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Abstract

Integrating combinatorial optimization layers into neural networks has recently1

attracted significant research interest. However, many existing approaches lack2

theoretical guarantees or fail to perform adequately when relying on inexact solvers.3

This is a critical limitation, as many operations research problems are NP-hard,4

often necessitating the use of neighborhood-based local search heuristics. These5

heuristics iteratively generate and evaluate candidate solutions based on an ac-6

ceptance rule. In this paper, we introduce a theoretically-principled approach7

for learning with such inexact combinatorial solvers. Inspired by the connection8

between simulated annealing and Metropolis-Hastings, we propose to transform9

problem-specific neighborhood systems used in local search heuristics into pro-10

posal distributions, implementing MCMC on the combinatorial space of feasible11

solutions. This allows us to construct differentiable combinatorial layers and asso-12

ciated loss functions. Replacing an exact solver by a local search strongly reduces13

the computational burden of learning on many applications. We demonstrate our14

approach on a large-scale dynamic vehicle routing problem with time windows.15

1 Introduction16

Models that combine neural networks and combinatorial optimization have recently attracted sig-17

nificant attention [14, 39, 8, 6, 50, 5, 34, 43, 7]. Such models enable the transformation of learned18

continuous latent representations into structured discrete outputs that satisfy complex constraints.19

They enrich combinatorial optimization algorithms by providing them with context-dependent fea-20

tures, making decisions more resilient to uncertainty. An important subset of this line of research21

involves integrating, within a neural network, a linear programming layer of the form:22

θ 7→ argmax
y∈Y

⟨θ,y⟩ ⊆ argmax
y∈conv(Y)

⟨θ,y⟩, (1)

where Y is a finite set of feasible outputs. In the graphical model and structured prediction literature,23

this is often called the maximum a posteriori (MAP) problem [51]. The main challenge in using24

such layers lies in their end-to-end model training. Indeed, as piecewise-constant, discontinuous25

functions, such layers break the differentiable programming computational graph, and prevent one26

from backpropagating meaningful gradients from the final output of the model to its parameters.27

Many approaches have been proposed to derive relaxations and loss functions for this setting; see28

Appendix A for a detailed review and overview of relevant related work. To methodologically29

position our work, Table 1 provides a high-level overview of foundational approaches, contrasting30

them based on the type of oracle they assume access to. Some rely on an oracle for solving a31

regularized version of Eq. (1), such as a quadratic or entropy-regularized program. They typically32

perform a single oracle call per data point. Some other approaches assume access to an oracle33

for solving the original linear program (i.e., a MAP oracle), but perform multiple oracle calls, for34

smoothing reasons. Their theoretical guarantees usually assume an oracle returning exact solutions.35
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Table 1: The proposed approach leverages the neighborhood systems used by local search heuristics
(inexact solvers) to obtain a differentiable combinatorial layer when usual oracles are not available.

Regularization Oracle Approach

Differentiable DP (2009, 2018) Entropy Exact marginal DP
SparseMAP (2018) Quadratic Exact MAP Frank-Wolfe
Barrier FW (2015) TRW Entropy Exact MAP Frank-Wolfe

IntOpt (2020) Log barrier Interior point solver Primal-Dual
Perturbed optimizers (2020) Implicit via noise Exact MAP Monte-Carlo

Blackbox solvers (2020) None Exact MAP Interpolation
Contrastive divergences (2000) Entropy Gibbs / Langevin sampler MCMC

Proposed Entropy Local search MCMC

Unfortunately, many problems in operations research are NP-hard in nature (e.g., routing, scheduling,37

network design), making access to an exact oracle difficult. In contrast, operations research applica-38

tions often rely on local search heuristics, such as simulated annealing. These heuristics iteratively39

generate a neighbor of the current solution, and either accept it or reject it based on an acceptance40

rule. The aim of this work is to provide a theoretically-principled approach for learning with such41

inexact solvers. To do so, we propose to leverage unexploited links between neighborhood-based,42

local search heuristics used to approximately solve combinatorial problems, and Markov chain43

Monte-Carlo (MCMC) methods used to perform approximate marginal inference in graphical models.44

Contributions. (i) We enable the integration of local search heuristics as layers into ML models, by45

converting their neighborhood systems into proposal distributions for a discrete MCMC sampler over46

the combinatorial set of solutions. (ii) We extend our framework to handle local search heuristics that47

leverage a diversity of neighborhood systems, enabling this powerful class of solvers to be used as a48

unified MCMC sampler. (iii) We show that there exist Fenchel-Young losses [8] whose stochastic49

gradients are given by the proposed layer (even with a single MCMC iteration), leading to principled50

learning algorithms in both supervised and unsupervised settings, for which we provide a convergence51

analysis. (iv) We demonstrate our approach on the EURO Meets NeurIPS 2022 challenge [27], a52

large-scale, ML-enriched dynamic vehicle routing problem with time windows (DVRPTW), which53

involves an intractable combinatorial optimization problem. In Appendix B, we also empirically54

validate the quality of the proposed gradient estimators through abundant experiments.55

Problem setup. In this paper, our goal is to learn models with an optimization layer of the form56

ŷ : θ 7→ argmax
y∈Y

⟨θ, y⟩+ φ(y), (2)

57 where θ ∈ Rd and Y ⊂ Rd is a finite but combinatorially-large set. This formulation is a general-58

ization of the standard linear objective in Eq. (1). The function φ : Y → R is an integral part of the59

problem definition, capturing any structural costs or preferences (e.g., routing distances, fixed costs)60

that are independent of θ. We focus on settings where this optimization problem is intractable and61

only heuristic algorithms are available to obtain an approximate solution. We distinguish between62

two settings. In the unsupervised setting, our goal will be to learn θ ∈ Rd from observations63

y1, . . . ,yN ∈ Rd. In the supervised setting, we will assume that θ = gW (x) and our goal will be to64

learn the parameters W from observation pairs (x1,y1), . . . , (xN ,yN ).65

2 Local search based MCMC layers66

In this section, we show how to design principled combinatorial layers without relying on exact MAP67

solvers, by transforming local search heuristics into MCMC algorithms.68

2.1 From local search to MCMC69

Local search and neighborhood systems. Local search heuristics [19] iteratively generate a70

neighbor y′ ∈ N (y(k)) of the current solution y(k), and either accept it or reject it based on an71

acceptance rule. In this context, a neighborhood system N defines, for each feasible solution y ∈ Y ,72

a set of neighborsN (y) ⊆ Y . Neighborhoods are problem-specific, and must respect the structure of73

the problem, i.e., must maintain solution feasibility. They are typically defined implicitly via a set of74

allowed moves from y. For instance, Table 4 lists example moves for a vehicle routing problem.75
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Algorithm 1 SA / MH as a layer

Inputs: θ∈Rd, y(0)∈Y , (tk), K∈N, N , q
for k = 0 : K do

Sample a neighbor in N (y(k)):
y′ ∼ q

(
y(k), ·

)
α(y(k),y′)← 1 (SA) or

α(y(k),y′)← q(y′,y(k))
q(y(k),y′)

(MH)
U ∼ U([0, 1])
∆(k)←⟨θ,y′⟩+φ(y′)−⟨θ,y(k)⟩−φ(y(k))
p(k) ← α(y(k),y′) exp

(
∆(k)/tk

)
If U ≤ p(k), accept move: y(k+1) ← y′

If U > p(k), reject move: y(k+1) ← y(k)

end for
Output: ŷ(θ) ≈ y(K) (SA) or
ŷt(θ) = Eπθ,t

[Y ] ≈ 1
K

∑K
k=1 y

(k) (MH)

Algorithm 2 Neighborhood mixture MCMC

Inputs: θ∈Rd, y(0)∈Y, t, K∈N, (Ns,qs)
S
s=1

for k = 0 : K do
Sample a neighborhood system:
s ∼ U(Q(y(k)))
Sample a neighbor in Ns(y

(k)):
y′ ∼ qs(y

(k), ·)
αs(y

(k),y′)← |Q(y(k))|
|Q(y′)|

qs(y
′,y(k))

qs(y(k),y′)

U ∼ U([0, 1])
∆(k)←⟨θ,y′⟩+φ(y′)−⟨θ,y(k)⟩−φ(y(k))
p(k) ← αs(y

(k),y′) exp
(
∆(k)/t

)
If U ≤ p(k), accept move: y(k+1) ← y′

If U > p(k), reject move: y(k+1) ← y(k)

end for
Output: ŷt(θ) = Eπθ,t

[Y ] ≈ 1
K

∑K
k=1 y

(k)

Formally, we denote the neighborhood graph by GN := (Y, EN ), where edges are defined byN . We76

assume the graph is undirected, i.e., y′ ∈ N (y) if and only if y ∈ N (y′), and without self-loops –77

i.e., y /∈ N (y). A stochastic neighbor generating function is also provided, in the form of a proposal78

distribution q(y , · ) with support either equal to N (y) or N (y) ∪ {y}.79

Link between simulated annealing and Metropolis-Hastings. A well-known example of local80

search heuristic is simulated annealing (SA) [26]. It is intimately related to Metropolis-Hastings81

(MH) [21], an instance of a MCMC algorithm. We provide a unified view of both in Algorithm 1.82

The difference lies in the acceptance rule, which incorporates a proposal correction ratio for MH,83

and in the choice of the sequence of temperatures (tk)k∈N. In the case of SA, it is chosen to verify84

tk −→ 0. In the case of MH, it is such that tk ≡ t. In this case, the iterates y(k) of Algorithm 1 follow85

a time-homogenous Markov chain on Y , defined by the following transition kernel:86

Pθ,t(y,y
′) =


q (y,y′)min

[
1, q(y′,y)

q(y,y′) exp
(

⟨θ ,y′⟩+φ(y′)−⟨θ,y⟩−φ(y)
t

)]
if y′ ∈ N (y),

1−∑y′′∈N (y) Pθ,tk(y,y
′′) if y′ = y,

0 else.

