©® N o g b~ @ N =

- o ©

12

6

17
18
19
20
21
22

23
24
25
26
27

28
29
30
31
32
33
34
35
36

Learning with Local Search MCMC Layers

Anonymous Author(s)
Affiliation
Address

email

Abstract

Integrating combinatorial optimization layers into neural networks has recently
attracted significant research interest. However, many existing approaches lack
theoretical guarantees or fail to perform adequately when relying on inexact solvers.
This is a critical limitation, as many operations research problems are NP-hard,
often necessitating the use of neighborhood-based local search heuristics. These
heuristics iteratively generate and evaluate candidate solutions based on an ac-
ceptance rule. In this paper, we introduce a theoretically-principled approach
for learning with such inexact combinatorial solvers. Inspired by the connection
between simulated annealing and Metropolis-Hastings, we propose to transform
problem-specific neighborhood systems used in local search heuristics into pro-
posal distributions, implementing MCMC on the combinatorial space of feasible
solutions. This allows us to construct differentiable combinatorial layers and asso-
ciated loss functions. Replacing an exact solver by a local search strongly reduces
the computational burden of learning on many applications. We demonstrate our
approach on a large-scale dynamic vehicle routing problem with time windows.

1 Introduction

Models that combine neural networks and combinatorial optimization have recently attracted sig-
nificant attention [14, 39, 8, 6, 50, 5, 34, 43, 7]. Such models enable the transformation of learned
continuous latent representations into structured discrete outputs that satisfy complex constraints.
They enrich combinatorial optimization algorithms by providing them with context-dependent fea-
tures, making decisions more resilient to uncertainty. An important subset of this line of research
involves integrating, within a neural network, a linear programming layer of the form:

6 — argmax (0,y) C argmax (0,y), @)
yey yEconv(Y)
where) is a finite set of feasible outputs. In the graphical model and structured prediction literature,
this is often called the maximum a posteriori (MAP) problem [51]. The main challenge in using
such layers lies in their end-to-end model training. Indeed, as piecewise-constant, discontinuous
functions, such layers break the differentiable programming computational graph, and prevent one
from backpropagating meaningful gradients from the final output of the model to its parameters.

Many approaches have been proposed to derive relaxations and loss functions for this setting; see
Appendix A for a detailed review and overview of relevant related work. To methodologically
position our work, Table 1 provides a high-level overview of foundational approaches, contrasting
them based on the type of oracle they assume access to. Some rely on an oracle for solving a
regularized version of Eq. (1), such as a quadratic or entropy-regularized program. They typically
perform a single oracle call per data point. Some other approaches assume access to an oracle
for solving the original linear program (i.e., a MAP oracle), but perform multiple oracle calls, for
smoothing reasons. Their theoretical guarantees usually assume an oracle returning exact solutions.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55

56

Bg
59
60
61
62
63
64
65

66

67
68

69

70
7
72
73
74
75

Table 1: The proposed approach leverages the neighborhood systems used by local search heuristics
(inexact solvers) to obtain a differentiable combinatorial layer when usual oracles are not available.

Regularization Oracle Approach
Differentiable DP (2009, 2018) Entropy Exact marginal DP

SparseMAP (2018) Quadratic Exact MAP Frank-Wolfe
Barrier FW (2015) TRW Entropy Exact MAP Frank-Wolfe
IntOpt (2020) Log barrier Interior point solver Primal-Dual
Perturbed optimizers (2020) Implicit via noise Exact MAP Monte-Carlo
Blackbox solvers (2020) None Exact MAP Interpolation

Contrastive divergences (2000) Entropy Gibbs / Langevin sampler MCMC

Proposed Entropy Local search MCMC

Unfortunately, many problems in operations research are NP-hard in nature (e.g., routing, scheduling,
network design), making access to an exact oracle difficult. In contrast, operations research applica-
tions often rely on local search heuristics, such as simulated annealing. These heuristics iteratively
generate a neighbor of the current solution, and either accept it or reject it based on an acceptance
rule. The aim of this work is to provide a theoretically-principled approach for learning with such
inexact solvers. To do so, we propose to leverage unexploited links between neighborhood-based,
local search heuristics used to approximately solve combinatorial problems, and Markov chain
Monte-Carlo (MCMC) methods used to perform approximate marginal inference in graphical models.

Contributions. (i) We enable the integration of local search heuristics as layers into ML models, by
converting their neighborhood systems into proposal distributions for a discrete MCMC sampler over
the combinatorial set of solutions. (ii) We extend our framework to handle local search heuristics that
leverage a diversity of neighborhood systems, enabling this powerful class of solvers to be used as a
unified MCMC sampler. (iii) We show that there exist Fenchel-Young losses [8] whose stochastic
gradients are given by the proposed layer (even with a single MCMC iteration), leading to principled
learning algorithms in both supervised and unsupervised settings, for which we provide a convergence
analysis. (iv) We demonstrate our approach on the EURO Meets NeurIPS 2022 challenge [27], a
large-scale, ML-enriched dynamic vehicle routing problem with time windows (DVRPTW), which
involves an intractable combinatorial optimization problem. In Appendix B, we also empirically
validate the quality of the proposed gradient estimators through abundant experiments.

Problem setup. In this paper, our goal is to learn models with an optimization layer of the form
Y : 0 — argmax (0, y) + o(y),)
yey

where 8 € R% and Y C R is a finite but combinatorially-large set. This formulation is a general-
ization of the standard linear objective in Eq. (1). The function ¢ : JJ — R is an integral part of the
problem definition, capturing any structural costs or preferences (e.g., routing distances, fixed costs)
that are independent of 8. We focus on settings where this optimization problem is intractable and
only heuristic algorithms are available to obtain an approximate solution. We distinguish between
two settings. In the unsupervised setting, our goal will be to learn & € R from observations
Y1,-..,yn € R In the supervised setting, we will assume that @ = gy (z) and our goal will be to
learn the parameters WV from observation pairs (€1, ¥41),- .., (TN, YN)-

2 Local search based MCMC layers

In this section, we show how to design principled combinatorial layers without relying on exact MAP
solvers, by transforming local search heuristics into MCMC algorithms.

2.1 From local search to MCMC

Local search and neighborhood systems. Local search heuristics [19] iteratively generate a
neighbor y’ € N (y*)) of the current solution ¢(*), and either accept it or reject it based on an
acceptance rule. In this context, a neighborhood system N defines, for each feasible solution y € YV,
a set of neighbors A/(y) C V. Neighborhoods are problem-specific, and must respect the structure of
the problem, i.e., must maintain solution feasibility. They are typically defined implicitly via a set of
allowed moves from y. For instance, Table 4 lists example moves for a vehicle routing problem.

76
77
78
79

80
81
82

83
84
85
86

87
88

89
90
91

94
95
96
97
98

99

Algorithm 1 SA / MH as a layer Algorithm 2 Neighborhood mixture MCMC
Inputs: 0cR?, yO Y, (tx), KEN, N, q Inputs: 6 cR% y(Ve) t, KeN, (N,,q:)5_,

fork =0: K do fork=0: K do
Sample a neighbor in NV (y*)): Sample a neighborhood system:
y ~q(y®,-) s ~UQ(y™))
a(y® y') < 1(SA) or Sample a rzgghbor in Ny (y®):
(k) tﬂi y' ~qs(y'"™, -
™Y g (MH) (k)(/)IQ(y("’))\ as (v .y ™)

U ~U([0,1]) (YY) < ToGT ™)

AR (6, y') +o(y") (0, y ™)) —p(y ™) U ~U([0,1])

p® = a(y®,) exp (AW /1) A (0, y')+o(y')— (0, y™) —p(y™)

If U < p®), accept move: y*+1) «— ¢ p®) < a (y™, y) exp (AW /1)

If U > p®), reject move: y*+1) ¢ If U < p®), accept move: y*+1) « 4
end for If U > p), reject move: y*+1) « 4
Output: §(8) ~ y™) (SA) or end for
5:(0) =Er, [Y]~ £ S0 y® (MH) Output: §,(0) =E,,, [V] ~ = S0 y®

Formally, we denote the neighborhood graph by G == (), Enr), where edges are defined by /. We
assume the graph is undirected, i.e., y’ € N (y) if and only if y € N (y’), and without self-loops —
i.e., y & N(y). A stochastic neighbor generating function is also provided, in the form of a proposal
distribution ¢(y , -) with support either equal to N'(y) or N (y) U {y}.

Link between simulated annealing and Metropolis-Hastings. A well-known example of local
search heuristic is simulated annealing (SA) [26]. It is intimately related to Metropolis-Hastings
(MH) [21], an instance of a MCMC algorithm. We provide a unified view of both in Algorithm 1.

The difference lies in the acceptance rule, which incorporates a proposal correction ratio for MH,
and in the choice of the sequence of temperatures (¢)rcn. In the case of SA, it is chosen to verify
tr, — 0. In the case of MH, it is such that ¢;, = t. In this case, the iterates y(k) of Algorithm 1 follow
a time-homogenous Markov chain on)/, defined by the following transition kernel:

0 (y, ') min |1, 58 oxp (L0 ReW- 0N W) ify e N (y),

’q
PorW,9) = 31— % enriy) Pore (4> ") ify'=y.
0 else.

In past work, the link between the two algorithms has primarily been used to show that SA converges
to the exact MAP solution in the limit of infinite iterations [36, 17]. Under mild conditions — if the
neighborhood graph Gy is connected and the chain is aperiodic — the iterates y*) of Algorithm 1
(MH case) converge in distribution to the Gibbs distribution (see Appendix E.1 for a proof):

mo.1(y) o< exp ([0, y) + ¢(y)] /1) .- ©)
Proposed layer. Algorithm 1 and this result motivate us to define the combinatorial MCMC layer
gt(a) =]Eﬂ'e,f, [Y]) (5)

where 6 € R¢ are logits and ¢ > 0 is a temperature parameter, defaulting to ¢ = 1. Naturally, the
estimate of ; (@) returned by Algorithm 1 (MH case) is biased, as the Markov chain cannot perfectly
mix in a finite number of iterations, except if it is initialized at g ;. In Section 3, we will show
that this does not hinder the convergence of the proposed learning algorithms. The next proposition,
proved in Appendix E.2, states some useful properties of the proposed layer.

Proposition 2.1. Let @ € R We have the following properties:

y:(0) € relint(C), u;(0) —— argmax(0, y) + , and
5(6) € relin(C). 5(0) —— argmaxi0. y) + oly) 5.(6) Iyly;yy

1 COVry, [Y].

Moreover, Yy is differentiable and its Jacobian matrix is given by Joy:(0) = ;

100

101
102
103
104
105

106
107
108
109
110

111
112

113
114
115

116
117
118
119

120

121
122

123

124
125
126
127

128
129

131
132
133

134

135
136
137
138

2.2 Mixing neighborhood systems

Central to local search algorithms in combinatorial optimization is the use of multiple neighborhood
systems to more effectively explore the solution space [37, 10]. We now present a tractable way to
incorporate such diversity of neighborhood systems into the proposed layer, while preserving the cor-
rect stationary distribution, by mixing the corresponding proposal distributions. A discussion giving
intuition on why the proposed method is crucial to get tractable updates is given in Appendix C.1.

Definitions. Let (N) ,—1 be a set of different neighborhood systems. Typically, all neighborhood
systems are not defined on all solutions y € Y, so we note Q(y) C [1, 5] the set of neighborhood
systems defined on y (i.e., the set of allowed moves on vy). Let (gs) s€Q(y) be the corresponding

proposal distributions, such that the support of g5 (y, -) is either N;(y) or Ns(y) U {y}. Let N be
the aggregate neighborhood system defined by N : y Usea) Ns(y).

qs(y \Y)

are tractable. The
FACET)

We assume that the individual Metropolis correction ratios & (y, y') ==
proposed procedure is summarized in Algorithm 2.

Proposition 2.2. If each neighborhood graph G, is undirected and without self-loops, and the
aggregate neighborhood graph Gy is connected, the iterations y %) produced by Algorithm 2 follow
a Markov chain with unique stationary distribution e ;.

See Appendix E.3 for the proof. Importantly, only the connectedness of the aggregate neighborhood
graph G 5 is required. This allows us to combine neighborhood systems that could not connect
Y if used individually, i.e., an irreducible Markov chain can be obtained by mixing the proposal
distributions of reducible ones. Such an example is given with the moves defined in Table 4.

3 Loss functions and theoretical analysis

We now derive and study loss functions for learning models using the proposed layer. The analysis
for the case where only one iteration of MCMC is performed (KX = 1) is given in Appendix C.2.

3.1 Negative log-likelihood and associated Fenchel-Young loss

We now show that the proposed layer 4; () can be viewed as the solution of a regularized optimization
problem on C = conv(Y). Let A;(8) ==t -log>_ .y exp([(0, y) + ¢(y)] /t) be the cumulant
function [51] associated to the exponential family defined by mg ;, scaled by the temperature t. We
define the regularization function €2; and the corresponding Fenchel-Young loss [8] as:

Qu(p) = Af(p) = ;UH@(H, 0) — Ai(6), and £(0;y) = (2)"(0) + u(y) — (0, y).
€
Since 0, = Aj is strictly convex on relint(C) (see Appendix E.4 for a proof) and 4, (0) = Vg A,(0),
the proposed layer is the solution of the regularized optimization problem

Y1(6) = argmax {(0,) — Qu(p)}, (©6)
pec

the Fenchel-Young loss ¢ is differentiable, satisfies £;(0,y) = 0 < 9:(0) = y, and has gradient
Voli(0;y) = y:(0) — y [8]. Itis therefore equivalent, up to a constant, to the negative log-likelihood
loss, as we have —Vg log mg +(y) = (4 (0) — y)/t. Algorithms 1 and 2 can thus be used to perform
maximum likelihood estimation, by returning a (biased) stochastic estimate of the gradient of /,.

3.2 Empirical risk minimization

In the supervised learning setting, we are given observations (x;, yl)fil € (RP x Y)", and want

to fit a model gy : R? — RY such that §;(gw (x;)) ~ y;. This is motivated by a generative model
where, for some weights Wy € RP, the data is generated with y; ~ T, (:),t- We aim at minimizing
the empirical risk Ly, defined below along with its exact gradient VL :

N

N
=D blow@)im) and VL) =S Jwow (@) @Glow (@) -).
= i=1

139
140
141
142
143

144

145
146
147
148

149
150
151
152
153

154
155

156
157
158

159
160

161

162

163

164

165

166

167
168

Doubly stochastic gradient estimator. In practice, we cannot compute the exact gradient above.
Using Algorithm 1 to get a MCMC estimate of y;(gw (;)), we propose the following estimator:

Vw Ln(W) = Jwgw (x:) (sz(k) '>7

where y() is the k-th iterate of Algorithm 1 with maximization direction 8; = gy («;) and tem-
perature t. This estimator is doubly stochastic, since we sample both data points and iterations of
Algorithm 1, and can be seamlessly used with batches. The vector-jacobian product with Jy gw ()
is computed via autodiff. The Markov chain initialization methods for the supervised and unsupervised
settings are inspired from the contrastive divergence literature [22] and detailed in Appendix C.5.

3.3 Convergence analysis in the unsupervised setting

In the unsupervised setting, we are only given observations (yz) ~, € YV and want to fit a model g ¢,
motivated by an underlying generative model such that y; ~ g, ; for an unknown true parameter 6.
We assume here that C = conv())) is of full dimension in R¢. We have the following empirical L
and population Lg, Fenchel-Young losses:

Ln(6;y1,...,yn) Zet 0;91) Loy(0) = Eqy) mg, yon [LNO;y1s- - yn)]

which are minimized for 8 such that g;(8) = Yy := % Zfil y;, and for 0 such that y;(0) = y:(0y),
respectively. Let 8% as the minimizer of the empirical loss L. For it to be defined, we assume N is
large enough to have Yy € relint(C) (which is always possible as g, ; has dense support on)V). A
slight variation on Proposition 4.1 in Berthet et al. [6], proved in Appendix E.5, gives the following
asymptotic normality as N — oo.

