-10 task. NGU is the number of gradient updates taken by the
algorithm in training.
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