(3)

87 In past work, the link between the two algorithms has primarily been used to show that SA converges88

to the exact MAP solution in the limit of infinite iterations [36, 17]. Under mild conditions – if the89

neighborhood graph GN is connected and the chain is aperiodic – the iterates y(k) of Algorithm 190

(MH case) converge in distribution to the Gibbs distribution (see Appendix E.1 for a proof):91

πθ,t(y) ∝ exp ([⟨θ , y⟩+ φ(y)] /t) . (4)

92 Proposed layer. Algorithm 1 and this result motivate us to define the combinatorial MCMC layer93

ŷt(θ) := Eπθ,t
[Y ] , (5)

where θ ∈ Rd are logits and t > 0 is a temperature parameter, defaulting to t = 1. Naturally, the94

estimate of ŷt(θ) returned by Algorithm 1 (MH case) is biased, as the Markov chain cannot perfectly95

mix in a finite number of iterations, except if it is initialized at πθ,t. In Section 3, we will show96

that this does not hinder the convergence of the proposed learning algorithms. The next proposition,97

proved in Appendix E.2, states some useful properties of the proposed layer.98

Proposition 2.1. Let θ ∈ Rd. We have the following properties:

ŷt(θ) ∈ relint(C), ŷt(θ) −−−−→
t→0+

argmax
y∈Y

⟨θ, y⟩+ φ(y), and ŷt(θ) −−−→
t→∞

1

|Y|
∑
y∈Y

y .

Moreover, ŷt is differentiable and its Jacobian matrix is given by Jθŷt(θ) =
1
t covπθ,t

[Y ] .99
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2.2 Mixing neighborhood systems100

Central to local search algorithms in combinatorial optimization is the use of multiple neighborhood101

systems to more effectively explore the solution space [37, 10]. We now present a tractable way to102

incorporate such diversity of neighborhood systems into the proposed layer, while preserving the cor-103

rect stationary distribution, by mixing the corresponding proposal distributions. A discussion giving104

intuition on why the proposed method is crucial to get tractable updates is given in Appendix C.1.105

Definitions. Let (Ns)
S
s=1 be a set of different neighborhood systems. Typically, all neighborhood106

systems are not defined on all solutions y ∈ Y , so we note Q(y) ⊆ J1, SK the set of neighborhood107

systems defined on y (i.e., the set of allowed moves on y). Let (qs)s∈Q(y) be the corresponding108

proposal distributions, such that the support of qs(y, · ) is either Ns(y) or Ns(y) ∪ {y}. Let N̄ be109

the aggregate neighborhood system defined by N̄ : y 7→ ⋃
s∈Q(y)Ns(y).110

We assume that the individual Metropolis correction ratios α̃s(y,y
′) := qs(y

′,y)
qs(y,y′) are tractable. The111

proposed procedure is summarized in Algorithm 2.112

Proposition 2.2. If each neighborhood graph GNs
is undirected and without self-loops, and the113

aggregate neighborhood graph GN̄ is connected, the iterations y(k) produced by Algorithm 2 follow114

a Markov chain with unique stationary distribution πθ,t.115

See Appendix E.3 for the proof. Importantly, only the connectedness of the aggregate neighborhood116

graph GN̄ is required. This allows us to combine neighborhood systems that could not connect117

Y if used individually, i.e., an irreducible Markov chain can be obtained by mixing the proposal118

distributions of reducible ones. Such an example is given with the moves defined in Table 4.119

3 Loss functions and theoretical analysis120

We now derive and study loss functions for learning models using the proposed layer. The analysis121

for the case where only one iteration of MCMC is performed (K = 1) is given in Appendix C.2.122

3.1 Negative log-likelihood and associated Fenchel-Young loss123

We now show that the proposed layer ŷt(θ) can be viewed as the solution of a regularized optimization124

problem on C = conv(Y). Let At(θ) := t · log∑y∈Y exp ([⟨θ , y⟩+ φ(y)] /t) be the cumulant125

function [51] associated to the exponential family defined by πθ,t, scaled by the temperature t. We126

define the regularization function Ωt and the corresponding Fenchel-Young loss [8] as:127

Ωt(µ) := A∗
t (µ) = sup

θ∈Rd

⟨µ , θ⟩ −At(θ), and ℓt(θ ;y) := (Ωt)
∗(θ) + Ωt(y)− ⟨θ, y⟩.

Since Ωt = A∗
t is strictly convex on relint(C) (see Appendix E.4 for a proof) and ŷt(θ) = ∇θAt(θ),128

the proposed layer is the solution of the regularized optimization problem129

ŷt(θ) = argmax
µ∈C

{⟨θ,µ⟩ − Ωt(µ)} , (6)

the Fenchel-Young loss ℓt is differentiable, satisfies ℓt(θ,y) = 0 ⇔ ŷt(θ) = y, and has gradient130

∇θℓt(θ ;y) = ŷt(θ)− y [8]. It is therefore equivalent, up to a constant, to the negative log-likelihood131

loss, as we have −∇θ log πθ,t(y) = (ŷt(θ)− y)/t. Algorithms 1 and 2 can thus be used to perform132

maximum likelihood estimation, by returning a (biased) stochastic estimate of the gradient of ℓt.133

3.2 Empirical risk minimization134

In the supervised learning setting, we are given observations (xi, yi)
N
i=1 ∈ (Rp × Y)N , and want135

to fit a model gW : Rp → Rd such that ŷt(gW (xi)) ≈ yi. This is motivated by a generative model136

where, for some weights W0 ∈ Rp, the data is generated with yi ∼ πgW0
(xi),t. We aim at minimizing137

the empirical risk LN , defined below along with its exact gradient∇LN :138

LN (W ) :=
1

N

N∑
i=1

ℓt (gW (xi);yi) and ∇WLN (W )=
1

N

N∑
i=1

JW gW (xi) (ŷt(gW (xi))−yi) .
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Doubly stochastic gradient estimator. In practice, we cannot compute the exact gradient above.
Using Algorithm 1 to get a MCMC estimate of ŷt(gW (xi)), we propose the following estimator:

∇WLN (W ) ≈ JW gW (xi)

(
1

K

K∑
k=1

y
(k)
i − yi

)
,

where y
(k)
i is the k-th iterate of Algorithm 1 with maximization direction θi = gW (xi) and tem-139

perature t. This estimator is doubly stochastic, since we sample both data points and iterations of140

Algorithm 1, and can be seamlessly used with batches. The vector-jacobian product with JW gW (xi)141

is computed via autodiff. The Markov chain initialization methods for the supervised and unsupervised142

settings are inspired from the contrastive divergence literature [22] and detailed in Appendix C.5.143

3.3 Convergence analysis in the unsupervised setting144

In the unsupervised setting, we are only given observations (yi)
N
i=1 ∈ YN and want to fit a model πθ,t,145

motivated by an underlying generative model such that yi ∼ πθ0,t for an unknown true parameter θ0.146

We assume here that C = conv(Y) is of full dimension in Rd. We have the following empirical LN147

and population Lθ0
Fenchel-Young losses:148

LN (θ;y1, . . . ,yN ) :=
1

N

N∑
i=1

ℓt (θ; yi) , Lθ0
(θ) := E(yi)

N
i=1∼(πθ0,t)⊗N [LN (θ;y1, . . . ,yN )] ,

which are minimized for θ such that ŷt(θ) = ȲN := 1
N

∑N
i=1 yi, and for θ such that ŷt(θ) = ŷt(θ0),149

respectively. Let θ⋆
N as the minimizer of the empirical loss LN . For it to be defined, we assume N is150

large enough to have ȲN ∈ relint(C) (which is always possible as πθ0,t has dense support on Y). A151

slight variation on Proposition 4.1 in Berthet et al. [6], proved in Appendix E.5, gives the following152

asymptotic normality as N →∞.153

Proposition 3.1 (Convergence of the empirical loss minmizer to the true parameter).
√
N(θ⋆

N − θ0)
D−−−−→

N→∞
N
(
0, t2 covπθ0,t

[Y ]
−1
)
.