Proposition 3.1 (Convergence of the empirical loss minmizer to the true parameter).

* D _
VN(B — 60) 2 N (0, 2 covy, , Y] 1) .

We now consider the sample size as fixed to N samples, and define 6., as the n-th iterate of the
following stochastic gradient algorithm:

Kni1
. . _ 1
0ni1 =0, + i1 |V — y o ylnthh 7
+1 + Ynt1 | YN Ko 2= Y ; @)

where y(”“’k) is the k-th iterate of Algorithm 1 with temperature ¢, maximization direction én,
and initialized at y("t11) = ¢("&») This initialization corresponds to the persistent contrastive
divergences (PCD) algorithm [48], and is further discussed in Appendix C.5.

Proposition 3.2 (Convergence of the stochastic gradient estimate). Suppose the following assumptions
on the step sizes (), >, sample sizes (K,,), ., and proposal distribution g hold:

* Yn =an~? withb E}; 1} and a > 0,

o Kpp1 > Ll—l—a CXp(gRC |\én|\)J

<a'"n"¢ wztha”>0andc>1—f

e <

23* ify € N(y)
a(y,y) =9 1-%8 jry =y
0 else,

where d(y) = |N (y)| is the degree of y in G, and d* = maxycy d(y).

Then, we have the almost sure convergence 6, = 0% of the iterates 6., defined by Eq. (7).

See Appendix E.6 for the proof. The assumptions on g are used for obtaining a closed-form
convergence rate bound for the Markov chain, using graph-based geometric bounds [23].

169

170
171
172
173
174

175
176
177
178
179
180
181
182
183
184
185

Rewst @ 5 @ O
i e%“ 10 %; 7
O Depot O © o K
% -1 “ 50
© © o ® o
Systf;rj state Reque;i prizes Soluti(;r; routes

Figure 1: Overview of the vehicle routing pipeline, represented at request wave w.

4 Experiments on dynamic vehicle routing

We demonstrate our approach on the EURO Meets NeurIPS 2022 Vehicle Routing Competition,
a large-scale, ML-enriched dynamic vehicle routing problem with time windows (DVRPTW). A
detailed introduction to the challenge with precise notations, together with precise explications on
the reduction to supervised learning, the proposed approach, the perturbation-based baseline, full
experimental details and additional results, are given in Appendix D.

Approach. We adopt the winning strategy of Baty et al. [4], which reduces the problem to a
supervised learning task. This involves decomposing the DVRPTW as multiple prize-collecting
problems (PC-VRPTW) for each wave w, where a model gy predicts a prize vector 8 for serving
each request. This fits our general problem formulation y(6“) = argmax,, (0, y) + »(y), where
(y) represents the negative routing cost. The overall pipeline is shown in Fig. 1. To train the
model gy, we use the Fenchel-Young loss associated with our proposed MCMC layer. The proposal
distributions for the MCMC sampler are derived from the local search moves used by the state-of-the-
art PC-HGS solver y, which are summarized in Table 4. At inference, we use the trained model gy
with the PC-HGS solver, forming the policy fi := 4 o gww. We compare our learning algorithms to
the perturbation-based baseline from Baty et al. [4], which sacrifices the theoretical guarantees of the
general framework from Berthet et al. [6] it instantiates by using an inexact solver (y).

Results. We evaluate performance using the competition’s metric: the routing cost relative to an
anticipative (oracle) baseline. Fig. 2 shows that initializing the MCMC chain with the ground-truth
solution significantly outperforms a random start and that performance improves with more MCMC
iterations (K'). Table 2 compares our method with the baseline under a fixed time budget for the
layer’s forward pass. Our approach significantly outperforms the perturbation-based method in
low-time-limit regimes (1-100 ms), enabling faster and more efficient training.

©
o
L

80 1 80 1

Initialization K K
S —— Random ’\ 10° 10°
+ 60 —— Ground-truth 60 \, 10t 60 10!
(o} P 5 »
G d-truth + h ti 2 2
. s ~——— —
2 40 40 4 R 40 4
© — 10* — 10!
(7] 5 5
o e 10Jj —_ 1(1”i
B 20 204 6 204 6
— 10 — 10
& N\
0 T T T T 0 T T T T 0 T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure 2: Test relative cost (%). Left: varying initialization method. Center: varying number of
Markov iterations K with random initialization. Right: varying K with ground-truth initialization.

Table 2: Best test relative cost (%) for different training methods and time limits.

Time limit (ms) 1 5 10 50 100 1000
Perturbed inexact oracle 65.2+58 13.14+34 87+19 65+1.1 63+076 55+04
Proposed (y<0):y) 100+1.7 120+26 11.8+28 9.1+1.7 84417 7.7+1.1

Proposed (y®'=y+heuristic) 7.8 +£0.8 7.24+0.6 6.3+07 6.2+08 59407 5906

192

193
194
195

196
197

198
199

200
201
202

203
204

206
207
208

210

211
212

213
214
215

216
217
218

219
220
221

222
223
224

225
226
227

228
229

231
232

233
234

235

237
238

References

[1] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and Zico
Kolter. Differentiable convex optimization layers, 2019. URL https://arxiv.org/abs/
1910.12430.

[2] Kareem Ahmed, Zhe Zeng, Mathias Niepert, and Guy Van den Broeck. SIMPLE: A gradient
estimator for k-subset sampling, 2024. URL http://arxiv.org/abs/2210.01941.

[3] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. In International Conference on Machine Learning, pages 136—145. PMLR, 2017.

[4] Léo Baty, Kai Jungel, Patrick S. Klein, Axel Parmentier, and Maximilian Schiffer. Combinatorial
optimization enriched machine learning to solve the dynamic vehicle routing problem with time
windows, 2023. URL http://arxiv.org/abs/2304.00789.

[5] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon, 2020. URL http://arxiv.org/abs/1811.
06128.

[6] Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and
Francis Bach. Learning with differentiable perturbed optimizers, 2020. URL http://arxiv.
org/abs/2002.08676.

[7] Mathieu Blondel and Vincent Roulet. The Elements of Differentiable Programming. arXiv
preprint arXiv:2403.14606, 2024.

[8] Mathieu Blondel, André F. T. Martins, and Vlad Niculae. Learning with fenchel-young losses,
2020. URL http://arxiv.org/abs/1901.02324.

[9] Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
Lépez, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation.
Advances in neural information processing systems, 35:5230-5242, 2022.

[10] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. 35(3):268-308, 2003. ISSN 0360-0300. doi: 10.1145/937503.937505.
URL https://doi.org/10.1145/937503.937505.

[11] Miguel A Carreira-Perpifidn and Geoffrey Hinton. On contrastive divergence learning. In
International Workshop on Artificial Intelligence and Statistics, pages 33—40. PMLR, 2005.
URL https://proceedings.mlr.press/r5/carreira-perpinan0O5a.html.

[12] Bor-Liang Chen and Ko-Wei Lih. Hamiltonian uniform subset graphs. 42(3):257-263,
1987. ISSN 0095-8956. doi: 10.1016/0095-8956(87)90044-X. URL https://www.
sciencedirect.com/science/article/pii/009589568790044X.

[13] John M. Danskin. The theory of max-min, with applications. 14(4):641-664, 1966. ISSN
0036-1399. doi: 10.1137/0114053. URL https://epubs.siam.org/doi/abs/10.1137/
0114053.

[14] Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in
stochastic optimization. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[15] Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models,
2020. URL https://arxiv.org/abs/1903.08689.

[16] Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Improved contrastive divergence
training of energy based models, 2021. URL https://arxiv.org/abs/2012.01316.

[17] Ulrich Faigle and Rainer Schrader. On the convergence of stationary distributions in sim-
ulated annealing algorithms. 27(4):189-194, 1988. ISSN 0020-0190. doi: 10.1016/
0020-0190(88)90024-5. URL https://www.sciencedirect.com/science/article/
pii/0020019088900245.

https://arxiv.org/abs/1910.12430
https://arxiv.org/abs/1910.12430
https://arxiv.org/abs/1910.12430
http://arxiv.org/abs/2210.01941
http://arxiv.org/abs/2304.00789
http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/2002.08676
http://arxiv.org/abs/2002.08676
http://arxiv.org/abs/2002.08676
http://arxiv.org/abs/1901.02324
https://doi.org/10.1145/937503.937505
https://proceedings.mlr.press/r5/carreira-perpinan05a.html
https://www.sciencedirect.com/science/article/pii/009589568790044X
https://www.sciencedirect.com/science/article/pii/009589568790044X
https://www.sciencedirect.com/science/article/pii/009589568790044X
https://epubs.siam.org/doi/abs/10.1137/0114053
https://epubs.siam.org/doi/abs/10.1137/0114053
https://epubs.siam.org/doi/abs/10.1137/0114053
https://arxiv.org/abs/1903.08689
https://arxiv.org/abs/2012.01316
https://www.sciencedirect.com/science/article/pii/0020019088900245
https://www.sciencedirect.com/science/article/pii/0020019088900245
https://www.sciencedirect.com/science/article/pii/0020019088900245

239
240
241
242

243
244

245
246
247

248
249
250

251
252
253
254

255
256
257

259
260

261
262

263
264
265

266
267
268
269

270
271

272
273
274
275

276
277

278
279
280
281
282

283
284

286
287

[18] Ari Freedman. CONVERGENCE THEOREM FOR FINITE MARKOV
CHAINS. 2017. URL https://www.semanticscholar.org/paper/
CONVERGENCE-THEOREM-FOR-FINITE-MARKQOV-CHAINS-E2%8B%82t/
65£7c092bd9c59cbbc88dd69266d39cd79840648.

[19] Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics, volume 2. Springer,
2010.

[20] Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris J. Maddison.
Oops i took a gradient: Scalable sampling for discrete distributions, 2021. URL https:
//arxiv.org/abs/2102.04509.

[21] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97-109, 1970. ISSN 00063444, 14643510. URL http://www. jstor.org/

stable/2334940.
[22] Geoffrey E. Hinton. Training products of experts by minimizing con-
trastive divergence. 2000. URL https://www.semanticscholar.

org/paper/Training-Products-of-Experts-by-Minimizing-Hinton/
9360e5ce9c98166bb179ad479a9d2919f££13d022

[23] Salvatore Ingrassia. On the rate of convergence of the metropolis algorithm and gibbs sampler
by geometric bounds. 4(2):347-389, 1994. ISSN 1050-5164. URL https://www.jstor.
org/stable/2245161.

[24] Gareth A. Jones. Automorphisms and regular embeddings of merged johnson graphs. 26
(3):417-435, 2005. ISSN 0195-6698. doi: 10.1016/j.€jc.2004.01.012. URL https://www.
sciencedirect.com/science/article/pii/S0195669804000630.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
http://arxiv.org/abs/1412.6980.

[26] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671-680, 1983. doi: 10.1126/science.220.4598.671. URL https://wuw.science.
org/doi/abs/10.1126/science.220.4598.671.

[27] Wouter Kool, Laurens Bliek, Danilo Numeroso, Yingqian Zhang, Tom Catshoek, Kevin Tierney,
Thibaut Vidal, and Joaquim Gromicho. The EURO meets NeurIPS 2022 vehicle routing
competition. In Proceedings of the NeurIPS 2022 Competitions Track, pages 35-49. PMLR,
2023. URL https://proceedings.mlr.press/v220/kool23a.html.

[28] Rahul G. Krishnan, Simon Lacoste-Julien, and David Sontag. Barrier frank-wolfe for marginal
inference, 2015. URL https://arxiv.org/abs/1511.02124.

[29] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of the Eigh-
teenth International Conference on Machine Learning, ICML 01, page 282-289, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558607781.

[30] Yann Lecun, Sumit Chopra, Raia Hadsell, Marc Aurelio Ranzato, and Fu Jie Huang. A tutorial
on energy-based learning. MIT Press, 2006.

[31] Zhifei Li and Jason Eisner. First- and second-order expectation semirings with applica-
tions to minimum-risk training on translation forests. In Philipp Koehn and Rada Mihalcea,
editors, Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, pages 40-51. Association for Computational Linguistics, August 2009. URL
https://aclanthology.org/D09-1005/.

[32] Neal Madras and Dana Randall. Markov chain decomposition for convergence rate analysis. 12
(2):581-606, 2002. ISSN 1050-5164, 2168-8737. doi: 10.1214/a0ap/1026915617. URL https:
//projecteuclid.org/journals/annals-of-applied-probability/volume-12/
issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.
1214/a0ap/1026915617 . full.

https://www.semanticscholar.org/paper/CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/65f7c092bd9c59cbbc88dd69266d39cd79840648
https://www.semanticscholar.org/paper/CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/65f7c092bd9c59cbbc88dd69266d39cd79840648
https://www.semanticscholar.org/paper/CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/65f7c092bd9c59cbbc88dd69266d39cd79840648
https://www.semanticscholar.org/paper/CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/65f7c092bd9c59cbbc88dd69266d39cd79840648
https://www.semanticscholar.org/paper/CONVERGENCE-THEOREM-FOR-FINITE-MARKOV-CHAINS-%E2%8B%82t/65f7c092bd9c59cbbc88dd69266d39cd79840648
https://arxiv.org/abs/2102.04509
https://arxiv.org/abs/2102.04509
https://arxiv.org/abs/2102.04509
http://www.jstor.org/stable/2334940
http://www.jstor.org/stable/2334940
http://www.jstor.org/stable/2334940
https://www.semanticscholar.org/paper/Training-Products-of-Experts-by-Minimizing-Hinton/9360e5ce9c98166bb179ad479a9d2919ff13d022
https://www.semanticscholar.org/paper/Training-Products-of-Experts-by-Minimizing-Hinton/9360e5ce9c98166bb179ad479a9d2919ff13d022
https://www.semanticscholar.org/paper/Training-Products-of-Experts-by-Minimizing-Hinton/9360e5ce9c98166bb179ad479a9d2919ff13d022
https://www.semanticscholar.org/paper/Training-Products-of-Experts-by-Minimizing-Hinton/9360e5ce9c98166bb179ad479a9d2919ff13d022
https://www.semanticscholar.org/paper/Training-Products-of-Experts-by-Minimizing-Hinton/9360e5ce9c98166bb179ad479a9d2919ff13d022
https://www.jstor.org/stable/2245161
https://www.jstor.org/stable/2245161
https://www.jstor.org/stable/2245161
https://www.sciencedirect.com/science/article/pii/S0195669804000630
https://www.sciencedirect.com/science/article/pii/S0195669804000630
https://www.sciencedirect.com/science/article/pii/S0195669804000630
http://arxiv.org/abs/1412.6980
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://proceedings.mlr.press/v220/kool23a.html
https://arxiv.org/abs/1511.02124
https://aclanthology.org/D09-1005/
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-12/issue-2/Markov-chain-decomposition-for-convergence-rate-analysis/10.1214/aoap/1026915617.full

288
289

290
291
292
293

294
295

297
298

299
300

301
302

303

305
306

307
308

309
310

311
312
313

314
315

316
317

318
319
320
321

322
323
324
325

326
327
328
329

330
331
332
333

334
335

[33] Jayanta Mandi and Tias Guns. Interior point solving for LP-based prediction+optimisation,
2020. URL http://arxiv.org/abs/2010.13943.

[34] Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns,
and Ferdinando Fioretto. Decision-focused learning: Foundations, state of the art, benchmark
and future opportunities. 80:1623-1701, 2024. ISSN 1076-9757. doi: 10.1613/jair.1.15320.
URL http://arxiv.org/abs/2307.13565.