We now consider the sample size as fixed to N samples, and define θ̂n as the n-th iterate of the154

following stochastic gradient algorithm:155

θ̂n+1 = θ̂n + γn+1

ȲN −
1

Kn+1

Kn+1∑
k=1

y(n+1, k)

 , (7)

where y(n+1,k) is the k-th iterate of Algorithm 1 with temperature t, maximization direction θ̂n,156

and initialized at y(n+1,1) = y(n,Kn). This initialization corresponds to the persistent contrastive157

divergences (PCD) algorithm [48], and is further discussed in Appendix C.5.158

Proposition 3.2 (Convergence of the stochastic gradient estimate). Suppose the following assumptions159

on the step sizes (γn)n≥1, sample sizes (Kn)n≥1, and proposal distribution q hold:160

• γn = an−b, with b ∈
]
1
2 , 1

]
and a > 0,161

• Kn+1 >
⌊
1 + a′ exp

(
8RC
t · ||θ̂n||

)⌋
with a′ > 0 and RC = maxy∈Y ||y||,162

• 1√
Kn
− 1√

Kn−1

≤ a′′n−c, with a′′ > 0 and c > 1− b
2 ,163

• q(y,y′) =


1

2d∗ if y′ ∈ N (y),
1− d(y)

2d∗ if y′ = y,
0 else,

164

where d(y) := |N (y)| is the degree of y in GN , and d∗ := maxy∈Y d(y).165

Then, we have the almost sure convergence θ̂n
a.s.−−→ θ⋆

N of the iterates θ̂n defined by Eq. (7).166

See Appendix E.6 for the proof. The assumptions on q are used for obtaining a closed-form167

convergence rate bound for the Markov chain, using graph-based geometric bounds [23].168
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Figure 1: Overview of the vehicle routing pipeline, represented at request wave ω.

4 Experiments on dynamic vehicle routing169

We demonstrate our approach on the EURO Meets NeurIPS 2022 Vehicle Routing Competition,170

a large-scale, ML-enriched dynamic vehicle routing problem with time windows (DVRPTW). A171

detailed introduction to the challenge with precise notations, together with precise explications on172

the reduction to supervised learning, the proposed approach, the perturbation-based baseline, full173

experimental details and additional results, are given in Appendix D.174

Approach. We adopt the winning strategy of Baty et al. [4], which reduces the problem to a175

supervised learning task. This involves decomposing the DVRPTW as multiple prize-collecting176

problems (PC-VRPTW) for each wave ω, where a model gW predicts a prize vector θω for serving177

each request. This fits our general problem formulation ŷ(θω) = argmaxy⟨θω,y⟩+ φ(y), where178

φ(y) represents the negative routing cost. The overall pipeline is shown in Fig. 1. To train the179

model gW , we use the Fenchel-Young loss associated with our proposed MCMC layer. The proposal180

distributions for the MCMC sampler are derived from the local search moves used by the state-of-the-181

art PC-HGS solver ỹ, which are summarized in Table 4. At inference, we use the trained model gW182

with the PC-HGS solver, forming the policy fW := ỹ ◦ gW . We compare our learning algorithms to183

the perturbation-based baseline from Baty et al. [4], which sacrifices the theoretical guarantees of the184

general framework from Berthet et al. [6] it instantiates by using an inexact solver (ỹ).185

Results. We evaluate performance using the competition’s metric: the routing cost relative to an186

anticipative (oracle) baseline. Fig. 2 shows that initializing the MCMC chain with the ground-truth187

solution significantly outperforms a random start and that performance improves with more MCMC188

iterations (K). Table 2 compares our method with the baseline under a fixed time budget for the189

layer’s forward pass. Our approach significantly outperforms the perturbation-based method in190

low-time-limit regimes (1-100 ms), enabling faster and more efficient training.191
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Figure 2: Test relative cost (%). Left: varying initialization method. Center: varying number of
Markov iterations K with random initialization. Right: varying K with ground-truth initialization.

Table 2: Best test relative cost (%) for different training methods and time limits.
Time limit (ms) 1 5 10 50 100 1000

Perturbed inexact oracle 65.2± 5.8 13.1± 3.4 8.7± 1.9 6.5± 1.1 6.3± 0.76 5.5± 0.4

Proposed (y(0)=y) 10.0± 1.7 12.0± 2.6 11.8± 2.8 9.1± 1.7 8.4± 1.7 7.7± 1.1

Proposed (y(0)=y+heuristic) 7.8± 0.8 7.2± 0.6 6.3± 0.7 6.2± 0.8 5.9± 0.7 5.9± 0.6
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A Background and Related Work347

A.1 Combinatorial optimization as a layer348

Because the function in Eq. (1) is piecewise constant and discontinuous, a frequent strategy consists349

in introducing regularization in the problem so as to obtain a continuous relaxation. In some cases,350

we may have access to an oracle for directly solving the regularized problem. For instance, when the351

unregularized problem can be solved by dynamic programming, its entropic regularization can be352

computed using a change of semi-ring [31] or by algorithmic smoothing [35]. As another example,353

interior point solvers can be used to compute a logarithmic barrier regularized solution [33].354

We focus settings where only a MAP oracle is available for the original, unregularized optimization355

problem. While many prior works are limited to the linear form in Eq. (1) for the latter, our framework356

is more general and also handles problems of the form in Eq. (2). Frank-Wolfe-like methods can357

be used to solve the regularized problem using only MAP oracle calls [39, 28]. Another strategy358

consists in injecting noise perturbations [6] in the oracle. This approach can be shown to be implicitly359

using regularization. In both cases, a Fenchel-Young loss can be associated, giving a principled way360

to learn with the optimization layer. However, formal guarantees only hold if the oracle used is exact,361

and in practice it is typically called multiple times during the forward pass. Our proposal enjoys362

guarantees even with inexact solvers and a single call.363

Regarding differentiation, several strategies are possible. When the approach only needs to differ-364

entiate through a (regularized) max, as is the case of Fenchel-Young losses, we can use Danskin’s365

theorem [13]. When the approach needs to differentiate a (regularized) argmax, we can either use366

autodiff on the unrolled solver iterations or implicit differentiation [3, 1, 9]. Differently, Vlastelica367

et al. [50] propose to compute gradients via continuous interpolation of the solver.368

A.2 Contrastive divergences369

An alternative approach to learning in combinatorial spaces is to use energy-based models (EBMs)
[30], which define a distribution over outputs via a parameterized energy function Eθ:

pθ(y) ∝ exp(Eθ(y)), with ∇θ log pθ(y) = ∇θEθ(y)− EY∼pθ
[∇θEθ(Y )] .

Therefore, we can perform maximum likelihood estimation (MLE) if we can sample from pθ , but this370

is hard both in continuous and combinatorial settings, due to its intractable normalization constant.371

Contrastive divergences [22, 11, 44] address this by using MCMC to obtain (biased) stochastic372

gradients. Originally developed for restricted Boltzmann machines with Y = {0, 1}d and a Gibbs373

sampler, they have also been applied in continuous domains via Langevin dynamics [15, 16].374

MCMC in discrete spaces. Contrastive divergences rely on MCMC to sample from the current375

model distribution. Unfortunately, designing an MCMC sampler is usually case by case, and MCMC376

on discrete domains has received comparatively less attention than continuous domains. Recent efforts377

adapt continuous techniques, such as Langevin dynamics [53, 45] or gradient-informed proposals378

[20, 40], to discrete settings. However, these works typically assume simple state space structure, like379

the hypercube or categorical codebooks, and do not handle complex constraints that are ubiquitous in380

operations research problems. Sun et al. [46] allow structured state spaces via relaxed constraints in381

the energy function, yet ignore these structures in the proposal supports. Notably, we emphasize that382

all these works focus on sampling, not on designing differentiable MCMC layers.383

B Experiments on empirical convergence of gradients and parameters384

In this section, we evaluate the proposed approach on two discrete output spaces: sets and κ-subsets.385

These output spaces are for instance useful for multilabel classification. We focus on these output386

spaces because the exact MAP and marginal inference oracles are available, allowing us to compare387

our gradient estimators to exact gradients.388

B.1 Polytopes and corresponding oracles389

The vertex set of the first polytope is the set of binary vectors in Rd, which we denote Yd := {0, 1}d,
and conv(Yd) = [0, 1]d is the “hypercube”. The vertex set of the second is the set of binary vectors
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with exactly κ ones and d− κ zeros (with 0 < κ < d),