[35] Arthur Mensch and Mathieu Blondel. Differentiable dynamic programming for structured
prediction and attention, 2018. URL https://arxiv.org/abs/1802.03676.

[36] Debasis Mitra, Fabio Romeo, and Alberto Sangiovanni-Vincentelli. Convergence and finite-time
behavior of simulated annealing. Advances in Applied Probability, 18(3):747-771, 1986. ISSN
0001-8678. doi: 10.2307/1427186. URL https://wuw. jstor.org/stable/1427186.

[37] Nenad Mladenovié¢ and Pierre Hansen. Variable neighborhood search. Computers & operations
research, 24(11):1097-1100, 1997.

[38] Volodymyr Mnih, Hugo Larochelle, and Geoffrey E. Hinton. Conditional restricted boltzmann
machines for structured output prediction, 2012. URL http://arxiv.org/abs/1202.3748.

[39] Vlad Niculae, André F. T. Martins, Mathieu Blondel, and Claire Cardie. Sparsemap: Differen-
tiable sparse structured inference, 2018. URL https://arxiv.org/abs/1802.04223.

[40] Benjamin Rhodes and Michael Gutmann. Enhanced gradient-based MCMC in discrete spaces,
2022. URL http://arxiv.org/abs/2208.00040.

[41] Fred J. Rispoli. The graph of the hypersimplex, 2008. URL http://arxiv.org/abs/0811.
2981.

[42] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970. ISBN
9780691015866. URL http://www.jstor.org/stable/j.cttl4bs1ff.

[43] Utsav Sadana, Abhilash Chenreddy, Erick Delage, Alexandre Forel, Emma Frejinger, and
Thibaut Vidal. A survey of contextual optimization methods for decision making under uncer-
tainty, 2024. URL http://arxiv.org/abs/2306.10374.

[44] Yang Song and Diederik P. Kingma. How to train your energy-based models, 2021. URL
https://arxiv.org/abs/2101.03288.

[45] Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, and Dale Schuurmans. Discrete langevin
sampler via wasserstein gradient flow, 2023. URL http://arxiv.org/abs/2206.14897.

[46] Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting
sampling for combinatorial optimization. In Proceedings of the 40th International Conference
on Machine Learning, pages 32859-32874. PMLR, 2023. URL https://proceedings.mlr.
press/v202/sun23c.html.

[47] Ilya Sutskever and Tijmen Tieleman. On the convergence properties of contrastive diver-
gence. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, pages 789-795. JMLR Workshop and Conference Proceedings, 2010. URL
https://proceedings.mlr.press/v9/sutskever10a.html.

[48] Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likeli-
hood gradient. In Proceedings of the 25th international conference on Machine learning, ICML
’08, pages 1064—1071. Association for Computing Machinery, 2008. ISBN 9781605582054
doi: 10.1145/1390156.1390290. URL https://doi.org/10.1145/1390156.1390290.

[49] Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap*
neighborhood. Computers & Operations Research, 140:105643, April 2022. ISSN 0305-
0548. doi: 10.1016/j.cor.2021.105643. URL http://dx.doi.org/10.1016/j.cor.2021.
105643.

[50] Marin Vlastelica, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differentiation
of blackbox combinatorial solvers, 2020. URL http://arxiv.org/abs/1912.02175.

http://arxiv.org/abs/2010.13943
http://arxiv.org/abs/2307.13565
https://arxiv.org/abs/1802.03676
https://www.jstor.org/stable/1427186
http://arxiv.org/abs/1202.3748
https://arxiv.org/abs/1802.04223
http://arxiv.org/abs/2208.00040
http://arxiv.org/abs/0811.2981
http://arxiv.org/abs/0811.2981
http://arxiv.org/abs/0811.2981
http://www.jstor.org/stable/j.ctt14bs1ff
http://arxiv.org/abs/2306.10374
https://arxiv.org/abs/2101.03288
http://arxiv.org/abs/2206.14897
https://proceedings.mlr.press/v202/sun23c.html
https://proceedings.mlr.press/v202/sun23c.html
https://proceedings.mlr.press/v202/sun23c.html
https://proceedings.mlr.press/v9/sutskever10a.html
https://doi.org/10.1145/1390156.1390290
http://dx.doi.org/10.1016/j.cor.2021.105643
http://dx.doi.org/10.1016/j.cor.2021.105643
http://dx.doi.org/10.1016/j.cor.2021.105643
http://arxiv.org/abs/1912.02175

336
337
338

339
340
341
342
343
344

345
346

[51]

[52]

[53]

Martin J. Wainwright and Michael 1. Jordan. Graphical models, exponential families, and varia-
tional inference. 1(1):1-305, 2008. ISSN 1935-8237, 1935-8245. doi: 10.1561/2200000001.
URL https://www.nowpublishers.com/article/Details/MAL-001.

Laurent Younes. Stochastic gradient estimation strategies for markov ran-
dom fields. In Bayesian Inference for Inverse Problems, volume 3459,
pages 315-325. SPIE, 1998. doi: 10.1117/12.323811. URL https://www.
spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/
Stochastic-gradient-estimation-strategies-for-Markov-random-fields/
10.1117/12.323811.full

Rugi Zhang, Xingchao Liu, and Qiang Liu. A langevin-like sampler for discrete distributions,
2022. URL https://arxiv.org/abs/2206.09914.

10

https://www.nowpublishers.com/article/Details/MAL-001
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3459/0000/Stochastic-gradient-estimation-strategies-for-Markov-random-fields/10.1117/12.323811.full
https://arxiv.org/abs/2206.09914

347

348

349
350
351

353
354

355
356
357
358
359
360

362
363

365
366
367
368

369

370
371
372
373
374

375
376
377
378
379
380
381
382
383

384

385
386
387
388

389

A Background and Related Work

A.1 Combinatorial optimization as a layer

Because the function in Eq. (1) is piecewise constant and discontinuous, a frequent strategy consists
in introducing regularization in the problem so as to obtain a continuous relaxation. In some cases,
we may have access to an oracle for directly solving the regularized problem. For instance, when the
unregularized problem can be solved by dynamic programming, its entropic regularization can be
computed using a change of semi-ring [31] or by algorithmic smoothing [35]. As another example,
interior point solvers can be used to compute a logarithmic barrier regularized solution [33].

We focus settings where only a MAP oracle is available for the original, unregularized optimization
problem. While many prior works are limited to the linear form in Eq. (1) for the latter, our framework
is more general and also handles problems of the form in Eq. (2). Frank-Wolfe-like methods can
be used to solve the regularized problem using only MAP oracle calls [39, 28]. Another strategy
consists in injecting noise perturbations [6] in the oracle. This approach can be shown to be implicitly
using regularization. In both cases, a Fenchel-Young loss can be associated, giving a principled way
to learn with the optimization layer. However, formal guarantees only hold if the oracle used is exact,
and in practice it is typically called multiple times during the forward pass. Our proposal enjoys
guarantees even with inexact solvers and a single call.

Regarding differentiation, several strategies are possible. When the approach only needs to differ-
entiate through a (regularized) max, as is the case of Fenchel-Young losses, we can use Danskin’s
theorem [13]. When the approach needs to differentiate a (regularized) argmax, we can either use
autodiff on the unrolled solver iterations or implicit differentiation [3, 1, 9]. Differently, Vlastelica
et al. [50] propose to compute gradients via continuous interpolation of the solver.

A.2 Contrastive divergences

An alternative approach to learning in combinatorial spaces is to use energy-based models (EBMs)
[30], which define a distribution over outputs via a parameterized energy function Fg:

po(y) x exp(Eo(y)), with Velogpe(y) = VeEe(y) — Ey~p, [VeLe(Y)].
Therefore, we can perform maximum likelihood estimation (MLE) if we can sample from pg, but this
is hard both in continuous and combinatorial settings, due to its intractable normalization constant.
Contrastive divergences [22, 11, 44] address this by using MCMC to obtain (biased) stochastic
gradients. Originally developed for restricted Boltzmann machines with) = {0, 1}% and a Gibbs
sampler, they have also been applied in continuous domains via Langevin dynamics [15, 16].

MCMC in discrete spaces. Contrastive divergences rely on MCMC to sample from the current
model distribution. Unfortunately, designing an MCMC sampler is usually case by case, and MCMC
on discrete domains has received comparatively less attention than continuous domains. Recent efforts
adapt continuous techniques, such as Langevin dynamics [53, 45] or gradient-informed proposals
[20, 40], to discrete settings. However, these works typically assume simple state space structure, like
the hypercube or categorical codebooks, and do not handle complex constraints that are ubiquitous in
operations research problems. Sun et al. [46] allow structured state spaces via relaxed constraints in
the energy function, yet ignore these structures in the proposal supports. Notably, we emphasize that
all these works focus on sampling, not on designing differentiable MCMC layers.

B Experiments on empirical convergence of gradients and parameters
In this section, we evaluate the proposed approach on two discrete output spaces: sets and «-subsets.
These output spaces are for instance useful for multilabel classification. We focus on these output

spaces because the exact MAP and marginal inference oracles are available, allowing us to compare
our gradient estimators to exact gradients.

B.1 Polytopes and corresponding oracles

The vertex set of the first polytope is the set of binary vectors in R?, which we denote V¢ := {0, 1},
and conv(Y?) = [0, 1]¢ is the “hypercube”. The vertex set of the second is the set of binary vectors

11

with exactly x ones and d — & zeros (with 0 < k < d)
Vi={ye{0,1}*: (y,1) = x},

aso and conv (YY) is referred to as “top-x polytope” or “hypers1mplex . Although these polytopes would
391 not provide relevant use cases of the proposed approach in practice, since exact marginal inference
392 oracles are available (see below), they allow us to compare the Fenchel-Young loss value and gradient
393 estimated by our algorithm to their true value.

394 Marginal inference. For the hypercube, we have:
exp ((6,y)/t)

Yi
5 Ty ey ep (0.1 /1)
d
Z exp (Zj:l ijj/t)
Yi
d
ye{0,1}4 Zy/e{m}d exXp (Zj:l Gjyé/t)

Z Z exp (@:yi/t + 2 ojyj/t>
Yi
yi€{0,1} y_;€{0,1}4-1 Zy;e{m} ny_ze{m}dfl exp (91'92/75 + Zj;éi 9‘7‘%‘/75)

= Z exp (0iyi/t) _ Z exp (Zj;ﬁi ajyj/t)
- > reto.n oxp (Bayi/D) " 0.4/t
yie{0,1) —¥i€{0.1} i g e{01}41 Doy cqo,13a-1 XD (205 0515/
exp (0;y:/t)
y:€{0,1} 2yeqo.y P (05y;/1)

_ 0 exp(0) + 1 -exp (6;/t)
xp(0) + oxp (6,/7)
e (01
1+ exp (6;/1)

()

aes which gives E, , [Y] = o () where the logistic sigmoid function o is applied component-wise.
396 The cumulant function is also tractable, as we have

log Z exp ((0,y)/t) = log Z exp (Z Hlyl/t>

yey yE{O 1}d

g3 Y e <Z 0.0 /t)

y1=0y>=0 yqa=0

10gH Z exp (0:yi/t)

= 1y7

E

To,t [Yl] =

= log H (exp(0) + exp (0: /1))

d

= log [] (1 +exp (6:/1))

=1

d
= Z log (1 +exp (6;/t)) .

i=1
397 Another way to derive this is via the Fenchel conjugate.
398

12

399
400
401
402
403
404

405
406
407
408
409

410

411
412

413
414
415
416
417
418

419
420
421
422

423
424

425
426
427
428

429

430

431
432

433

For the top-« polytope, such closed-form formulas do not exist for the cumulant and its gradient.
However, we implement them with dynamic programming, by viewing the top-x MAP problem
as a 0/1-knapsack problem with constant item weights, and by changing the (max, +) semiring
into a (LSE, +) semiring. This returns the cumulant function, and we leverage PyTorch’s automatic
differentiation framework to compute its gradient. This simple implementation allows us to compute
true Fenchel-Young losses values and their gradients in O(dk) time and space complexity.

Sampling. For the hypercube, sampling from the Gibbs distribution on @ has closed form. Indeed,
the latter is fully factorized, and we can sample y ~ 7g ; by sampling independently each component
with y; ~ Bern (o (6;/t)). Sampling from 7, is also possible on }¢, by sampling coordinates
iteratively using the dynamic programming table used to compute the cumulant function (see, e.g.,
Algorithm 2 in Ahmed et al. [2] for a detailed explanation).

B.2 Neighborhood graphs

Hypercube. On V%, we use a family of neighborhood systems N £ parameterized by a Hamming
distance radius r € [d — 1]. The graph is defined by:

Vyy' €V Yy eNL(y) & 1<du(y,y) <
That is, two vertices are neighbors if their Hamming distance is at most . This graph is regular,
with degree |[VZ(y)| = >i_, (Czl) This graph is naturally connected, as any binary vector y’
can be reached from any other binary vector y in ||y’ — y||; moves, by flipping each bit where
y; # y;, iteratively. Indeed, this trajectory consists in moves between vertices with Hamming dis-
tance equal to 1, and are therefore along edges of the neighborhood graph, regardless of the value of 7.

We also use a slight variation on this family of neighborhood systems, the graphs A", defined by:

Vy,y €V y e Nl(y) & du(y,y) =
These graphs, on the contrary, are not always connected: indeed, if r is even, they contain two
connected components (binary vectors with an even sum, and binary vectors with an odd sum).

We only use such graphs when experimenting with neighborhood mixtures (see Algorithm 2), by
aggregating them into a connected graph.

Top-« polytope. On V%, we use a family of neighborhoods systems A/¢ parameterized by a number
of “swaps” s € [1, min(x, d — x)]. The graph is defined by

Vy,y €V y e NF(y) & dy (y, y) = 2s.

That is, two vertices are neighbors if one can be reached from the other by performing s “swaps”,
each swap corresponding to flipping a 1 to a 0 and vice-versa. This ensures that the resulting vector is
still in V9. All s swaps must be performed on distinct components. The resulting graph is known as
the Generalized Johnson Graph J(d, k, k —), or Uniform Subset Graph [12]. It is a regular graph,

with degree [N (y)| = (%) (*,"). Itis proved to be connected in Jones [24], except if d = 2x and

S
s = £ (in this case, it consists in 3 (%) disjoint edges).

When s = 1, the neighborhood graph is the Johnson Graph J(d,), which coincides with the graph
associated to the polytope conv(Y?) = Ay . [41].

B.3 Convergence to exact gradients

In this section, we conduct experiments on the convergence of the MCMC estimators to the exact
corresponding expectation (that is, convergence of the stochastic gradient estimator to the true
gradient). The estimators are defined as

K
1
U = ~N § (k)
yt(e) Eﬂ'e,f, [Y] K — KO Yy,
k=Ko+1

13

434
435
436
437
438

439

440
441
442

443

444

445

446

447
448

449
450
451
452
453

454

456
457
458
459
460

461
462
463

464
465
466

467
468

where y(k) is the k-th iterate of Algorithm 1 with maximization direction 0, final temperature ¢, and
K is a number of burn-in (or warm-up) iterations. The obtained estimator is compared to the exact
expectation by performing marginal inference as described in Appendix B.1 (with a closed-form
formula in the case of V¢, and by dynamic programming in the case of Y¢).

Setup. For T > Ky, let E(0,T) = T%KO ZZ: Kot1 y*) be the stochastic estimate of the
expectation at step 7. We proceed by first randomly generating ® € R™*? with M being the

number of instances, by sampling @, ; ~ N(0, 1) independently. Then, we evaluate the impact of
the following hyperparameters on the estimation of Er, [Y], fori € [M]:

1. Ky, the number of burn-in iterations,
2. t, the temperature parameter,
3. C, the number of parallel Markov chains.

Metric. The metric used is the squared Euclidean distance to the exact expectation, averaged on the
M instances

M
1 -
17 2 IEro, ¢ V] — E(©;, T)]I3,
i=1
which we measure for T’ € [Ky + 1, K].

Polytopes. For the hypercube)% and its neighborhood system N Zoweused = 10and r = 1,
which gives | V4| = 210 and |V. £(y)| = 10. For the top-x polytope V¥ and its neighborhood system
N¢, weused = 10, kK = 3 and s = 1, which gives | V4| = 120 and |N*(y)| = 30. We also
use a larger scale for both polytopes in order to highlight the varying impact of the temperature
t depending on the combinatorial size of the problem, in the second experiment. For the large
scale, we use d = 1000 and r = 10 for the hypercube, which give || = 21090 ~ 103! and
|N£ (y)| ~ 2.7 x 103, and we use d = 1000, x = 50 and s = 10 for the top-# polytope, which give

|V4 = 9.5 x 108* and |N*(y)| =~ 1.6 x 1033

Hyperparameters. For each experiment, we use K = 3000. We average over M/ = 1000 problem
instances for statistical significance. We use Ky = 0, except for the first experiment, where it varies.
We use a final temperature ¢ = 1, except for the second experiment, where it varies. We use an initial
temperature ty) = ¢t = 1 (leading to a constant temperature schedule), except for the first experiment,
where it depends on K. We use only one Markov chain and thus have C' = 1, except for the third
experiment, where it varies.

(1) Impact of burn-in. First, we evaluate the impact of K, the number of burn-in iterations.
We use a truncated geometric cooling schedule ¢, = max (¥ - tg, t) with v = 0.995. The initial
temperature (is set to 1/(y%°), so that Yk > K+ 1, t;, = t = 1. The results are gathered in Fig. 3.

(2) Impact of temperature. We then evaluate the impact of the final temperature ¢ on the difficulty
of the estimation task (different temperatures lead to different target expectations). The results for the
small scale are gathered in Fig. 4, and the results for the large scale are gathered in Fig. 5.

(3) Impact of the number of parallel Markov chains. Finally, we evaluate the impact of the
number of parallel Markov chains C on the estimation. The results are gathered in Fig. 6.

14

100_
Ko
8 0
8 10
8 1074 50
— 100
— 200
— 300
10724 — 500
10° 1(')1 162 1(')3
Iteration
(a) Hypercube

10[]-
Ky
8 0
& 1071 5 10
[72]
a 50
— 100
— 200
—2
10 — 300
— 500
100 10t 10? 103

Iteration

(b) top-~ polytope

Figure 3: Convergence to exact expectation on the hypercube and the top-~ polytope, for varying
number of burn-in iterations /;. We conclude that burn-in is not beneficial to the estimation, and

taking Ky = 0 is the best option.

10° _\
t
g 1071 4 10-3
8 1072
8 10724 107!
10°
10!
107 4
102
—] 3
1074 4 ’ ; ; ;
10° 10! 10? 10%
Iteration
(a) Hypercube

10° 4
t
g 1071 3 103
5 10°2 \
a 102 4 107! \
10°
10!
1073 5 102
[103
10° 10! 10? 103

Iteration

(b) top-~ polytope

Figure 4: Convergence to exact expectation on the hypercube and the top-~ polytope, for varying final
temperature ¢ (small scale experiment). We conclude that lower temperatures facilitate the estimation.

[———
t \
g 1024 1073 AN
8 1072
a 107!
10°
10!
10? \
10t 4 —— 10%
10° 1(')1 162 1(')3
Iteration
(a) Hypercube

102 4
t

3 10" 4 10-3
8 1072
A 107!

109 4 100

10!

10%

—_— 10°

1071 T T T
100 10t 10? 103

Iteration

(b) top-~ polytope

Figure 5: Convergence to exact expectation on the hypercube and the top-« polytope, for varying
final temperature ¢ (large scale experiment). Contrary to the small scale case, larger temperatures are
beneficial to the estimation when the solution set is combinatorially large.

15

469

470
471

472

473
474

475
476
477
478
479

481

482
483
484

485

487
488

]0[] -

10—1 -

1072 4

Distance
Distance

1073 -

= 50

10—4 -
— 100
1054 — 500
10° 10* 10% 103 100 10t 102 10%
Iteration Iteration
(a) SA, hypercube (b) SA, top-~ polytope

Figure 6: Convergence to exact expectation on the hypercube and the top-~ polytope, for varying
number of parallel Markov chains C. Running 10 times more chains in parallel provides roughly
the same benefit as extending each chain by 10 times more iterations, highlighting the advantage of
massively parallelized estimation.

B.4 Convergence to exact parameters

In this section, we conduct experiments in the unsupervised setting described in Section 3.3. As a
reminder, the empirical Ly and population Lg, Fenchel-Young losses are given by:

N
1
Ln(@;yr,...,yn) = N E 11 (0; y;)
i=1

N
= At(e) + N ZQt(yz) - <07 ?N>
—0(6; Vi) + C1(Y), ®)

and
Loy (0) = E(y)~ | (rp, yen LN (091, yn)]
= A (0) + Erp, , [2(Y)] — (0, 5:(60))
= 1:(6; Y:(60)) + C2(60), ©

where the constants C7(Y') = %Z?;Qt(yz) —(Yn) and C(80) =Eqry , [2:(Y)] = (9:(60))
do not depend on 6. As Jensen gaps, they are non-negative by convexity of €2;.

2D visualization. As an introductory example, we display stochastic gradient trajectories in Fig. 7.
The parameter @ € R? is updated following Eq. (7) to minimize the population loss Lg, defined
in Eq. (9), with 8, = (1/2, 1/2). The polytope used is the 2-dimensional hypercube V2, with
neighborhood graph A7 (neighbors are adjacent vertices of the square). We present trajectories
obtained using MCMC-sampled gradients, comparing results from both 1 and 100 Markov chain
iterations with Algorithm 1. For comparison, we include trajectories obtained using Monte Carlo-
sampled (i.e., unbiased) gradients, using 1 and 100 samples.

General setup. We proceed by first randomly generating true parameters ® € RM >4 with M
being a number of problem instances we average on (in order to reduce noise in our observations),
by sampling ©, ; ~ N(0,1) independently. The goal is to learn each parameter vector (®); €
R? i € [M], as M independent problems. The model is randomly initialized at O, and updated
with Adam [25] to minimize the loss. In order to better separate noise due to the optimization process
and noise due to the sampling process, we use the population loss L(e,), for general experiments,
and use the empirical loss Ly only when focusing on the impact of the dataset size V. In this case,

16

489
490

491

492

493

494

495

496
497

498
499
500
501

503
504
505

506
507

Simulated Annealing (Blue) vs. Monte-Carlo (Red)

n SA-1
— SA-100
5 MC-1
—— MC-100
2 O
1 -
0 -
—1 1
—2 4
—3 1
T T T T T T T T
-3 -2 -1 0 1 2 3 4

Figure 7: Comparison of stochastic gradient trajectories for a SA / M-H oracle on)? and unbiased
stochastic gradients obtained via Monte Carlo sampling. Increasing the number of Markov chain
iterations yields smoother trajectories, similar to the effect of using more Monte Carlo samples in the
case of perturbation-based methods [6].

we create a dataset Y € RM*N*d with V being the number of samples, by sampling independently
YiJ ~ (@) Vi e [M], Vj c [N}

i

We study the impact of the following hyperparameters on learning:

1. K, the number of Markov chain iterations,

2. C, the number of parallel Markov chains,

3. the initialization method used for the chains (either random, persistent, or data-based),
4. N, the number of samples in the dataset.

Metrics. The first metric used is the objective function actually minimized, i.e., the population loss,
averaged on the M instances:

1M

i=1
where (©,,); is the n-th iterate of the optimization process for the problem instance i € [M]. We
measure this loss for n € [nmax], With ny. the total number of gradient iterations. For the fourth
experiment, where we evaluate the impact of the number of samples IV, we measure instead the
empirical Fenchel-Young loss:

M

1 ~

i g Ly((®y)i; Yi1,...YinN)
im1

In both cases, the best loss value that can be reached is positive but cannot be computed: it
corresponds to the constants C; and C5 in Eq. (8) and Eq. (9). Thus, we also provide "stretched"
figures, where we plot the loss minus the best loss found during the optimization process.

The second metric used is the squared euclidean distance of the estimate to the true parameter, also
averaged on the M instances:

17

508
509

510
511

512
513
514

515
516
517
518
519
520
521
522

523
524

525
526
527

528
529
530
531
532

533

534
535

536
537
538
539
540

1 M R
37 2 11(©0)i = (©):13.
i=1

As the top-« polytope is of dimension d — 1, the model is only specified up to vectors orthogonal to
the direction of the smallest affine subspace it spans. Thus, in this case, we measure instead:

M
7 IR ((©0)) — P ((6a):) I,

where P is the orthogonal projector on the hyperplane D = {x € R¢ : (1,) = 0}, which is the
corresponding direction.

Polytopes. For the hypercube V¢ and its neighborhood system A2, we use d = 10 and r = 1,
except in the fifth experiment, where we use a mixture of A" neighborhoods (detailed below). For
the top-+ polytope V¢ and its neighborhood system N, we use d = 10, s = 3 and s = 1.

Hyperparameters. For each experiment, we perform 1000 gradient steps. We use Ky = 0, final
temperature ¢ = 1 and initial temperature to = ¢ = 1 (leading to a constant temperature schedule).
We use K = 1000 Markov chain iterations, except in the first experiment, where it varies. We use
only one Markov chain and thus have C' = 1, except for the second experiment, where it varies. We
use a persistent initialization method for the Markov chains, except in the third experiment, where we
compare the three different methods. For statistical significance, we average over M = 100 problem
instances for each experiment, except in the third experiment, where we use M = 1000. We work in
the limit case N — oo, except in the fourth experiment, where N varies.

(1) Impact of the length of Markov chains. First, we evaluate the impact of K, the number of
inner iterations, i.e., the length of each Markov chain. The results are gathered in Fig. 8.

(2) Impact of the number of parallel Markov chains. We now evaluate the impact of the number
of Markov chains C run in parallel to perform each gradient estimation on the learning process. The
results are gathered in Fig. 9.

(3) Impact of the initialization method. Then, we evaluate the impact of the method to initialize
each Markov chain used for gradient estimation. The persistent method consists in setting y(+1:0) =
y(™ %) the data-based method consists in setting y("*:%) = y; with i ~ U([N]), and the random
method consists in setting y(* 1) ~ 1/ () (see Appendix C.5 and Table 3 for a detailed explanation).
The results are gathered in Fig. 10.

(4) Impact of the dataset size. We now evaluate the impact of the number of samples N from

g, (i.€., the size of the dataset (yi)i]il) on the estimation of the true parameter 6. The results are
gathered in Fig. 11.

(5) Impact of neigborhood mixtures. Finally, we evaluate the impact of the use of neighborhood
mixtures. To do so, we use mixtures {N7s}9_, once with {r,}5_, = {5} opposed to {r,}J ; =
{1,5}, and once with {rs}5_; = {66} (which gives a reducible Markov chain as 6 is even, so that the
individual neighborhood graph A/Y is not connected, and has to connected components) opposed to

{rs}5_; = {1,2,3,6}. The results are gathered in Fig. 12.

18

5 10'4
©
S
o
©
g 100 -
2
o
[0}
2 107!+
©
®
a
@
1072 4
10° 10! 102 103
Gradient Steps
(a) Distance to true parameter, hypercube
0
8 x 10 K
= 100
IS 200
(%]
M
o 7x10°
a — 1000
=]
- — 2000
3 — 5000
>_
[T
6 x 10° ~————
10° 10! 102 10%
Gradient Steps
(c) FY loss (up to constant), hypercube
10(); S —
[2]
8 10—1 . \
P K \\
Q
o) —
S 102] 100
2 200
E 1073 4 300 \.:.f.n,..-n-,-
2 — 500
o
2 1074 — 1000 "M
b — 2000 W
1075 4" —— 5000
T T
100 10! 102 103
Gradient Steps

(e) FY loss minus best loss, hypercube

T

Q<

3. 10"

o

o

g

g 100 -

©

©

o

g

510714

i

(o]

(&)

g

B 1072

a

A T T)

10° 10! 102 10°
Gradient Steps

(b) Distance to true parameter, top-~< polytope

K
= 100
8 200
(2]
5 5x 100 300
° — 500
a — 1000
=)
= — 2000
3 — 5000
>_
[T
4% 10° —
10° 10! 10% 103
Gradient Steps
(d) FY loss (up to constant), top-« polytope
100 _\‘
2 101 \
5]
i K \\
810724 100
(2]
2 193 200 X&z
g 300 \‘:M
(2]
§ 10-4 4 — 500 ! ...hg
> — 1000 W'“
L 10-5 4 —— 2000 i
— 5000 |
1076 4 ; ; H
100 10t 102 103
Gradient Steps

(f) FY loss minus best loss, top-x polytope

Figure 8: Convergence to the true parameter on the hypercube (left) and the top-~ polytope (right),
for varying number of Markov chain iterations K. Longer chains improve learning.

19

101 .

10° 4

3 Distance to true parameter

10—1 4
10—2 .
10—3 .
10° 10! 10? 10°
Gradient Steps
(a) Distance to true parameter, hypercube
1 0
8 x 10 c
= 1
IS 5
é — 10
2 7x 107 50
a — 100
2
12}
0
o
|
>_
[T
6 x 10° ~ |
10° 10! 102 10%
Gradient Steps

(c) FY loss (up to constant), hypercube

] ——

N

N\

N\

[2]
[%]
o
§ 102 4
£
I [N
§ 104 - 5 e
—
51— 10 W'
E 10 50 '|’
1076 - —— 100 |
T T
100 10t 102 103
Gradient Steps

(e) FY loss minus best loss, hypercube

i)

Q

3 10!
o

e

8 1004
[

£

©

8 1014
(0]

2

]

5 1072 5
o

C

]

@)
o 1073 .

10° 10! 102 103
Gradient Steps

(b) Distance to true parameter, top-~< polytope

c

= 1

8 5

(2]

c — 10

9 5x 10°

S — 50

o — 100

2

(2]

[%2]

o

-

>_

[T

4 % 10° ——
T T
10° 10! 10% 103

Gradient Steps

(d) FY loss (up to constant), top-« polytope

100 B —
) N \
E 10 \
3 1072 4 \
e}
g \
2 1077 5 ¢
£ 1 v
@ 10~4 4 5
— —
> 1077 4 10
— 50
1076 4 —— 100
T T I:
10° 10t 10? 103
Gradient Steps

(f) FY loss minus best loss, top-x polytope

Figure 9: Convergence to the true parameter on the hypercube (left) and the top-~ polytope (right),
for varying number of parallel Markov chains C'. Adding Markov chains improves estimation.