Yd
κ :=

{
y ∈ {0, 1}d : ⟨y,1⟩ = κ

}
,

and conv(Yd
κ) is referred to as “top-κ polytope” or “hypersimplex”. Although these polytopes would390

not provide relevant use cases of the proposed approach in practice, since exact marginal inference391

oracles are available (see below), they allow us to compare the Fenchel-Young loss value and gradient392

estimated by our algorithm to their true value.393

Marginal inference. For the hypercube, we have:394

Eπθ,t
[Yi] =

∑
y∈Yd

exp (⟨θ,y⟩/t)∑
y′∈Yd exp (⟨θ,y′⟩/t)yi

=
∑

y∈{0,1}d

exp
(∑d

j=1 θjyj/t
)

∑
y′∈{0,1}d exp

(∑d
j=1 θjy

′
j/t
)yi

=
∑

yi∈{0,1}

∑
y−i∈{0,1}d−1

exp
(
θiyi/t+

∑
j ̸=i θjyj/t

)
∑

y′
i∈{0,1}

∑
y′
−i∈{0,1}d−1 exp

(
θiy′i/t+

∑
j ̸=i θjy

′
j/t
)yi

=
∑

yi∈{0,1}

exp (θiyi/t)∑
y′
i∈{0,1} exp (θiy

′
i/t)

yi
∑

y−i∈{0,1}d−1

exp
(∑

j ̸=i θjyj/t
)

∑
y′
−i∈{0,1}d−1 exp

(∑
j ̸=i θjy

′
j/t
)

=
∑

yi∈{0,1}

exp (θiyi/t)∑
y′
i∈{0,1} exp (θiy

′
i/t)

yi

=
0 · exp(0) + 1 · exp (θi/t)

exp(0) + exp (θi/t)

=
exp (θi/t)

1 + exp (θi/t)

= σ

(
θi
t

)
,

which gives Eπθ,t
[Y ] = σ

(
θ
t

)
, where the logistic sigmoid function σ is applied component-wise.395

The cumulant function is also tractable, as we have396

log
∑
y∈Yd

exp (⟨θ,y⟩/t) = log
∑

y∈{0,1}d

exp

(
d∑

i=1

θiyi/t

)

= log

1∑
y1=0

1∑
y2=0

· · ·
1∑

yd=0

exp

(
d∑

i=1

θiyi/t

)

= log

d∏
i=1

1∑
yi=0

exp (θiyi/t)

= log

d∏
i=1

(exp(0) + exp (θi/t))

= log

d∏
i=1

(1 + exp (θi/t))

=

d∑
i=1

log (1 + exp (θi/t)) .

Another way to derive this is via the Fenchel conjugate.397

398

12



For the top-κ polytope, such closed-form formulas do not exist for the cumulant and its gradient.399

However, we implement them with dynamic programming, by viewing the top-κ MAP problem400

as a 0/1-knapsack problem with constant item weights, and by changing the (max,+) semiring401

into a (LSE,+) semiring. This returns the cumulant function, and we leverage PyTorch’s automatic402

differentiation framework to compute its gradient. This simple implementation allows us to compute403

true Fenchel-Young losses values and their gradients in O(dκ) time and space complexity.404

Sampling. For the hypercube, sampling from the Gibbs distribution on Yd has closed form. Indeed,405

the latter is fully factorized, and we can sample y ∼ πθ,t by sampling independently each component406

with yi ∼ Bern (σ(θi/t)). Sampling from πθ,t is also possible on Yd
κ , by sampling coordinates407

iteratively using the dynamic programming table used to compute the cumulant function (see, e.g.,408

Algorithm 2 in Ahmed et al. [2] for a detailed explanation).409

B.2 Neighborhood graphs410

Hypercube. On Yd, we use a family of neighborhood systems N r
≤ parameterized by a Hamming411

distance radius r ∈ [d− 1]. The graph is defined by:412

∀y,y′ ∈ Yd : y′ ∈ N r
≤(y)⇔ 1 ≤ dH (y, y′) ≤ r.

That is, two vertices are neighbors if their Hamming distance is at most r. This graph is regular,413

with degree |N r
≤(y)| =

∑r
i=1

(
d
i

)
. This graph is naturally connected, as any binary vector y′414

can be reached from any other binary vector y in ||y′ − y||1 moves, by flipping each bit where415

y′i ̸= yi, iteratively. Indeed, this trajectory consists in moves between vertices with Hamming dis-416

tance equal to 1, and are therefore along edges of the neighborhood graph, regardless of the value of r.417

418

We also use a slight variation on this family of neighborhood systems, the graphs N r
=, defined by:

∀y,y′ ∈ Yd : y′ ∈ N r
=(y)⇔ dH (y, y′) = r.

These graphs, on the contrary, are not always connected: indeed, if r is even, they contain two419

connected components (binary vectors with an even sum, and binary vectors with an odd sum).420

We only use such graphs when experimenting with neighborhood mixtures (see Algorithm 2), by421

aggregating them into a connected graph.422

Top-κ polytope. On Yd
κ , we use a family of neighborhoods systemsN s parameterized by a number423

of “swaps” s ∈ J1,min(κ, d− κ)K. The graph is defined by424

∀y,y′ ∈ Yd
κ : y′ ∈ N s(y)⇔ dH (y, y′) = 2s.

That is, two vertices are neighbors if one can be reached from the other by performing s “swaps”,425

each swap corresponding to flipping a 1 to a 0 and vice-versa. This ensures that the resulting vector is426

still in Yd
κ . All s swaps must be performed on distinct components. The resulting graph is known as427

the Generalized Johnson Graph J(d, κ, κ− s), or Uniform Subset Graph [12]. It is a regular graph,428

with degree |N s(y)| =
(
κ
s

)(
d−κ
s

)
. It is proved to be connected in Jones [24], except if d = 2κ and429

s = κ (in this case, it consists in 1
2

(
d
κ

)
disjoint edges).430

When s = 1, the neighborhood graph is the Johnson Graph J(d, κ), which coincides with the graph431

associated to the polytope conv(Yd
κ) = ∆d,κ [41].432

B.3 Convergence to exact gradients433

In this section, we conduct experiments on the convergence of the MCMC estimators to the exact
corresponding expectation (that is, convergence of the stochastic gradient estimator to the true
gradient). The estimators are defined as

ŷt(θ) = Eπθ,t
[Y ] ≈ 1

K −K0

K∑
k=K0+1

y(k),
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where y(k) is the k-th iterate of Algorithm 1 with maximization direction θ, final temperature t, and434

K0 is a number of burn-in (or warm-up) iterations. The obtained estimator is compared to the exact435

expectation by performing marginal inference as described in Appendix B.1 (with a closed-form436

formula in the case of Yd, and by dynamic programming in the case of Yd
κ).437

438

Setup. For T > K0, let Ẽ(θ, T ) := 1
T−K0

∑T
k=K0+1 y

(k) be the stochastic estimate of the439

expectation at step T . We proceed by first randomly generating Θ ∈ RM×d, with M being the440

number of instances, by sampling Θi,j ∼ N (0, 1) independently. Then, we evaluate the impact of441

the following hyperparameters on the estimation of EπΘi
,t [Y ], for i ∈ [M ]:442

1. K0, the number of burn-in iterations,443

2. t, the temperature parameter,444

3. C, the number of parallel Markov chains.445

Metric. The metric used is the squared Euclidean distance to the exact expectation, averaged on the
M instances

1

M

M∑
i=1

||EπΘi
,t [Y ]− Ẽ(Θi, T )||22,

which we measure for T ∈ JK0 + 1,KK.446

Polytopes. For the hypercube Yd and its neighborhood system N r
≤, we use d = 10 and r = 1,447

which gives |Yd| = 210 and |N r
≤(y)| = 10. For the top-κ polytope Yd

κ and its neighborhood system448

N s, we use d = 10, κ = 3 and s = 1, which gives |Yd
κ| = 120 and |N s(y)| = 30. We also449

use a larger scale for both polytopes in order to highlight the varying impact of the temperature450

t depending on the combinatorial size of the problem, in the second experiment. For the large451

scale, we use d = 1000 and r = 10 for the hypercube, which give |Yd| = 21000 ≈ 10301 and452

|N r
≤(y)| ≈ 2.7× 1023, and we use d = 1000, κ = 50 and s = 10 for the top-κ polytope, which give453

|Yd
κ| ≈ 9.5× 1084 and |N s(y)| ≈ 1.6× 1033.454

Hyperparameters. For each experiment, we use K = 3000. We average over M = 1000 problem455

instances for statistical significance. We use K0 = 0, except for the first experiment, where it varies.456

We use a final temperature t = 1, except for the second experiment, where it varies. We use an initial457

temperature t0 = t = 1 (leading to a constant temperature schedule), except for the first experiment,458

where it depends on K0. We use only one Markov chain and thus have C = 1, except for the third459

experiment, where it varies.460

(1) Impact of burn-in. First, we evaluate the impact of K0, the number of burn-in iterations.461

We use a truncated geometric cooling schedule tk = max(γk · t0, t) with γ = 0.995. The initial462

temperature t0 is set to 1/(γK0), so that ∀k ≥ K0 +1, tk = t = 1. The results are gathered in Fig. 3.463

(2) Impact of temperature. We then evaluate the impact of the final temperature t on the difficulty464

of the estimation task (different temperatures lead to different target expectations). The results for the465

small scale are gathered in Fig. 4, and the results for the large scale are gathered in Fig. 5.466

(3) Impact of the number of parallel Markov chains. Finally, we evaluate the impact of the467

number of parallel Markov chains C on the estimation. The results are gathered in Fig. 6.468
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Figure 3: Convergence to exact expectation on the hypercube and the top-κ polytope, for varying
number of burn-in iterations K0. We conclude that burn-in is not beneficial to the estimation, and
taking K0 = 0 is the best option.
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Figure 4: Convergence to exact expectation on the hypercube and the top-κ polytope, for varying final
temperature t (small scale experiment). We conclude that lower temperatures facilitate the estimation.
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Figure 5: Convergence to exact expectation on the hypercube and the top-κ polytope, for varying
final temperature t (large scale experiment). Contrary to the small scale case, larger temperatures are
beneficial to the estimation when the solution set is combinatorially large.
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Figure 6: Convergence to exact expectation on the hypercube and the top-κ polytope, for varying
number of parallel Markov chains C. Running 10 times more chains in parallel provides roughly
the same benefit as extending each chain by 10 times more iterations, highlighting the advantage of
massively parallelized estimation.

B.4 Convergence to exact parameters469

In this section, we conduct experiments in the unsupervised setting described in Section 3.3. As a470

reminder, the empirical LN and population Lθ0 Fenchel-Young losses are given by:471

LN (θ;y1, . . . ,yN ) :=
1

N

N∑
i=1

ℓt (θ; yi)

= At(θ) +
1

N

N∑
i=1

Ωt(yi)− ⟨θ, ȲN ⟩

= ℓt(θ; ȲN ) + C1(Y ), (8)

and472

Lθ0(θ) := E(yi)
N
i=1∼(πθ0,t)⊗N [LN (θ;y1, . . . ,yN )]

= At(θ) + Eπθ0,t
[Ωt(Y )]− ⟨θ, ŷt(θ0)⟩

= ℓt(θ; ŷt(θ0)) + C2(θ0), (9)

where the constants C1(Y )= 1
N

∑N
i=1Ωt(yi)−Ωt(ȲN ) and C2(θ0)=Eπθ0,t

[Ωt(Y )]−Ωt (ŷt(θ0))473

do not depend on θ. As Jensen gaps, they are non-negative by convexity of Ωt.474

2D visualization. As an introductory example, we display stochastic gradient trajectories in Fig. 7.475

The parameter θ ∈ Rd is updated following Eq. (7) to minimize the population loss Lθ0
defined476

in Eq. (9), with θ0 = (1/2, 1/2). The polytope used is the 2-dimensional hypercube Y2, with477

neighborhood graph N1 (neighbors are adjacent vertices of the square). We present trajectories478

obtained using MCMC-sampled gradients, comparing results from both 1 and 100 Markov chain479

iterations with Algorithm 1. For comparison, we include trajectories obtained using Monte Carlo-480

sampled (i.e., unbiased) gradients, using 1 and 100 samples.481

General setup. We proceed by first randomly generating true parameters Θ0 ∈ RM×d, with M482

being a number of problem instances we average on (in order to reduce noise in our observations),483

by sampling Θi,j ∼ N (0, 1) independently. The goal is to learn each parameter vector (Θ0)i ∈484

Rd, i ∈ [M ], as M independent problems. The model is randomly initialized at Θ̂0, and updated485

with Adam [25] to minimize the loss. In order to better separate noise due to the optimization process486

and noise due to the sampling process, we use the population loss L(Θ0)i for general experiments,487

and use the empirical loss LN only when focusing on the impact of the dataset size N . In this case,488
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Figure 7: Comparison of stochastic gradient trajectories for a SA / M-H oracle on Y2 and unbiased
stochastic gradients obtained via Monte Carlo sampling. Increasing the number of Markov chain
iterations yields smoother trajectories, similar to the effect of using more Monte Carlo samples in the
case of perturbation-based methods [6].

we create a dataset Y ∈ RM×N×d, with N being the number of samples, by sampling independently489

Yi,j ∼ π(Θ0)i , ∀i ∈ [M ], ∀j ∈ [N ].490

We study the impact of the following hyperparameters on learning:491

1. K, the number of Markov chain iterations,492

2. C, the number of parallel Markov chains,493

3. the initialization method used for the chains (either random, persistent, or data-based),494

4. N , the number of samples in the dataset.495

Metrics. The first metric used is the objective function actually minimized, i.e., the population loss,496

averaged on the M instances:497

1

M

M∑
i=1

L(Θ0)i((Θ̂n)i),

where (Θ̂n)i is the n-th iterate of the optimization process for the problem instance i ∈ [M ]. We498

measure this loss for n ∈ [nmax], with nmax the total number of gradient iterations. For the fourth499

experiment, where we evaluate the impact of the number of samples N , we measure instead the500

empirical Fenchel-Young loss:501

1

M

M∑
i=1

LN ((Θ̂n)i ; Yi,1, . . . Yi,N )

In both cases, the best loss value that can be reached is positive but cannot be computed: it502

corresponds to the constants C1 and C2 in Eq. (8) and Eq. (9). Thus, we also provide "stretched"503

figures, where we plot the loss minus the best loss found during the optimization process.504

505

The second metric used is the squared euclidean distance of the estimate to the true parameter, also506

averaged on the M instances:507
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1

M

M∑
i=1

||(Θ0)i − (Θ̂n)i||22.

As the top-κ polytope is of dimension d− 1, the model is only specified up to vectors orthogonal to508

the direction of the smallest affine subspace it spans. Thus, in this case, we measure instead:509

1

M

M∑
i=1

||P⊥
D

((Θ0)i)− P⊥
D

(
(Θ̂n)i

)
||22,

where P⊥
D is the orthogonal projector on the hyperplane D = {x ∈ Rd : ⟨1, x⟩ = 0}, which is the510

corresponding direction.511

Polytopes. For the hypercube Yd and its neighborhood system N r
≤, we use d = 10 and r = 1,512

except in the fifth experiment, where we use a mixture of N r
= neighborhoods (detailed below). For513

the top-κ polytope Yd
κ and its neighborhood system N s, we use d = 10, κ = 3 and s = 1.514

Hyperparameters. For each experiment, we perform 1000 gradient steps. We use K0 = 0, final515

temperature t = 1 and initial temperature t0 = t = 1 (leading to a constant temperature schedule).516

We use K = 1000 Markov chain iterations, except in the first experiment, where it varies. We use517

only one Markov chain and thus have C = 1, except for the second experiment, where it varies. We518

use a persistent initialization method for the Markov chains, except in the third experiment, where we519

compare the three different methods. For statistical significance, we average over M = 100 problem520

instances for each experiment, except in the third experiment, where we use M = 1000. We work in521

the limit case N →∞, except in the fourth experiment, where N varies.522

(1) Impact of the length of Markov chains. First, we evaluate the impact of K, the number of523

inner iterations, i.e., the length of each Markov chain. The results are gathered in Fig. 8.524

(2) Impact of the number of parallel Markov chains. We now evaluate the impact of the number525

of Markov chains C run in parallel to perform each gradient estimation on the learning process. The526

results are gathered in Fig. 9.527

(3) Impact of the initialization method. Then, we evaluate the impact of the method to initialize528

each Markov chain used for gradient estimation. The persistent method consists in setting y(n+1,0) =529

y(n,K), the data-based method consists in setting y(n+1,0) = yi with i ∼ U([N ]), and the random530

method consists in setting y(n+1,0) ∼ U(Y) (see Appendix C.5 and Table 3 for a detailed explanation).531

The results are gathered in Fig. 10.532

(4) Impact of the dataset size. We now evaluate the impact of the number of samples N from533

πθ0
(i.e., the size of the dataset (yi)

N
i=1) on the estimation of the true parameter θ0. The results are534

gathered in Fig. 11.535

(5) Impact of neigborhood mixtures. Finally, we evaluate the impact of the use of neighborhood536

mixtures. To do so, we use mixtures {N rs
= }Ss=1, once with {rs}Ss=1 = {5} opposed to {rs}Ss=1 =537