20

10! 4

100 4

3 Distance to true parameter

10714 Initialization
——— Persistent
—— Data-based
1072 4 —— Random
10° 10! 10% 108
Gradient Steps
(a) Distance to true parameter, hypercube
0

810 Initialization
= —— Persistent
3 —— Data-based
g —— Random
o
o 7x10°
o
2
12}
172
o
-
>
[T

6 x 10° —

10° 10! 102 103
Gradient Steps

(c) FY loss (up to constant), hypercube

100 4
8107 4 N
g 102 —
: —
2]
2107
: \
g 10 Initialization \ m
; 105 L— Persistent I
L —— Data-based r“
1076 4 —— Random |
100 10! 10° 10?
Gradient Steps

(e) FY loss minus best loss, hypercube

=)

QL

3 10"+

<

£

g

g 100 4

o

©

o

(]

2 19-1 PP

= 107" 4 Initialization

° ——— Persistent

o

= —— Data-based

g 10~2 - —— Random

5 ' :
100 10! 102 103

Gradient Steps

(b) Distance to true parameter, top-~< polytope

Initialization
= —— Persistent
) —— Data-based
(2]
§ 5 % 100 —— Random
I}
o
2
[
[%2]
o
|
>
[T
4 % 10° S
10° 10! 102 10°
Gradient Steps

(d) FY loss (up to constant), top-~ polytope

004
3 10-1 4 \
8 10 \
4 1072 o \
o
‘g \/’—-
E 1073 5 v—
€
7] 4 N
2 107" 3 Initialization
S .
——— Persistent \
& 1075 4 Y
—— Data-based W
10-6 4 —— Random {
100 10! 10? 10°
Gradient Steps

(f) FY loss minus best loss, top-« polytope

Figure 10: Convergence to the true parameter on the hypercube (left) and the top-~ polytope (right),
for varying Markov chain initialization method. The persistent and data-based initialization methods
significantly outperform the random initialization method.

21

<)
2
3
% 10" 4 S 10! 4
o
: 5
Q
o =
2 g
E) g 10° 5 N
2 1074 ® 100
3 2
é 5 500
% P —— 1000
(]
2 € 1071 4 —— 5000
= -
— (7] —
10-14 2 10000
10° 10 102 103 = 10° 10t 102 10°
Gradient Steps Gradient Steps
(a) Distance to true parameter (b) Distance to true parameter
8 x 10° N N
= N 100 = 100
S 500 8 500
2 \ —— 1000 2 0 —— 1000
S S 5x 10
o 7 10° \ —— 5000 i —— 5000
P \ —— 10000 o —— 10000
2 2
[} \ [}
173 \ 0
(=} o
4 \ |
> \ >
[T w \
6 x 10° — 4 x 10° A\
10° 10! 102 103 10° 10! 10? 10°
Gradient Steps Gradient Steps
(c) FY loss (up to constant) (d) Fenchel-Young loss (up to constant)
10° 4 100 4
[2] ; (2] .
8 101 AN 3 10" N
k<] ~ | k]
g g
8 10724 9 10724
= N ! N
£ -3 £ _
£ 10 100 E 1073 100
g 1] 500 2 500
z —— 1000 3107 000
> >
& 1054 —— 5000 b 0-s 1 — 5000
— 10000 — 10000
1076 3 T T T T
10° 10! 102 10% 10° 10! 10? 10°
Gradient Steps Gradient Steps

(e) FY loss minus best loss

(f) Fenchel-Young loss minus best loss

Figure 11: Convergence to the true parameter on the hypercube (left) and the top-« polytope (right),
for varying number of samples IV in the dataset. As the dataset is different for each task, the empirical
Fenchel-Young loss Ly, which is the minimized objective function (contrary to other experiments,
where we minimize Lg,), also varies. Although empirical Fenchel-Young losses associated to smaller
datasets appear easier to minimize, increasing the dataset size reduces the bias and thus the distance
to 6y, as expected.

22

101 4

100 4

10—1 4

3 Distance to true parameter

10! 102 103

Gradient Steps

100

(a) Distance to true parameter, rs € {5} or {1,5}

8 x 10°
{W'S}le

= {5}
g — {1,5}
c
o
o
o 7x10°
o
2
1]
172
o
—
>
[T

6 x 10° ~——

10° 10! 102 108
Gradient Steps

(c) FY loss (up to constant), rs € {5} or {1,5}

E—
10° 4 \\ {ro¥s
® {5}
[} -1
S 10 N — {15}
7 N\
L1024
(2]
2 0] \
£ \w
[2] nA I
Q —4
g1 ¥
& 10-5 1
1076 4
10° 10! 102 10%
Gradient Steps

(e) FY loss minus best loss, rs € {5} or {1,5}

101 4

10° 4

10—1 4

/% Distance to true parameter

10! 10? 10?

Gradient Steps

10°

(b) Distance to true parameter, rs € {6} or {1,2, 3,6}

8 x 10°
{7'5};9:1

= — {6}
© —
g {1.2.3.6}
o
o
o 7x10°
o
2
[2]
[%2]
o
—
>
[T

6 x 10° —]

10° 10! 102 10°
Gradient Steps

(d) FY loss (up to constant), rs € {6} or {1,2,3,6}

[——
100_ P —
2 \
—1 J
S 10 N
(7}
8 1072 4 \
[%2]
3
£ ; Al
£ 10-3 4
1]
™ M
= e I
TR L U
—— {1,2,3,6} |
10° 10! 10? 10°
Gradient Steps

(f) FY loss minus best loss, rs € {6} or {1,2,3,6}

Figure 12: Convergence to the true parameter on the hypercube, with different mixtures of neigh-
borhood systems {N"=}2_;: comparing 7 € {5} to rs € {1,5} (left), and comparing 5 € {6} to
rs € {1,2,3,6} (right). Using more neighborhoods in the mixture improves learning.

23

541

542

543
544

546
547
548
549
550
551

552

553

554

555
556
557

558
559
560
561
562

563

565
566
567
568

569
570
571

C Additional material

C.1 Mixing neighborhood systems: a discussion

In this section, we give intuition on why the update proposed in Section 2.2 and Algorithm 2 is crucial
as a tractable way to mix different neighborhood systems.

A naive way to combine these neighborhoods (N;)?_; and proposals (gs)5_; would be to use

Algorithm 1 by defining a unique aggregated proposal ¢(y, -) with support N'(y) or N'(y) U {y} as,
ie.:

! . 1 /
a(y.y) = 0@ Se%(:y) as(y.y).

However, this would lead to non-tractable updates because of the computation of the Metropolis-
Hastings correction ratio. Indeed, the latter would be equal to:

«a n o |Q(y)| . ZsGQ(y’) qs(y/’y)
.9 = QW) Yo ¥ ¥)

This calculation is prohibitively expensive because it involves summing the forward proposal prob-
abilities for all move types in Q(y) and the reverse probabilities for all move types in Q(y’). The
main difficulty is that multiple, distinct proposal types can generate the same solution y’ from y. For
example, in the vehicle routing application presented in Section 4, relocating a pair of clients (using
the relocate pair move from Table 4) before the first one in a route of 3 gives the same solution y’
as relocating the first client (with the relocate move) at the last position. Identifying and calculating
all these potential forward and reverse pathways for every step is a significant computational hurdle.

In contrast, the update we propose in Algorithm 2 only requires computing the single individual ratio

as(y'y
a5 (y,y’)

for the unique move type s that was actually sampled.

C.2 Associated Fenchel-Young loss with a single MCMC iteration

To obtain an unbiased gradient estimator for the Fenchel-Young loss ¢; associated with 4;, the MCMC
sampler must be run until it reaches its stationary distribution 7g ;. This requirement makes any
practical estimator with a finite number of steps K inherently biased.

Although our convergence analysis in Section 3.3 shows that this bias does not hinder the convergence
of the proposed learning algorithms, we now demonstrate that when a single MCMC iteration is used
(K = 1), there exists another target-dependent Fenchel-Young loss such that the stochastic gradient
estimator is unbiased with respect to that loss. See Appendix E.7 for the construction of €2,, and the
proof.

Proposition C.1 (Existence of a Fenchel-Young loss when K = 1). Let pél,‘)y denote the distribution

of the first iterate of the Markov chain defined by the Markov transition kernel given in Eq. (3),
with proposal distribution q and initialized at ground-truth y € Y. There exists a target-dependent
regularization function §,, with the following properties: Qy is t /By, ||Y — 1yl |2-strongly convex;
it is such that
E,oo V)= argmax {(6.1) — ()}
v peconv(N (y)U{y})

and the Fenchel-Young loss (g, generated by €y, is E
and such that Velo, (0 ;y) = E o Y] -v.
6,y

a(y,)Y — y||3/t-smooth in its first argument,

A similar result in the unsupervised setting with data-based initialization is given in Proposition C.2.
Interestingly, theses results contrast with prior work on the expected CD-1 update. Indeed, when
applied with Gibbs sampling to train restricted Boltzmann machines, the latter was shown in Sutskever
and Tieleman [47] not to be the gradient of any function — let alone a convex one.

Note that, similarly to the regularization €2, the target-dependent §2,, extends the influence of ¢ from
the set N'(y) U {y} to its convex hull in a principled way. As a verification, we give properties of the
regularized maximizer E o, [Y] in Proposition C.3.

6,y

24

572

573
574
575

576

577

578

580
581

582
583
584

585

586

587
588
589

590

591
592

593

C.3 Fenchel-Young loss for K’ = 1 in the unsupervised setting

This proposition is analogous to Proposition C.1, but in the unsupervised setting, when using a
data-based initialization method — i.e., the original CD initialization scheme, without persistent
Markov chains. See Appendix C.5 for a detailed discussion about this.

Proposition C.2. Let pg%—/N denote the distribution of the first iterate of the Markov chain defined

b)() ghe Markov transition kernel given in Eq. (3), with proposal distribution q and initialized by
0

y" = y;, with i ~ U([1, N]). There exists a dataset-dependent regularization Q. with the
following properties: Qv is tN/ Zf\; Eq(ys:, 1Y — yil[3-strongly convex; it is such that:
E o Y] = argmax {(6, 1) — Qy, (1) };
Povy pnecony(UiL {N (i) U{wi}})

and the Fenchel-Young loss Lo, ~generated by Qy, is + Zil Eq(ys, 1Y — yill3/t-smooth in its

first argument, and such that Vo Lo, (0;y) = E o Y] -v.
0, ¥y

i

The proof is given in Appendix E.7.

C.4 Properties of the expected first iterate

Proposition C.3. Let@ ¢ R%, y €). Let
Noewer(y) = {y" € N(y) | (0,9") +»(¥) > (8,y) + »(y)}

denote the set of improving neighbors of y for the unregularized objective function. We have the
following properties:

E,m [Y] € conv (N (y) U{y}),

/ !/
BV ——>y+ > awy) o -)
Yy G./\/hmzr(y)

and E o [Y] ——y+ Y minf(y.y).q"y)] @ - v).
Y v EN(y)

The proof is given in Appendix E.8. Thus, as the set Npeyer is defined according the value of the
original, unregularized objective function y (0,y) + ©(y), the low temperature behavior of
the regularized maximizer E PGl [Y] effectively reflects the fact that the regularization function ,,

extends the influence of ¢ from ‘the vertices ' (y) U {y} to their convex hull.

C.5 Markov chain initialization

In contrastive divergence (CD) learning, the intractable expectation in the log-likelihood gradient is
approximated by short-run MCMC, initialized at the data distribution [22] (using a Gibbs sampler in
the setting of Restricted Boltzmann Machines).

Here, we note, at the n-th iteration of gradient descent:

K
VwLy(W,) = |B‘ZJW9W (Z b)

1€EB,

for the supervised setting, with B,, being the mini-batch (or full batch) used at iteration n, y; the
ground-truth structure associated to x; in the dataset, and yl(”H’ *) the k-th iterate of Algorithm 1,
with maximization direction g3, (;), and initialization point yi"“’ %) We also note:

K
R 1 _
VoL (0n) ~ 2 y gyt — vy
k=1

25

594

595
596

597
598
599
600
601

603
604
605

606
607
608
609
610
611
612
613
614
615

616
617
618
619
620

621
622
623
624
625

626

627
628

629

630
631
632

for the unsupervised setting, with 3+ ¥) being the k-th iterate of Algorithm 1, with maximization
direction 0,,, and initialization point y("*1-9),

In CD learning of unconditional EBMs (i.e., in our unsupervised setting), the Markov Chain is
initialized at the empirical data distribution [22, 11], as explained earlier. Persistent Contrastive
Divergence (PCD) learning [48] modifies CD by maintaining a persistent Markov chain. Thus,
instead of initializing the chain from the data distribution in each iteration, the chain continues from
its last state in the previous iteration, by setting (10 = 4" K)_This approach aims to provide a
better approximation of the model distribution and to reduce the bias introduced by the initialization
of the Markov chain in CD. These are two types of informative initialization methods, which aim at
reducing the mixing times of the Markov Chains.

However, neither of these can be applied to the supervised (or conditional) setting, as observed
in [38] in the context of conditional Restricted Boltzmann Machines (which are a type of EBMs).
Indeed, on the one hand, PCD takes advantage of the fact that the parameter 6 does not change too
much from one iteration to the next, so that a Markov Chain that has reached equilibrium on én is
not far from equilibrium on én+1- This does not hold in the supervised setting, as each x; leads to a
different 0; = gyiy (zi). On the other hand, the data-based initialization method in CD would amount
to initialize the chains at the empirical marginal data distribution on), and would be irrelevant in a
supervised setting, since the distribution we want each Markov Chain to approximate is conditioned
on the input x;.

An option is to use persistent chains if training for multiple epochs, and to initialize the Markov
Chain associated to (x;, y;) for epoch j at the final state of the one associated to the same data point
(z;,y;) at epoch j — 1. However, this method is relevant than PCD in the unsupervised setting, as

changes a lot more in a full epoch than 6 in just one gradient step in the unsupervised setting. It
might be relevant, however, if each epoch consists in a single, full-batch gradient step. Nevertheless,
it would require to store a significant number of states yfn K) (one for each point in the dataset).
The solution we propose, for both full-batch and mini-batch settings, is to initialize the chains at
the empirical data distribution conditioned on the input ;, which amounts to initialize them at the

ground-truth y;.

This discussion is summed up in Table 3.

Table 3: Possible Markov Chain Initialization Methods under each Learning Setting

Setting
Init Unsupervised Supervised, Batch Supervised,
Method Mini-Batch
Persistent y(nt10) — 4 (n.K) y§"+1=0) = yl.(”*K) /
Data-Based y("flvo) = y;, with Yt =y, y "t =y,
J~U([1,N])
Random YO~ U(Y) y Y~ u() y"hY ~u)

Remark C.4. The use of uniform distributions on) for the random initialization method can naturally
be replaced by any other different prior distribution.

C.6 Proposal distribution design for the DVRPTW
Original deterministic moves. The selected moves, designed for Local Search algorithms on vehi-

cle routing problems (specifically for the PC-VRPTW for serve request and remove request),
are given in Table 4.

26

633
634

635
636
637
638
639
640
641
642

643
644
645

646

647
648
649

650
651
652
653
654
655
656
657
658
659
660

Name Description

relocate removes request ¢ from its route and re-inserts it before or after request j

relocate pair removes pair of requests (7, next(¢)) from their route and re-inserts them before
or after request j

swap exchanges the position of requests ¢ and j in the solution

swap pair exchanges the positions of the pairs (7, next(4)) and (j, next(j)) in the solution

2-opt reverses the route segment between % and j

serve request inserts currently undispatched request ¢ before or after request j

remove request removes currently dispatched request ¢ from the solution

Table 4: PC-VRPTW Local search moves

Move Vi (y) V2 (y)li]

relocate D(y) \ D1(y) D(y)

relocate pair D(y) \ {D2(y) UD™(y)} D(y) \ {next(s)}

swap D(y) D(y)

suap pair D(y) \ D*(y) D(y) \ {D" () U {prev(i), next(i)}}
2-opt D(y) \ D2(y) D(y) \ D2(y)

serve request D(y) D(y)UZp(y)

remove request {Dy)\Di(y)} UTi(y)

Table 5: Sets of valid clients for each move. D(y) contains all dispatched clients in solution y. D1 (y)
contains all dispatched clients that are the only client in their route. Ds(y) contains all dispatched
clients that are in a route with 2 clients or less. D'*'(y) contains all dispatched clients that are the
last of their route. D(y) contains all non-dispatched clients. Zp(y) contains the depot of the first
empty route, if it exists (all routes may be non-empty), or else is the empty set. Z; (y) contains the
only client in the last non-empty route if it contains exactly one client, or else is the empty set.