{1, 5}, and once with {rs}Ss=1 = {6} (which gives a reducible Markov chain as 6 is even, so that the538

individual neighborhood graph N 6
= is not connected, and has to connected components) opposed to539

{rs}Ss=1 = {1, 2, 3, 6}. The results are gathered in Fig. 12.540

18



100 101 102 103

Gradient Steps

10−2

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

K

100

200

300

500

1000

2000

5000

(a) Distance to true parameter, hypercube

100 101 102 103

Gradient Steps

10−2

10−1

100

101

`2 2
D

is
ta

nc
e

to
tr

ue
pa

ra
m

et
er

(p
ro

je
ct

ed
)

K

100

200

300

500

1000

2000

5000

(b) Distance to true parameter, top-κ polytope

100 101 102 103

Gradient Steps

6× 100

7× 100

8× 100

FY
Lo

ss
(u

p
to

co
ns

ta
nt

)

K

100

200

300

500

1000

2000

5000

(c) FY loss (up to constant), hypercube

100 101 102 103

Gradient Steps

4× 100

5× 100

FY
Lo

ss
(u

p
to

co
ns

ta
nt

)
K

100

200

300

500

1000

2000

5000

(d) FY loss (up to constant), top-κ polytope

100 101 102 103

Gradient Steps

10−5

10−4

10−3

10−2

10−1

100

FY
Lo

ss
m

in
us

be
st

lo
ss

K

100

200

300

500

1000

2000

5000

(e) FY loss minus best loss, hypercube

100 101 102 103

Gradient Steps

10−6

10−5

10−4

10−3

10−2

10−1

100

FY
Lo

ss
m

in
us

be
st

lo
ss

K

100

200

300

500

1000

2000

5000

(f) FY loss minus best loss, top-κ polytope

Figure 8: Convergence to the true parameter on the hypercube (left) and the top-κ polytope (right),
for varying number of Markov chain iterations K. Longer chains improve learning.
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Figure 9: Convergence to the true parameter on the hypercube (left) and the top-κ polytope (right),
for varying number of parallel Markov chains C. Adding Markov chains improves estimation.
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Figure 10: Convergence to the true parameter on the hypercube (left) and the top-κ polytope (right),
for varying Markov chain initialization method. The persistent and data-based initialization methods
significantly outperform the random initialization method.
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(e) FY loss minus best loss
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(f) Fenchel-Young loss minus best loss

Figure 11: Convergence to the true parameter on the hypercube (left) and the top-κ polytope (right),
for varying number of samples N in the dataset. As the dataset is different for each task, the empirical
Fenchel-Young loss LN , which is the minimized objective function (contrary to other experiments,
where we minimize Lθ0

), also varies. Although empirical Fenchel-Young losses associated to smaller
datasets appear easier to minimize, increasing the dataset size reduces the bias and thus the distance
to θ0, as expected.
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(c) FY loss (up to constant), rs ∈ {5} or {1, 5}
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(d) FY loss (up to constant), rs ∈ {6} or {1, 2, 3, 6}
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(e) FY loss minus best loss, rs ∈ {5} or {1, 5}
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(f) FY loss minus best loss, rs ∈ {6} or {1, 2, 3, 6}

Figure 12: Convergence to the true parameter on the hypercube, with different mixtures of neigh-
borhood systems {N rs

= }Ss=1: comparing rs ∈ {5} to rs ∈ {1, 5} (left), and comparing rs ∈ {6} to
rs ∈ {1, 2, 3, 6} (right). Using more neighborhoods in the mixture improves learning.
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C Additional material541

C.1 Mixing neighborhood systems: a discussion542

In this section, we give intuition on why the update proposed in Section 2.2 and Algorithm 2 is crucial543

as a tractable way to mix different neighborhood systems.544

A naive way to combine these neighborhoods (Ns)
S
s=1 and proposals (qs)

S
s=1 would be to use

Algorithm 1 by defining a unique aggregated proposal q(y, · ) with support N̄ (y) or N̄ (y) ∪ {y} as,
i.e.:

q(y,y′) :=
1

|Q(y)|
∑

s∈Q(y)

qs(y,y
′).

However, this would lead to non-tractable updates because of the computation of the Metropolis-
Hastings correction ratio. Indeed, the latter would be equal to:

α(y,y′) =
|Q(y)|
|Q(y′)| ·

∑
s∈Q(y′) qs(y

′,y)∑
s∈Q(y) qs(y,y

′)
.

This calculation is prohibitively expensive because it involves summing the forward proposal prob-545

abilities for all move types in Q(y) and the reverse probabilities for all move types in Q(y′). The546

main difficulty is that multiple, distinct proposal types can generate the same solution y′ from y. For547

example, in the vehicle routing application presented in Section 4, relocating a pair of clients (using548

the relocate pair move from Table 4) before the first one in a route of 3 gives the same solution y′549

as relocating the first client (with the relocate move) at the last position. Identifying and calculating550

all these potential forward and reverse pathways for every step is a significant computational hurdle.551

In contrast, the update we propose in Algorithm 2 only requires computing the single individual ratio552
qs(y

′,y)
qs(y,y′) for the unique move type s that was actually sampled.553

C.2 Associated Fenchel-Young loss with a single MCMC iteration554

To obtain an unbiased gradient estimator for the Fenchel-Young loss ℓt associated with ŷt, the MCMC555

sampler must be run until it reaches its stationary distribution πθ,t. This requirement makes any556

practical estimator with a finite number of steps K inherently biased.557

Although our convergence analysis in Section 3.3 shows that this bias does not hinder the convergence558

of the proposed learning algorithms, we now demonstrate that when a single MCMC iteration is used559

(K = 1), there exists another target-dependent Fenchel-Young loss such that the stochastic gradient560

estimator is unbiased with respect to that loss. See Appendix E.7 for the construction of Ωy and the561

proof.562

Proposition C.1 (Existence of a Fenchel-Young loss when K = 1). Let p(1)
θ,y denote the distribution

of the first iterate of the Markov chain defined by the Markov transition kernel given in Eq. (3),
with proposal distribution q and initialized at ground-truth y ∈ Y . There exists a target-dependent
regularization function Ωy with the following properties: Ωy is t/Eq(y, · )||Y − y||22-strongly convex;
it is such that

E
p
(1)
θ,y

[Y ] = argmax
µ∈conv(N (y)∪{y})

{⟨θ,µ⟩ − Ωy(µ)}

and the Fenchel-Young loss ℓΩy generated by Ωy is Eq(y, · )||Y − y||22/t-smooth in its first argument,563

and such that ∇θℓΩy (θ ;y) = E
p
(1)
θ,y

[Y ]− y.564

A similar result in the unsupervised setting with data-based initialization is given in Proposition C.2.565

Interestingly, theses results contrast with prior work on the expected CD-1 update. Indeed, when566

applied with Gibbs sampling to train restricted Boltzmann machines, the latter was shown in Sutskever567

and Tieleman [47] not to be the gradient of any function – let alone a convex one.568

Note that, similarly to the regularization Ωt, the target-dependent Ωy extends the influence of φ from569

the setN (y) ∪ {y} to its convex hull in a principled way. As a verification, we give properties of the570

regularized maximizer E
p
(1)
θ,y

[Y ] in Proposition C.3.571
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C.3 Fenchel-Young loss for K = 1 in the unsupervised setting572

This proposition is analogous to Proposition C.1, but in the unsupervised setting, when using a573

data-based initialization method – i.e., the original CD initialization scheme, without persistent574

Markov chains. See Appendix C.5 for a detailed discussion about this.575

Proposition C.2. Let p(1)

θ,ȲN
denote the distribution of the first iterate of the Markov chain defined

by the Markov transition kernel given in Eq. (3), with proposal distribution q and initialized by
y(0) = yi, with i ∼ U(J1, NK). There exists a dataset-dependent regularization ΩȲN

with the
following properties: ΩȲN

is tN/
∑N

i=1 Eq(yi, · )||Y − yi||22-strongly convex; it is such that:

E
p
(1)

θ,ȲN

[Y ] = argmax
µ∈conv(

⋃N
i=1{N (yi)∪{yi}})

{
⟨θ,µ⟩ − ΩȲN

(µ)
}
;

and the Fenchel-Young loss LΩȲN
generated by ΩȲN

is 1
N

∑N
i=1 Eq(yi, · )||Y − yi||22/t-smooth in its576

first argument, and such that∇θLΩȲN
(θ ;y) = E

p
(1)

θ,ȲN

[Y ]− y.577

The proof is given in Appendix E.7.578

C.4 Properties of the expected first iterate579

Proposition C.3. Let θ ∈ Rd, y ∈ Y . Let

Nbetter(y) := {y′ ∈ N (y) | ⟨θ,y′⟩+ φ(y′) > ⟨θ,y⟩+ φ(y)}
denote the set of improving neighbors of y for the unregularized objective function. We have the580

following properties:581

E
p
(1)
θ,y

[Y ] ∈ conv (N (y) ∪ {y}) ,

E
p
(1)
θ,y

[Y ] −−−−→
t→0+

y +
∑

y′∈Nbetter(y)

q(y,y′) · (y′ − y),

and E
p
(1)
θ,y

[Y ] −−−−→
t→+∞

y +
∑

y′∈N (y)

min [q(y,y′), q(y′,y)] · (y′ − y).

The proof is given in Appendix E.8. Thus, as the set Nbetter is defined according the value of the582

original, unregularized objective function y 7→ ⟨θ,y⟩ + φ(y), the low temperature behavior of583

the regularized maximizer E
p
(1)
θ,y

[Y ] effectively reflects the fact that the regularization function Ωy584

extends the influence of φ from the vertices N (y) ∪ {y} to their convex hull.585

C.5 Markov chain initialization586

In contrastive divergence (CD) learning, the intractable expectation in the log-likelihood gradient is587

approximated by short-run MCMC, initialized at the data distribution [22] (using a Gibbs sampler in588

the setting of Restricted Boltzmann Machines).589

Here, we note, at the n-th iteration of gradient descent:590

∇WLN (Ŵn) ≈
1

|Bn|
∑
i∈Bn

JW gŴn
(xi)

(
1

K

K∑
k=1

y
(n+1, k)
i − yi

)
,

for the supervised setting, with Bn being the mini-batch (or full batch) used at iteration n, yi the591

ground-truth structure associated to xi in the dataset, and y
(n+1, k)
i the k-th iterate of Algorithm 1,592

with maximization direction gŴn
(xi), and initialization point y(n+1, 0)

i . We also note:593

∇θLN (θ̂n) ≈
1

K

K∑
k=1

y(n+1, k) − ȲN
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for the unsupervised setting, with y(n+1, k) being the k-th iterate of Algorithm 1, with maximization594

direction θ̂n, and initialization point y(n+1, 0).595

596

In CD learning of unconditional EBMs (i.e., in our unsupervised setting), the Markov Chain is597

initialized at the empirical data distribution [22, 11], as explained earlier. Persistent Contrastive598

Divergence (PCD) learning [48] modifies CD by maintaining a persistent Markov chain. Thus,599

instead of initializing the chain from the data distribution in each iteration, the chain continues from600

its last state in the previous iteration, by setting y(n+1, 0) = y(n,K). This approach aims to provide a601

better approximation of the model distribution and to reduce the bias introduced by the initialization602

of the Markov chain in CD. These are two types of informative initialization methods, which aim at603

reducing the mixing times of the Markov Chains.604

605

However, neither of these can be applied to the supervised (or conditional) setting, as observed606

in [38] in the context of conditional Restricted Boltzmann Machines (which are a type of EBMs).607

Indeed, on the one hand, PCD takes advantage of the fact that the parameter θ̂ does not change too608

much from one iteration to the next, so that a Markov Chain that has reached equilibrium on θ̂n is609

not far from equilibrium on θ̂n+1. This does not hold in the supervised setting, as each xi leads to a610

different θ̂i = gŴ (xi). On the other hand, the data-based initialization method in CD would amount611

to initialize the chains at the empirical marginal data distribution on Y , and would be irrelevant in a612

supervised setting, since the distribution we want each Markov Chain to approximate is conditioned613

on the input xi.614

615

An option is to use persistent chains if training for multiple epochs, and to initialize the Markov616

Chain associated to (xi,yi) for epoch j at the final state of the one associated to the same data point617

(xi,yi) at epoch j − 1. However, this method is relevant than PCD in the unsupervised setting, as ŵ618

changes a lot more in a full epoch than θ̂ in just one gradient step in the unsupervised setting. It619

might be relevant, however, if each epoch consists in a single, full-batch gradient step. Nevertheless,620

it would require to store a significant number of states y(n,K)
i (one for each point in the dataset).621

The solution we propose, for both full-batch and mini-batch settings, is to initialize the chains at622

the empirical data distribution conditioned on the input xi, which amounts to initialize them at the623

ground-truth yi.624

625

This discussion is summed up in Table 3.626

Table 3: Possible Markov Chain Initialization Methods under each Learning Setting

Init.
Method

Setting
Unsupervised Supervised, Batch Supervised,

Mini-Batch

Persistent y(n+1,0) = y(n,K) y
(n+1, 0)
i = y

(n,K)
i /

Data-Based y(n+1,0) = yj , with
j ∼ U(J1, NK)

y
(n+1, 0)
i = yi y

(n+1, 0)
i = yi

Random y(n+1,0) ∼ U(Y) y
(n+1, 0)
i ∼ U(Y) y

(n+1, 0)
i ∼ U(Y)

Remark C.4. The use of uniform distributions on Y for the random initialization method can naturally627

be replaced by any other different prior distribution.628

C.6 Proposal distribution design for the DVRPTW629

Original deterministic moves. The selected moves, designed for Local Search algorithms on vehi-630

cle routing problems (specifically for the PC-VRPTW for serve request and remove request),631

are given in Table 4.632
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Name Description
relocate removes request i from its route and re-inserts it before or after request j
relocate pair removes pair of requests (i, next(i)) from their route and re-inserts them before

or after request j
swap exchanges the position of requests i and j in the solution
swap pair exchanges the positions of the pairs (i, next(i)) and (j, next(j)) in the solution
2-opt reverses the route segment between i and j
serve request inserts currently undispatched request i before or after request j
remove request removes currently dispatched request i from the solution

Table 4: PC-VRPTW Local search moves

Move V 1
s (y) V 2

s (y)[i]
relocate D(y) \ D1(y) D(y)
relocate pair D(y) \

{
D2(y) ∪ Dlast(y)

}
D(y) \ {next(i)}

swap D(y) D(y)
swap pair D(y) \ Dlast(y) D(y) \

{
Dlast(y) ∪ {prev(i), next(i)}

}
2-opt D(y) \ D2(y) D(y) \ D2(y)
serve request D(y) D(y) ∪ ID(y)
remove request

{
D(y) \ D1(y)

}
∪ I1(y)

Table 5: Sets of valid clients for each move. D(y) contains all dispatched clients in solution y. D1(y)
contains all dispatched clients that are the only client in their route. D2(y) contains all dispatched
clients that are in a route with 2 clients or less. Dlast(y) contains all dispatched clients that are the
last of their route. D(y) contains all non-dispatched clients. ID(y) contains the depot of the first
empty route, if it exists (all routes may be non-empty), or else is the empty set. I1(y) contains the
only client in the last non-empty route if it contains exactly one client, or else is the empty set.

All of these moves (except for remove request) involve selecting two clients i and j from the633

request setRω (for example, the relocate move relocates client i after client j in the solution).634

In the Local Search part of the PC-HGS algorithm from Vidal [49], they are implemented as635

deterministic functions used within a quadratic loop over clients, and are performed only if they636

improve the solution’s objective value. The search is narrowed down to client pairs (i, j) such that637

d(i, j) is among the Nprox lowest values in
{
d(i, k) | k ∈ Rω \{D, i}

}
, where d is a problem-specific638

heuristic distance measure between clients, based on spatial features and time windows, and Nprox639

is a hyperparameter. These distances are independent from the chosen solution routes (they are640

computed once at the start of the algorithm, from the problem features), non-negative, and symmetric:641

d(i, j) = d(j, i).642

Randomization. In order to transform these deterministic moves into proposals, we first adapt the643

choice of clients i and j, by sampling i uniformly from V 1
s (y), which contains the set of valid choices644

of client i for move s from solution y. Then, we sample j from V 2
s (y)[i] \ {i} using the following645

softmax distribution: Ps(j | i) = exp[−d(i,j)/β]∑
k∈V 2

s (y)[i]\{i} exp[−d(i,k)/β] , where β > 0 is a neighborhood646

sampling temperature. The set V 2
s (y)[i] contains all valid choices of client j for move s from solution647

y, and is precised along with V 1
s (y) in Table 5. We normalize the distance measures inside the648

softmax, by dividing them by the maximum distance: d(i, ·)← d(i, ·)/maxk∈V 2
s (y)[i]\{i} d(i, k).649

Neighborhood graph symmetrization. Then, we ensure that each individual neighborhood graph650

Ns is undirected. This is already the case for the moves swap, swap pair and 2-opt, as they651

are actually involutions (applying the same move on the same couple (i, j) from y′ will result in652

y). However, this is obviously not the case for serve request and remove request. Indeed, if653

solution y′ is obtained from y by removing a dispatched client (respectively serving an non-dispatched654

one), y cannot be obtained by removing another one (respectively, serving another one). To fix this,655

we merge these two moves into a single one. First, it evaluates which of the two moves are allowed656