All of these moves (except for remove request) involve selecting two clients ¢ and j from the
request set R* (for example, the relocate move relocates client ¢ after client j in the solution).

In the Local Search part of the PC-HGS algorithm from Vidal [49], they are implemented as
deterministic functions used within a quadratic loop over clients, and are performed only if they
improve the solution’s objective value. The search is narrowed down to client pairs (¢, j) such that
d(i, j) is among the Nyox lowest values in {d(i, k) | k € R¥\{D, i} }, where d is a problem-specific
heuristic distance measure between clients, based on spatial features and time windows, and Npox
is a hyperparameter. These distances are independent from the chosen solution routes (they are
computed once at the start of the algorithm, from the problem features), non-negative, and symmetric:

d(i, j) = d(4,7).

Randomization. In order to transform these deterministic moves into proposals, we first adapt the
choice of clients i and 7, by sampling i uniformly from V! (), which contains the set of valid choices
of client i for move s from solution y. Then, we sample j from V2 (y)[i] \ {i} using the following
exp[=d(i,j)/B]

rev2 iy XPl=d(i.k)/B]
sampling temperature. The set V.2(y)[i] contains all valid choices of client j for move s from solution
y, and is precised along with V.!(y) in Table 5. We normalize the distance measures inside the
softmax, by dividing them by the maximum distance: d(i,) <= d(i,)/ maxgcyz(y)[i\ (i} 404, k).

softmax distribution: Ps(j | i) = where 8 > 0 is a neighborhood

Neighborhood graph symmetrization. Then, we ensure that each individual neighborhood graph
N is undirected. This is already the case for the moves swap, swap pair and 2-opt, as they
are actually involutions (applying the same move on the same couple (i, j) from ¢y’ will result in
y). However, this is obviously not the case for serve request and remove request. Indeed, if
solution g’ is obtained from y by removing a dispatched client (respectively serving an non-dispatched
one), y cannot be obtained by removing another one (respectively, serving another one). To fix this,
we merge these two moves into a single one. First, it evaluates which of the two moves are allowed
(i.e., if they are such that V! (y) # ()). Then, it samples one (the probability of selecting "remove" is
chosen to be equal to the number of removable clients divided by the number of removable clients
plus the number of servable clients) in the case where both are possible, or else simply performs
the only move allowed. Thus, the corresponding neighborhood graph is undirected as it is always

27

661
662
663
664
665

666
667
668
669
670
671

672

673

674

676

677
678
679
680
681
682

683
684
685

686
687
688
689

690
691
692
693
694
695

possible to perform the reverse operation (as when removing a client, it becomes unserved, thus
allowing the serve request move from y’, and vice-versa). We also allow the serve request
move to insert a client after the depot of the first empty route, to allow the creation of new routes. In
consequence, we allow the remove request move to remove the only client in the last non-empty
route if it contains exactly one client (to maintain symmetry of the neighborhood graph).

For the relocate and relocate pair moves, the non-reversibility comes from the fact that they
only relocate client 7 (or clients ¢ and next(4) in the pair case) after client j, so that if client ¢ was the
first in its route, relocating it back would be impossible (the depot, which is the start of the route,
cannot be selected as j). Thus, we allow insertions before clients too, and add a random choice with
probability (2 , 2) to determine if the relocated client(s) will be inserted before or after 7. We also
add this feature to the serve request move.

Correction ratio computation. Next, we implement the computation of the individual correction

ratio a, (y,y’) = ZEZ;{; for each proposal gs.

* In the case of swap and 2-opt, we have as(y,y) 1. Indeed, let 4’ be the result of
applying one of these moves s on y when sampling i € V! (y) and j € V2(y)[i] \ {i}. We

then have:
(Y. y') = VI Xreve i exp [=d(@ k)/F]
1 exp [_d(.777’)/6]

+ : .)
V()] Zkevg(y)[j]\{j} exp [—d(j, k)/B]

where the first term accounts for the probability of selecting ¢ then j and the second term
accounts for that of selecting j then ¢ (one can easily check that these two cases are the
only way of sampling y’ from). Then, noticing that we have |V} (y’)| = |Vl (y)|, that
these moves are involutions (selecting (4, j) or (4, %) from y’ is also the only way to sample
1), and that we have the equalities V2 (y)[i] = V2(y')[i] and V2(y)[j] = VZ(y')[j], we
actually have q(y', y) = qs(y,9').

* For swap pair, the same arguments hold (leading to the same form for ¢;), except for the
equalities V2(y)[i] = V2(y")[i] and V2(y)[j] = V2(y')[j]. Thus, we have the following
form for the correction ratio:

65y, y) _ Lrevawing P -dER) /Bl + Y keve gy @ [0, k)/5]
s(y,Y') Zkew NE\{i }eXP[d(i, k)/B] + Zkew(y')[j]\{j} exp [—d(j, k)/B]

* In the case of relocate, let j' denote next(j) if the selected insertion type was "after”, and
prev(j) if it was "before" — where next(j) € R* denotes the request following j in solution
vy, i.e., the only index k such that y; , = 1, and prev(j) is the one preceding it, i.e., the only
k such that y, ; = 1. We have:

N exp [-d(,)/)
qs(yay)_2 Vi(y)| Zkevz ()i} €xP [—d(i, k) /B]
1 1 exp [—d(i,5')/f]
[~

2 VI Shevziingg @ [—d(i, k)/B]

Indeed, if i was relocated affer j, the same solution y’ could have been obtained by relocating
i before j' = next(j). Similarly, if i Was relocated before j, the same solution y’ could
have been obtained by relocatmg i after j' = prev(j). For the reverse move probability, the
way of obtaining y from vy’ is either to select (i, prev(4)) in the after-type insertion case,
or (7, next(7)) in the before-type insertion case (where prev and next are taken w.r.t. y, i.e.,
before applying the move). Thus, we have:

1 I exp [—d(i, prev(i)/f]

DY =5 VI Sreveung o 4G, B/
Ll eoldinet(i)/d]
2 Vi)l Zkevg(y')[i]\{i} exp [—d(i, k) /]

28

696
697

698

699

700
701

702
703
704

705
706
707
708

709

710
71
712
713

* For the relocate pair move, the exact same reasoning and proposal probability form
hold for the forward move, but we have for the reverse direction:

11 expl—d(i,prev(i)/8]
u.y) = 2 |Vsl(y/)| Zkevg(y/)[i]\{i} exp [—d(i, k) /]
n 1 1 ~exp [—d(i, next(next(i))) /5]
2 Vi)l Zkev’f(y/)[i]\{i} exp [—d(i, k)/B]’

as client next(¢) is also relocated.

 For the serve request/remove request move, we have the forward probability:

H{Dy)\ Di(y)} Ui (y)| y 1
{Dy)\Di(y)} ULi(y)| + |D(y {D(y) \ D1(y)} ULi(y)|
1
|{D)\ Di(y)} UZi(y)| + [D(y)|

as(y,y') =

if the chosen move is remove request. The expression corresponds to the composition of
move choice sampling and uniform sampling over removable clients.

Still in the same case (remove request is chosen) and if the removed request ¢ was in
7, (y) (i.e., was the only client in the last non-empty route if the latter contained exactly one
client), we have the reverse move probability:

1

{DW)\Di(y)} ULi(y)| + [D(y")]
o ew[-diyd]

exp [—d(i)/B] + > kep(y) P [—d(i, k)/B]

1

- {{Dy)\ Di(y)} ULi(y)| + [D(y)|
o ew[-duyA

exp [—d(i)/B] + Zkek?é(iy) exp [—d(i, k)/B]

4y y) =

The expression corresponds to the composition of move choice sampling and softmax
sampling of the depot of the first empty route (which was the route of the removed client
1, so that ID(Y # 0 in this case). We use the average distance to dispatched clients

d(i) = y el 2 rep(y) A(i; k) as distance to the depot.
In the case where the removed request ¢ was not in Z; (y), we have instead:
0y y) = - =
{Dy)\Di(y)} UL (’)I+\D(y’)|
L 3exp=d(i,prev(i)] + § - exp [~ d(i, next()]
Lz)20y - exp [—d(i)/B] + ZkeD(y') exp [~d(i, k)/B]
1
- {P@)\Di(y)} ULi(y)| + [D(y)|
y 1 -exp [—d(i, prev(i))] + 5 - exp [—d(i, next(i))]

L{zp (yy20) - exp [—d(3)/B]+Zkek1;(y> exp [—d(i, k) /8]

The right term corresponds to softmax sampling of the previous node with "after" insertion
type (which has probability 1/2) and of the next node with "before" insertion type. The
non-emptiness of Zp(y’) is not guaranteed anymore, as all routes might be non-empty
(indeed, we did not create an empty one by removing i, as i € D(y) \ D1 (y) in this case).

29

714

715
716
717

718

719
720

721
722
723
724
725

726

727
728

729

730

731
732
733
734

735
736
737

738
739
740
741

742
743
744

745
746

Similarly, if the chosen move is serve request, we have the forward probability:

D)) B

{D(y) \ Di(y)} Ui (y)| + |D(y)|

% + €Xp [—d_(Z,])} + % - €Xp [—d(Z,]/)]
L{zpy)20} - exp [—d(i)/B] + > kep(y) &P [—d(i, k)/B]
if the selected insertion node j is not in Zp (y) (i.e., is not the depot of the first empty route
in y), where j' = prev(j) if the insertion type selected was "before" (which has probability
1/2), and j’ = next(j) if it was "after".
We have instead the forward probability:

4(y,y') =

X

1
{D(y)\ Di(y)} ULi(y)| + |D(y)|
y e [-d()/8]
exp [—d(i)/B] + X yep(y) exp [—d(i, k) /5]
if the selected insertion node j is in Zp (y) (i.e., is the depot of the first empty route in y).

In every case, we have the reverse move probability:
1

{Dy)\ Di(y)} ULi(y)| + |D(y)|

4s(y.y') =

4y’ y) =

In each case, we set d(i, D) = +o0 to account for the fact that the depot can never be sampled during
the process (except in the serve request/remove request move, where we allow the depot of
the first empty route / last non-empty route to be selected, for which we use the average distance to
other requests as explained earlier) — in fact, the distance measure from a client to the depot is not
even defined in the original HGS implementation.

The second correction factor needed is I‘g(y)l‘ (see Algorithm 2). We compute it by checking if each

move is allowed, i.e., if there exists at least one i € V}(y) such that V2(y)[i] \ {i} # (. This can be
determined in O(R¥) for each move.

D Details on the DVRPTW

D.1 Overview of the challenge.

We evaluate the proposed approach on a large-scale, ML-enriched combinatorial optimization prob-
lem: the EURO Meets NeurIPS 2022 Vehicle Routing Competition [27]. In this dynamic vehicle rout-
ing problem with time windows (DVRPTW), requests arrive continuously throughout a planning hori-
zon, which is partitioned into a series of delivery waves W = {[ro, 7], [11, 2], ..., [Tw)—1, 7w] }-

At the start of each wave w, a dispatching and vehicle routing problem must be solved for the set of
requests R* specific to that wave (in which we include the depot D), encoded into the system state
x“. We note) (x*) the set of feasible decisions associated to state x*.

A feasible solution y* €) (x*) must contain all requests that must be dispatched before 7, (the rest
are postponable), allow each of its routes to visit the requests they dispatch within their respective
time windows, and be such that the cumulative customer demand on each of its routes does not exceed

a given vehicle capacity. It is encoded thanks to a vector (yf J)l S eRw where y;’; = 1 if the solution

contains the directed route segment from i to j, and y;’; = 0 otherwise. The set of requests R¥*Lis
obtained by removing all requests dispatched by the chosen solution y* from R* and adding all new
requests which arrived between 7, and 7,4 1.

The aim of the challenge is to find an optimal policy f: X —) assigning decisions y* € Y(x*) to
system states £ € X. This can be cast as a reinforcement learning problem:

minE [ew(f)], with ew(f) = e(f(@*)),
wew
where ¢ : Yy = 37, . r. cijyi; gives the routing cost of y* € Y* and where ¢; ; > 0 is the
routing cost from 7 to j. The expectation is taken over full problem instances.

30

747

748
749
750
751
752
753
754

756
757
758
759
760
761
762

763

764
765
766
767

769

770
771
772
773
774
775
776
77

778
779
780
781
782

783

784
785

786

787

788
789

790
791

D.2 Reduction to supervised learning.

We follow the method of [4], which was the winning approach for the challenge. Central to this
approach is the concept of prize-collecting dynamic vehicle routing problem with time windows
(PC-VRPTW). In this setting, each request ¢ € R* is assigned an artificial prize 85 € R, that reflects
the benefit of serving it. The prize of the depot D is set to 6%, = 0. The objective is then to identify a
set of routes that maximizes the total prize collected while minimizing the associated travel costs. The

model gy predicts the prize vector 8 = gy (). Denoting ¢(y) := —(c, y), the corresponding
optimization problem can be written as
§O°) = argmax 3 07yi;— D, cisyis = (0%y) + o). (10)
yeY(xv) i,j ER® i,j ER®

The overall pipeline is summarized in Fig. 1. Following [4], we approximately solve the problem
in Eq. (10) using the prize-collecting HGS heuristic (PC-HGS), a variant of hybrid genetic search
(HGS) [49]. We denote this approximate solver y ~ v, so that their proposed policy decomposes
as fy = y o gw. The ground-truth routes are created by using an anticipative strategy, i.e., by
solving multiple instances where all future information is revealed from the start, and the requests’
arrival times information is translated into time windows (thus removing the dynamic aspect of the
problem). This anticipative policy, which we note f* (which cannot be attained as it needs unavailable
information) is thus the target policy imitated by the model — see Appendix D.7 for more details.

D.3 Perturbation-based baseline.

In [4], a perturbation-based method [6] was used. This method is based on injecting noise in the
PC-HGS solver y. Similarly to our approach, the parameters W can then be learned using a Fenchel-
Young loss, since the loss is minimized when the perturbed solver correctly predicts the ground
truth. However, since ¥ is not an exact solver, all theoretical learning guarantees associated with this
method (e.g., correctness of the gradients) no longer hold.

D.4 Proposed approach.

Our proposed approach instead uses the Fenchel-Young loss associated with the proposed layer, which
is minimized when the proposed layer correctly predicts the ground-truth. At inference time, however,
we use fiy = ¥ o gw. We use a mixture of proposals, as defined in Algorithm 2. To design each
proposal ¢,, we build randomized versions of moves specifically designed for the prize-collecting
dynamic vehicle routing problem with time windows. More precisely, we base our proposals on
moves used in the local search part of the PC-HGS algorithm, which are summarized in Table 4. The
details of turning these moves into proposal distributions with tractable individual correction ratios
are given in Appendix C.6.

We evaluate three different initialization methods: (i) initialize y(*) by constructing routes dispatching
random requests, (ii) initialize y(?) to the ground-truth solution, (iii) initialize y(°) by starting from
the dataset ground-truth and applying a heuristic initialization algorithm to improve it. This heuristic
initialization, similar to a short local search, is also used by the PC-HGS algorithm gy, and is set to
take up to half the time allocated to the layer (a limit it does not reach in practice).

D.5 Performance metric.

As the Fenchel-Young loss ¢; actually minimized is intractable to compute exactly, we only use the
challenge metric. More precisely, we measure the cost relative to that of the anticipative baseline,
ew (fw)—cw (f*)

o , which we average over a test dataset of unseen instances.

D.6 Results.

In Fig. 2, we observe that the initialization method plays an important role, and the ground-truth-based
ones greatly outperform the random one.

We observe that the number of Markov iterations K is an important performance factor. Interestingly,
the ground-truth initialization significantly improves the learning process for small K.

31

792
793
794
795
796
797

799

800
801

802

803
804
805
806
807
808
809
810
811
812
813
814
815
816
817

818
819
820
821
822

823
824
825
826

In Table 2, we compare training methods with fixed compute time budget for the layer (perturbed
solver or proposed MCMC approach), which is by far the main computational bottleneck. This
parameter limits the time allowed for a single forward pass through the combinatorial optimization
layer (be it the perturbed inexact oracle or the proposed method). In both cases, the backward pass
through the layer is immediate, as a property of the expression of the gradient of Fenchel-Young
losses. The models are selected using a validation set and evaluated on the test set. We observe that
the proposed approach significantly outperforms the perturbation-based method [6] using ¥ in low
time limit regimes, thus allowing for faster and more efficient training.

Full experimental details and additional results on the impact of temperature are given in Ap-
pendix D.7.

D.7 Additional experimental details and results for Section 4

Model, features, dataset, hyperparameters, compute. Following Baty et al. [4], the differentiable
ML model gy is implemented as a sparse graph neural network. We also use the same feature
set, which represents the system state £ as a vector comprising request-level features, such as
coordinates, time windows, demands, travel time to the depot, and quantiles from the distribution
of the travel time to all other requests (named complete feature set, and described in the Table 4 of
their paper). We use the same training, validation, and testing datasets, which are created from 30, 15
and 25 problem instances respectively. The training set uses a sample size of 50 requests per wave,
while the rest use 100. The solutions in the training dataset, i.e., the examples from the anticipative
strategy f* imitated by the model, are obtained by solving the corresponding offline VRPTWs using
HGS [49] with a time limit of 3600 seconds. During evaluation, the PC-HGS solver y is used with
a constant time limit of 60 seconds for all models. We use Adam [25] together with the proposed
stochastic gradient estimators, with a learning rate of 5 - 10~3. Each training is performed using only
a single CPU worker. For Fig. 2, we use a temperature ¢ = 10%. For Table 2, we use 1 Monte-Carlo
sample for the perturbation-based method and 1 Markov chain for the proposed approach (in order to
have a fair comparison: an equal number of oracle calls / equal compute).

Statistical significance. Each training is performed 50 times with the same parameters and different
random seeds. Then, the learning curves are averaged, and plotted with a 95% confidence interval.
For the results in Table 2, we report the performance of the best model iteration (selected with respect
to the validation set) on the test set. This procedure is also averaged over 50 trainings, and reported
with 95% confidence intervals.

Additional results. In Fig. 13, we report model performance for varying temperature ¢. Inter-
estingly, lower temperatures perform better when using random initialization. In the ground-truth
initialization setting, a sweet spot is found at t = 102, but lower temperatures do not particularly
decrease performance.

9

i

(@]

@]

(0]

= i
© 2.102
& 3.10% |
2 5102
2

0 T T T T 0 T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 13: Test relative cost (%). Left: varying temperature ¢ with random initialization. Right:
varying temperature ¢ with ground-truth initialization.

32

827

828

829
830

831
832

833
834
835

836

838
839
840

841
842

E Proofs

E.1 Proof of Eq. (4)

Proof. At fixed temperature t;, = ¢, the iterates of Algorithm 1 (MH case) follow a time-homogenous
Markov chain, defined by the following transition kernel Py ;:

¢ (y,y') min |1, ggyg; exp ((9,1/)+o(y)t*<9,y>*w(y))} ify' € N(y),
A .
Por(y:4) = V1= eniy) Por(y,y") ify' =y,
0 else.

Irreducibility. As we assumed the neighborhood graph G »r to be connected and undirected, the
Markov Chain is irreducible as we have Vy € V,Vy' € N(y), Po.+(y,y’) > 0.

Aperiodicity. For simplicity, we directly assumed aperiodicity in the main text. Here, we show

that this is a mild condition, which is verified for instance if there is a solution y €) such that
q(y,y) > 0. Indeed, we then have:

ngt(y, y) =1 _Z PG,t(ya y/)

Y EN (v)
/ / AN _
“1- Y q(.y)mn [ngy,z{; exp(<9,y>+<p(y)t 6, y) w(y))]
e a(y, y
>1- Y qy.y)
Y EN(y)
> q(y,y')
> 0.

Thus, we have Pg +(y,y) > 0, which implies that the chain is aperiodic. As an irreducible and
aperiodic Markov Chain on a finite state space, it converges to its stationary distribution and the latter
is unique [18]. Finally, one can easily check that the detailed balance equation is satisfied for g 4,
ie.

Vy,y' €Y, mo.1(y)Po.t(y,y') = mo..(y') Po.t (¥, y),
giving that g ; is indeed the stationary distribution of the chain, which concludes the proof. O

E.2 Proof of Proposition 2.1

Proof. Let @ € R% and t > 0. The fact that g;(0) € relint(C) = relint(conv()))) follows directly
from the fact that 4 (0) is a convex combination of the elements of) with positive coefficients, as
Yy € Y, mo.(y) > 0.

Low temperature limit. Let y* := argmax,cy(6,y) + ¢(y). The argmax is assumed to be
single-valued. Let y € Y \ {y*}. We have:

exp (M)
To.4(Y) = Zy’Gy exp (M)
_ exp (M)
" exp (20
. (<<o,y> +¢(y))]«9’ y*) + so(y*”)

0,

t—0+

33

843
844

846

847

849
850
851
852
853

854

855

856

857
858

859
860
861

as (0,y) + p(y) < (0,y*) + p(y*) by definition of y*. Thus, we have:
To(y") =1— Z 70,:(Y) ol L.
yeV\{v*}

Thus, the expectation of 7 ; converges to y*. Naturally, if the argmax is not unique, the distribution
converges to a uniform distribution on the maximizing structures.

High temperature limit. For all y €), we have:

exp ((&y):rw(y))

ey OXP ((9»y’>;rsa(y/))
I
t—o+oo” Y|’
as exp(z/t) m 1 for all z € R. Thus, mg ; converges to the uniform distribution on Y, and its

70,t(y) =

expectation converges to the average of all structures.

Expression of the Jacobian. Let 4; : 6 — ¢ -log}_, . exp ((0,y) + ¢(y)) be the cumulant
function of the exponential family defined by 7g ¢, scaled by ¢. One can easily check that we have
Vo A:(0) = y;(0). Thus, we have Joy;(0) = Vi A:(0). However, we also have that the hessian
matrix of the cumulant function 6 — 1 A4,(8) is equal to the covariance matrix of the random vector
% under 7g ; [51]. Thus, we have:

Joyi(0) = V5 Ai(0)
=t Vt% (11‘%(9))

=1t1-cov {}
— b ot
Tt

1
=7 COVrg, [Y].

E.3 Proof of Proposition 2.2

Proof. Let Kg ; be the Markov transition kernel associated to Algorithm 2, which can be written as:

1 : R W' Wmer(¥)) Y
2 sealy) @t % (Y ¥') min (1’ QW qs<y,y'>wi,tt<y)) if y' € N(y),

K n_ st qs(y,y')>0 .
07t(ya Y) 1— Zy“EJ\T(y) K@,t(y7 y//) if y/ =y,

0 else.

AsVy € Y, Vy' € N(y), Ko.(y,y') > 0, the irreducibility of the chain on) is directly implied by
the connectedness of G .

Thus, we only have to check that the detailed balance equation 7 :(y)Ko,(y,y’) =
70,4 (y') Ko +(y',y) is satisfied for all y’ € N (y). We have:
!

n_ sy Y)moe(y) (1 QW ¢y y)mo.(y)
oy y) = 2 e (g vt

st gs(y,y')>0
The main point consists in noticing that the undirectedness assumption for each neighborhood graph

G, implies:

{s€ QW) a4y, y) >0} ={s € QW) : as(¥',y) > 0}
Thus, a simple case analysis on how |Q(y)|qs(y', y)mo,:(y') and |Q(y')|¢s(y, Yy’)70, (y) compare
allows us to observe that the expression of mg . (y)Kg . (y,y’) is symmetric in y and y’, which
concludes the proof. O

34

862

863
864

865
866

867
868

870
871
872
873

874

875
876

877

E.4 Proof of strict convexity

Proof. As A, is a differentiable convex function on R? (as the log-sum-exp of such functions), it is
an essentially smooth closed proper convex function. Thus, it is such that

relint (dom((A)*)) € VA;(R?) C dom((A4;)*),
and we have that the restriction of (A4;)* to VA;(RY) is strictly convex on every convex subset
of VA;(R?) (corollary 26.4.1 in Rockafellar [42]). As the range of the gradient of the cumulant
function 8 — A;(0)/t is exactly the relative interior of the marginal polytope conv ({y/t,y € V})
(see appendix B.1 in Wainwright and Jordan [51]), and (A;)* =: €, we actually have that
relint (dom(€2;)) C relint(C) C dom(€,),

and that €, is stricly convex on every convex subset of relint(C), i.e., strictly convex on relint(C) (as
relint(C) is itself convex).

As A; is closed proper convex, it is equal to its biconjugate by the Fenchel-Moreau theorem. Thus,

we have:
Ai(0) = sg£d{<0,u> —(A)"(n)} = Sg£d{<0,u> — Qe (p)}

Moreover, as VA;(R?) = relint(C), we have |[VA.(0)|| < Rc = max,cc ||p||, which gives
dom(€2;) C B(0, R¢). Thus we can actually write:
A(0) = sup {(6,) — Qu(p)},
neEB(0,Re)
and now apply Danksin’s theorem as B(0, R¢) is compact, which further gives:
0AL(0) = argmax {(O,u) — Q(p)},
neB(0,Rc)
and the fact that A, is differentiable gives that both sides are single-valued. Moreover, as VA, (R?) =
relint(C), we know that the right hand side is maximized in C, and we can actually write:

VA(8) = argemcax{<97u> —(p)}.

We end this proof by noting that a simple calculation yields VA:(8) = Er, , [Y] = 9:(0). The
expression of Vg/:(0 ;y) follows. O

Remark E.1. The proposed Fenchel-Young loss can also be obtained via distribution-space regular-
ization. Let sg .= ({6, y) + ©(¥)) ey € RI¥I be a vector containing the score of all structures, and

L_ii : RYI 5 APl — R be the Fenchel-Young loss generated by —t H, where H is the Shannon
entropy. We have V., (—tH)*(sg) = mg,;. The chain rule further gives Vo(—tH)*(sg) = Er, , [Y].
Thus, we have Vo L_;x (56 ;Py) = Veol:(0;y), where p,, is the dirac distribution on y. In the case
where ¢ = 0 and t = 1, we have Q;(p) = — (max,e | H*(p) s.t. Ep [Y] = p), with H* the
Shannon entropy [8], and ¢; is known as the CRF loss [29].

E.5 Proof of Proposition 3.1

Proof. The proof is exactly the proof of Proposition 4.1 in Berthet et al. [6], in which the setting is
similar, and all the same arguments hold (we also have that 7g, is dense on), giving Y € relint(C)
for N large enough). The only difference is the choice of regularization function, and we have to
prove that it is also convex and smooth in our case. While the convexity of €, is directly implied by
its definition as a Fenchel conjugate, the fact that is is smooth is due to Theorem 26.3 in Rockafellar
[42] and the essential strict convexity of A; (which is itself closed proper convex). The latter relies
on the fact that C is assumed to be of full-dimension (otherwise A; would be linear when restricted to
any affine subspace of direction equal to the subspace orthogonal to the direction of the smallest affine
subspace spanned by C), which in turn implies that A, is strictly convex on R?. Thus, Proposition 4.1
in Berthet et al. [6] gives the asymptotic normality:

VN(B3 — 80) —"— N (0, (V3A:(60)) " cova, , [V] (V3A:(60))) -

Moreover, we already derived V3 A;(6) = 1 COVry, . [Y] in Appendix E.2, leading to the simplified
asymptotic normality given in the proposition.

O

35

878

879
880
881

882

883
884

885

886
887

888

889

890

892

893

894

895
896

898

899
900
901

E.6 Proof of Proposition 3.2

Proof. The proof consists in bounding the convergence rate of the Markov chain (y(k)) keN (which

has transition kernel Py ;) for all 6, in order to apply Theorem 4.1 in Younes [52]. It is defined as the
smallest constant A\g such that:

JA>0: Yy eV, [Py™ =y) — mo.(y)] < AN

More precisely, we must find a constant D such that 3B > 0 : \g < 1 — Be POl in order to
impose K q1 > Ll +d exp (2D\|én\|>J.

A known result gives \g < p(8) with p(0) = maxycg,\ (1} |A| [32], where S is the spectrum of the
transition kernel Py ; (here, 1 — p(@) is known as the spectral gap of the Markov chain). To bound
p(0), we use the results of Ingrassia [23], which study the Markov chain with transition kernel Py ,,

such that Py ; = % (I + PAt). It corresponds to the same algorithm, but with a proposal distribution
¢’ defined as:

* ify € N(y),
7 (y)=1-"9 ify =y,
0 else.

As P, , is a row-stochastic matrix, Gershgorin’s circle theorem gives that its spectrum is included
in the complex unit disc. Moreover, one can easily check that the associated Markov chain is also
reversible with respect to g ;, and the corresponding detailed balance equation gives:

Vy,y' €V, m0.+(y)Po (¥, y") = T0.:(y') Po (¥, ¥),

which is equivalent to:

7T9,t(y) ’ no__ 7r19-,t(y/)
To.4(y’) 0:(4:Y) = To.t(Y)

as mg ¢ has full support on Y, which can be further written in matrix form as:

vy,y/ S yv é,t(y/7y)

1/2 1/2 1/2 1/2
/Py 11y % =11, 2 Pyl 1y %,

where Iy = diag(mg.;). Thus, the matrix Hl/ QP;) ,H 1/2 is symmetric, and the spectral theorem
ensures its eigenvalues are real. As it is 51m11ar to the transition kernel P ; (with change of basis
matrix H_l/ %), they share the same spectrum S, and we have S C [—1,1]. Let us order S as
1N < <M <N, =1 As Poy = %(IJFPG’,J), we clearly have p(§) = 12,

Thus, we can use Theorem 4.1 of Ingrassia [23], which gives A, < 1 — G - Z(0) exp(—m (0)) (we
keep their notations for Z and m, and add the dependency in 8 for clarity), where G is a constant
depending only on the graph G s, and with:

Zexp(, Y) +<p(y) g}g§[<9,y’>:w(y’)b

yey
1
- [. :
> IyeXp(t [gﬂn(b’, y) + minp(y) — max(6, y') — max o(y’)D

2R, 2R
> |yexp(‘3|0||—)7

36

902

903

904

905

906
907

908

909

911

912

and:

) < max{max [+ oy’)} Oy + sa(y)} B Qmin{max {<0, y') t+ w(y’)} (8, y) +o(y)
yey (y'ey t yey |y’ ey t

~ ma {)}_min[@ y>+¢(y)}
y'e yey t

< % ()+ maxsa(") - gleijr}@ Y) — ryﬂglg@(@/))

< 2]+ ﬁ

where Re = maxycy ||y|| and R, = maxycy [¢(y)|. Thus, we have:

4R 4R
Ny <1—GlY|exp <_t¢> exp(C|9||)

and finally:

G|Y|exp _ AR, 4
No <1- 2(:)exp (— fCHHI),

so taking D = 4R/t concludes the proof.
O

Remark E.2. The stationary distribution in Ingrassia [23] is defined as proportional to exp (—H (y)),
with the assumption that the function H is such that miny,ey H(y) = 0. Thus, we apply their results

with
. 0,y)+oy)] (0,y)+9(y)
Hly) = zrln?%[t } a t

(which gives correct distribution g ; and respects this assumption), hence the obtained forms for
Z(0) and the upper bound on m(8).

E.7 Proofs of Proposition C.1 and Proposition C.2

Proposition C.1. The distribution of the first iterate of the Markov chain with transition kernel defined
in Eq. (3) and initialized at the ground-truth structure y is given by:

(Phay) (W) = Po.i(y,y)
gy, y') min |1, L2 exp([<0,y’fy>+s0(y’)*s0(y)]/t)] ify’ € N(y),

=41 = eniy (Po), (") ify =y,
0 else.

Let ay(0,y') == E y,g exp ([(0,y" — y) + o(y') — v(y)] /t). Define also the following sets:
Ny (0) ={y' e N(y) [ay(0,9) <1}, N (0) = {y' € N(y) [ay(6,9) > 1}.

The expectation of the first iterate is then given by:

Eo Y= >)W) v+ (1= (o)) | v

Yy eN(y) Yy EN(y)
=y+ > Py —y)
Yy EN(y)
=y+ Y. @, y)exp((0,Y —y) +eW) -] /)W —y) + > g
VEN, (8) vEN (0)

37

(Y —y).

|

o13 Letnow fy, : R? x N(y) — R be defined as:

t-q(y,y)exp ([(0,y" —y) +o(y') — ¢(y)] /t) if ay(6,y) <1,
t-a(y.y') ([(9,y’—y>+<p(y’) e(y)] /t+1—log EZ”yg) if ay(6,y") > 1.

fy : (e;y/)'_){

Let Fy : 0 — (0,Y) +3_, cn(y) fu(6:9'). We define the target-dependent regularization function
2y and the corresponding Fenchel-Young loss as:

Qy:p (Fy) (1), Lo, (0:y) = (2y)"(0) + Qy(y) — (6,9).

914 « Qyist/Eqy,.)|[Y — y||3-strongly convex:

One can easily check that fy(-;vy’) is continuous for all y’ € N (y), as it is defined piecewise as
continuous functions that match on the junction affine hyperplane defined by:

a(y,y")

{0 eR[ay(6:y) =1} = {9 ER'| 0.y —y) =tlog_Z=5 + o) — W) |-
Moreover, we have that f,,(-;y’) is actually differentiable everywhere as its gradient can be continu-
ously extended to the junctlon affine hyperplane with constant value equal to ¢(y, y')(y" — y). We
now show that fy (-;9') is $q(y,¥y’) - ||y’ — y||*>-smooth. Indeed, it is defined as the composition of
the linear form @ — (6, y’ — y) and the function g : R — R given by:

v)
)

X =
9 t.q(y7y’)([x+<p(y’)—<p(y)]/t—|—1 1ogq(yyg) 1f1:>tlogggy,y +

t-q(y',y)exp ([+ (y) — ¢(y)] /1) if < tlog L% + o(y) — (y),
¥

We begin by showing that g is %q(y7 y')-smooth. We have:

, A’ y)exp ([+ o(y) — e(y)] /1) ifw < tlog HE%5 + o(y) — o(v)).
g v (v,9") ’
a(y,y") if v > tlog T225 + 0(y) — o(y).

Thus, ¢’ is continuous, and differentiable everywhere except in z(:= t log % + o(y) — o(y').

Its derivative is given by:

BTSN {161(1/,1/) exp ([+@(y') — p(y)] /t) ifz < tlog LLLI yyﬂ +o(y) — oY)

0 if x > tlog Zéz’?yg +¢(y) — o(y').

915 e For x1, x5 < x9, we have:

|9/ (21) — g'(22)| < [x1 —w2| sup [g"()|
TE€]—00,x0]

o1 — o3 Jim |g"(@)
rx<xo

1
EQ(y,y/) : |901 - 562|~

916 * For z1,29 > x, we trivially have |¢’(21) — ¢'(x2)| = 0.
917 e For x1 < zg < x5, we have:

(9'(x1) = g'(x0)) = (¢'(22) — ¢ (x0))]

|9'(z1) — g (22)| =

<|g'(z1) = ¢'(z0)| + |¢' (x2) — ¢ (x0)|
1

< Ja(y:y) - lor — o
1

< Sy y) o — .

38

918
919

920

921

922

923

Thus, we have:

—_

Vzy, 20 € R, [¢'(21) — ¢/ (x2)] < Q(ZI Y') - w1 — xa,

and g is %q(y, y’)-smooth. Nevertheless, we have fy(-,y") = g((-,y’ — y)). Thus, we have, for
01, 0, € R4

Vo fy(01,y") — Valy(02,9)l = lg' (01,9 —v) (¥ —y) — g’ (62,9 —) (¥ —)|
l9'((01, 9" —) — g' (62,9 —)| - ||y’ — vl

1
;q(y,y’) 01,y —y) — (02,9 —y)| - [y — vl

1
< <alwy) - Iy’ —yl|* (|61 — 62|,

and fy(-,y’)is 7q(y, y') - ||y’ — yl|*-smooth. Thus, recalling that F}, is defined as

Fy:0=0,9)+ > fy(6;9),
y'EN(y)

IN

N

we have that Fy is 3,/ n(y) 1q9(y.y') - |1y — ylI> = Egy, H||Y — yl|3/t-smooth. Finally, as
Qy = (Fy)*, Fenchel duality theory gives that €y, is t/Ey(, .)||Y — y||3-strongly convex.

* B [Y] = argmax,,cconvnv(m)uty)) 1005 1) = Qy (1) }:

Noticing that ¢ is continuous on R, convex on]—oo,tlog ZEZ/yg;; + o(y) —¢(y’')| and on

tlog E ; +o(y) — o(y'), +o00 [, and with matching derivatives on the junction:

ttlog LU 4o (y)—p(y') 1=t log LHY 4 o(y)—p(y)
g'(t) a(y.y), g'(t) a(y.y'),
t<tlog 4%, yy; +oly)—e(¥) t>tlog LYY 1o (y)—p(y')

gives that g is convex on R. Thus, f,(-;¥’) is convex on R? by composition. Thus,
Fy:0(0,y)+ Y f,(6:9)
Yy EN(y)

is closed proper convex as the sum of such functions. The Fenchel-Moreau theorem then gives that it
is equal to its biconjugate. Thus, we have:

Fy(0) = sup {(0,pn) — (Fy)" ()} = sup {(0,) — Qy(p)} -
HERC pHERE

Nonetheless, the gradient of Iy, is given by:

VoFy(@) =y+ Y a v)exp (6,4 —v)+9(¥)—o@)]/t) (' —y) + >, aw.y) ¥ -y
y'ENy () y'eNy (6)
=B, Y1

Thus, we have VF, (R?) C conv (N (y) U {y}), which gives:

VO € R, ||VE,(0)|| < R = max ,

IVE, O < By = max [l
so that we have dom(€),) C B(0, Rjr(y)). Thus we can actually write:
Fy(@)= sup {(6, 1) — Qy(p)},

HEB(0,Rpr(y))

and now apply Danksin’s theorem as B(0, R/ (y)) is compact, which further gives:

OF,(0) = argmax {(6,1) —)},
HGB(O,RN(y))

39

924

925

926

927
928

929

930
931

932

933

934

935

936

937

and the fact that F}, is differentiable gives that both sides are single-valued. Moreover, as V I, (R?) C
conv (M (y) U{y}), we know that the right hand side is maximized in conv (N (y) U {y}), and we

can actually write:
E o Y] =VF,(0) = argmax
oy peEconv(N (y)U{y})

{(0, 1) = Qy(p)} -

* Smoothness of Lo, (-;y) and expression of its gradient:

Based on the above, we have:
Lo, (0;y) = Fy(0) + Qy(y) — (0,).
Thus, the E,(y, .)|[Y — y||3/t-smoothness of Lg, (- ;y) follows directly from the previously estab-

lished Eqy, .)||Y" — yl|3/t-smoothness of F,. Similarly, the expression of VgLq, (6 ;y) follows
from the previously established expression of Vg Fy,(8), and we have:

VeoLa,(0;y) =VeFy(0) —y = E,m Y] —y.
O
Proposition C.2. Tn the unsupervised setting, given a dataset (y;)Y,, the distribution of the first
iterate of the Markov chain with transition kernel defined in Eq. (3) and initialized by y(*) = y;, with

i ~U([1, N]), is given by:

Py,)(Y) =

D

y' ey

al 1
<Z Lyi=yy - N) Poi(y',y)
> (Zl{yi e N) Po.y (y)
y’Ey

- N Zpe,w

Thus, keeping the same notations as in the previous proof, previous calculations give:

Y= 5 2 B, I

E o

Po vy

I

=

]
<
)
oy
=

N
Vo (;T ZF) (6).

Let Fy, = ZZ\LI F,, Then, the exact same arguments as in the supervised case hold, and the
results of Proposition C.2 are obtained by replacing I, by Fy,, in the proof of Proposition C.1,
and notlcmg that the previously shown E . ||Y —y; H /t-smoothness of Fy, gives that Fy, is

~ Zi:l Eq(ys,) ||Y — il[3/t-smooth. Slmllar arguments also hold for the regularized optimization
formulation, by noting that this time we have VFy. (R%) C conv (Ufil {N(y:) U {yz}}> O

E.8 Proof of Proposition C.3

Proof. The first point is directly given by the fact that]Epu) [Y] is the expectation of a distribution
6,y
over N () U {y}. For the second and third points, as derived in Appendix E.7, we have:

EoM=y+> ¢ eI/ —y) + > g

Y ENy (6) y'ENy (0)

q(y',y)exp (8,9 —y) +o(y) —

40

(Y —y).

938 Define then:
Noetrer (y) = {y" € N(y) | (0,9) +0(y') > (0,y) + (y)},
Noorse(y) =A{y" € N(w) [(0, 9') + o(y') < (0,y) + »(y)}
939 as the sets of improving and worsening neighbors of y respectively (assuming no neighbor of y has

a0 exactly equal objective value for simplicity, which is true almost everywhere w.r.t. 8 € R?).

941 Low temperature limit. We have:

N;(e) m -/\/;)etter(y)7 and Ny_ (0) —_— Nworse(y)-

t—0+

Then, as z < 0 = exp(z/t) — 0, we have effectively
t—0

’ r_
Eo Y ——y+ > ayy) -y
y,e-/\/i)elter(y)

942 High temperature limit. AsVz € R, exp(z/t) ﬁ 1, we have:
—+00

NS (O) —— {y e N) | q(v',y) > q(y,y')}, and N (0) o WeNw la) < (v y)}

t——+oo

943 Thus, we have:
! / / /
Eo Vvt >) @-w+ Y awy) W -w)
yla(y ,y)<(y,y’) y'la(y’,y)>(y,y')
944 which gives effectively:
E,o Y] ———y+ Y minfe(y,y).qy" v o - v).
’ Yy eN(y)

945 O]

41

946

947

948
949

950

951
952

953

954
955

956
957
958

959
960

961
962

963

964

965

966

967

968
969

970

971
972
973
974
975
976
977
978
979
980
981
982
983

984
985

986
987

988
989
990
991
992
993

994

995
996

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we clearly outline the specific settings ad-
dressed in this paper and the corresponding contributions.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a discussion on the limitations of this work in the conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

42

997

998
999

1000

1001

1002
1003

1004
1005
1006
1007

1008
1009

1010

1011

1012
1013
1014

1015

1016
1017
1018

1019

1020

1021
1022
1023

1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

Answer: [Yes]

Justification: All proofs are included in the appendix, and provide the full set of needed
assumptions.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main contributions of the paper are high-level training algorithms, which
are described in detail. Additionally, the numerical experiments are carefully documented to
ensure they are as reproducible as possible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

43

1051

1052
1053
1054

1055

1056
1057
1058

1059

1060

1061
1062

1063
1064
1065
1066

1067
1068
1069

1070
1071

1072
1073
1074

1075
1076

1077
1078
1079

1080
1081
1082

1083

1084
1085

1086

1087

1088
1089

1090
1091

1092

1093
1094

1095

1096
1097

1098

1099

1100
1101
1102

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data of the EURO Meets NeurIPS 2022 Vehicle Routing Competition is
accessible online. Apart from this, we only use synthetic data, for which the generation
process is detailed. We will release the code upon acceptance of the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present the experimental setting with sufficient level of detail to fully
appreciate the results in the core of the paper, and give full details in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We average experiments over multiple runs with varying seeds and report error
bars and statistical significance statements in consequence.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

44

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

1103
1104
1105

1106
1107

1108

1109
1110

1111
1112
1113

1114
1115
1116

1117
1118

1119

1120
1121
1122

1123

1124

1125

1126

1127
1128

1129
1130

1131
1132
1133

1134

1135
1136

1137

1138
1139

1140

1141

1142
1143

1144
1145

1146

1147
1148

1149

1150
1151
1152

1153

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include sufficient relevant information on the compute resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and ensured that all
aspects of the research comply with its guidelines.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As this is a foundational research paper, we do not foresee direct negative
societal impacts in its current form. Potential negative impacts would depend on downstream
applications, which are beyond the scope of this work.

Guidelines:

45

https://neurips.cc/public/EthicsGuidelines

1154

1155
1156

1157
1158
1159
1160

1161
1162
1163
1164
1165
1166
1167

1168
1169
1170
171

1172
1173
1174
1175

1176

177
1178
1179

1180

1181

1182

1183

1184
1185
1186
1187

1188
1189

1190
1191
1192

1193

1194
1195
1196

1197

1198
1199

1200

1201
1202

1203
1204

1205

11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: this work does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit original papers for the code we use (Vidal [49] and Baty
et al. [4]), and proper credit will be also given in the released code.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

46

1206
1207

1208
1209
1210
1211

1212
1213

1214
1215
1216

1217
1218

1219

1220

1221

1222

1223
1224
1225

1226
1227

1228
1229

1230

1231
1232
1233

1234

1235

1236

1237

1238

1239
1240
1241

1242
1243
1244

1245
1246

1247
1248
1249
1250

1251

1252

1253

1254
1255

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No assets are released.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

47

paperswithcode.com/datasets

1256
1257
1258
1259
1260
1261
1262
1263

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

48

	Introduction
	Local search based MCMC layers
	From local search to MCMC
	Mixing neighborhood systems

	Loss functions and theoretical analysis
	Negative log-likelihood and associated Fenchel-Young loss
	Empirical risk minimization
	Convergence analysis in the unsupervised setting

	Experiments on dynamic vehicle routing
	Background and Related Work
	Combinatorial optimization as a layer
	Contrastive divergences

	Experiments on empirical convergence of gradients and parameters
	Polytopes and corresponding oracles
	Neighborhood graphs
	Convergence to exact gradients
	Convergence to exact parameters

	Additional material
	Mixing neighborhood systems: a discussion
	Associated Fenchel-Young loss with a single MCMC iteration
	Fenchel-Young loss for K=1 in the unsupervised setting
	Properties of the expected first iterate
	Markov chain initialization
	Proposal distribution design for the DVRPTW

	Details on the DVRPTW
	Overview of the challenge.
	Reduction to supervised learning.
	Perturbation-based baseline.
	Proposed approach.
	Performance metric.
	Results.
	Additional experimental details and results for sec:dvrptw

	Proofs
	Proof of eq:stationarygibbs
	Proof of prop:layerproperties
	Proof of prop:mixturesa
	Proof of strict convexity
	Proof of prop:asympnormality
	Proof of prop:stochasticgradientestimate
	Proofs of prop:1stepfylsup and prop:1stepfylunsup
	Proof of prop:onestepproperties