(i.e., if they are such that V 1
s (y) ̸= ∅). Then, it samples one (the probability of selecting "remove" is657

chosen to be equal to the number of removable clients divided by the number of removable clients658

plus the number of servable clients) in the case where both are possible, or else simply performs659

the only move allowed. Thus, the corresponding neighborhood graph is undirected as it is always660
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possible to perform the reverse operation (as when removing a client, it becomes unserved, thus661

allowing the serve request move from y′, and vice-versa). We also allow the serve request662

move to insert a client after the depot of the first empty route, to allow the creation of new routes. In663

consequence, we allow the remove request move to remove the only client in the last non-empty664

route if it contains exactly one client (to maintain symmetry of the neighborhood graph).665

For the relocate and relocate pair moves, the non-reversibility comes from the fact that they666

only relocate client i (or clients i and next(i) in the pair case) after client j, so that if client i was the667

first in its route, relocating it back would be impossible (the depot, which is the start of the route,668

cannot be selected as j). Thus, we allow insertions before clients too, and add a random choice with669

probability ( 12 ,
1
2 ) to determine if the relocated client(s) will be inserted before or after j. We also670

add this feature to the serve request move.671

Correction ratio computation. Next, we implement the computation of the individual correction672

ratio α̃s(y,y
′) = qs(y

′,y)
qs(y,y′) for each proposal qs.673

• In the case of swap and 2-opt, we have α̃s(y,y
′) = 1. Indeed, let y′ be the result of674

applying one of these moves s on y when sampling i ∈ V 1
s (y) and j ∈ V 2

s (y)[i] \ {i}. We675

then have:676

qs(y,y
′) =

1

|V 1
s (y)|

· exp [−d(i, j)/β]∑
k∈V 2

s (y)[i]\{i} exp [−d(i, k)/β]

+
1

|V 1
s (y)|

· exp [−d(j, i)/β]∑
k∈V 2

s (y)[j]\{j} exp [−d(j, k)/β]
,

where the first term accounts for the probability of selecting i then j and the second term677

accounts for that of selecting j then i (one can easily check that these two cases are the678

only way of sampling y′ from y). Then, noticing that we have |V 1
s (y

′)| = |V 1
s (y)|, that679

these moves are involutions (selecting (i, j) or (j, i) from y′ is also the only way to sample680

y), and that we have the equalities V 2
s (y)[i] = V 2

s (y
′)[i] and V 2

s (y)[j] = V 2
s (y

′)[j], we681

actually have qs(y
′,y) = qs(y,y

′).682

• For swap pair, the same arguments hold (leading to the same form for qs), except for the683

equalities V 2
s (y)[i] = V 2

s (y
′)[i] and V 2

s (y)[j] = V 2
s (y

′)[j]. Thus, we have the following684

form for the correction ratio:685

qs(y
′,y)

qs(y,y′)
=

∑
k∈V 2

s (y)[i]\{i} exp [−d(i, k)/β] +
∑

k∈V 2
s (y)[j]\{j} exp [−d(j, k)/β]∑

k∈V 2
s (y′)[i]\{i} exp [−d(i, k)/β] +

∑
k∈V 2

s (y′)[j]\{j} exp [−d(j, k)/β]
.

• In the case of relocate, let j′ denote next(j) if the selected insertion type was "after", and686

prev(j) if it was "before" – where next(j) ∈ Rω denotes the request following j in solution687

y, i.e., the only index k such that yj,k = 1, and prev(j) is the one preceding it, i.e., the only688

k such that yk,j = 1. We have:689

qs(y,y
′) =

1

2
· 1

|V 1
s (y)|

· exp [−d(i, j)/β]∑
k∈V 2

s (y)[i]\{i} exp [−d(i, k)/β]

+
1

2
· 1

|V 1
s (y)|

· exp [−d(i, j′)/β]∑
k∈V 2

s (y)[i]\{i} exp [−d(i, k)/β]
Indeed, if i was relocated after j, the same solution y′ could have been obtained by relocating690

i before j′ = next(j). Similarly, if i was relocated before j, the same solution y′ could691

have been obtained by relocating i after j′ = prev(j). For the reverse move probability, the692

way of obtaining y from y′ is either to select (i, prev(i)) in the after-type insertion case,693

or (i, next(i)) in the before-type insertion case (where prev and next are taken w.r.t. y, i.e.,694

before applying the move). Thus, we have:695

qs(y
′,y) =

1

2
· 1

|V 1
s (y

′)| ·
exp [−d(i, prev(i)/β]∑

k∈V 2
s (y′)[i]\{i} exp [−d(i, k)/β]

+
1

2
· 1

|V 1
s (y

′)| ·
exp [−d(i, next(i))/β]∑

k∈V 2
s (y′)[i]\{i} exp [−d(i, k)/β]

.

28



• For the relocate pair move, the exact same reasoning and proposal probability form696

hold for the forward move, but we have for the reverse direction:697

qs(y
′,y) =

1

2
· 1

|V 1
s (y

′)| ·
exp [−d(i, prev(i)/β]∑

k∈V 2
s (y′)[i]\{i} exp [−d(i, k)/β]

+
1

2
· 1

|V 1
s (y

′)| ·
exp [−d(i, next(next(i)))/β]∑
k∈V 2

s (y′)[i]\{i} exp [−d(i, k)/β]
,

as client next(i) is also relocated.698

• For the serve request / remove request move, we have the forward probability:699

qs(y,y
′) =

|
{
D(y) \ D1(y)

}
∪ I1(y)|

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D(y)|

× 1

|
{
D(y) \ D1(y)

}
∪ I1(y)|

=
1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D(y)|

if the chosen move is remove request. The expression corresponds to the composition of700

move choice sampling and uniform sampling over removable clients.701

Still in the same case (remove request is chosen) and if the removed request i was in702

I1(y) (i.e., was the only client in the last non-empty route if the latter contained exactly one703

client), we have the reverse move probability:704

qs(y
′,y) =

1

|
{
D(y′) \ D1(y′)

}
∪ I1(y′)|+ |D(y′)|

× exp
[
−d̄(i)/β

]
exp

[
−d̄(i)/β

]
+
∑

k∈D(y′) exp [−d(i, k)/β]

=
1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D(y)|

× exp
[
−d̄(i)/β

]
exp

[
−d̄(i)/β

]
+
∑

k∈D(y)
k ̸=i

exp [−d(i, k)/β] .

The expression corresponds to the composition of move choice sampling and softmax705

sampling of the depot of the first empty route (which was the route of the removed client706

i, so that ID(y′) ̸= ∅ in this case). We use the average distance to dispatched clients707

d̄(i) := 1
|D(y′)|

∑
k∈D(y′) d(i, k) as distance to the depot.708

In the case where the removed request i was not in I1(y), we have instead:709

qs(y
′,y) =

1

|
{
D(y′) \ D1(y′)

}
∪ I1(y′)|+ |D(y′)|

×
1
2 · exp [−d(i, prev(i))] + 1

2 · exp [−d(i, next(i))]
1{ID(y′ )̸=∅} · exp

[
−d̄(i)/β

]
+
∑

k∈D(y′) exp [−d(i, k)/β]

=
1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D(y)|

×
1
2 · exp [−d(i, prev(i))] + 1

2 · exp [−d(i, next(i))]
1{ID(y′ )̸=∅} · exp

[
−d̄(i)/β

]
+
∑

k∈D(y)
k ̸=i

exp [−d(i, k)/β] .

The right term corresponds to softmax sampling of the previous node with "after" insertion710

type (which has probability 1/2) and of the next node with "before" insertion type. The711

non-emptiness of ID(y′) is not guaranteed anymore, as all routes might be non-empty712

(indeed, we did not create an empty one by removing i, as i ∈ D(y) \ D1(y) in this case).713
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Similarly, if the chosen move is serve request, we have the forward probability:714

qs(y,y
′) =

|D(y)|
|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D(y)|

×
1
2 · exp [−d(i, j)] + 1

2 · exp [−d(i, j′)]
1{ID(y) ̸=∅} · exp

[
−d̄(i)/β

]
+
∑

k∈D(y) exp [−d(i, k)/β]
if the selected insertion node j is not in ID(y) (i.e., is not the depot of the first empty route715

in y), where j′ = prev(j) if the insertion type selected was "before" (which has probability716

1/2), and j′ = next(j) if it was "after".717

We have instead the forward probability:718

qs(y,y
′) =

1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D(y)|

× exp
[
−d̄(i)/β

]
exp

[
−d̄(i)/β

]
+
∑

k∈D(y) exp [−d(i, k)/β]
if the selected insertion node j is in ID(y) (i.e., is the depot of the first empty route in y).719

In every case, we have the reverse move probability:720

qs(y
′,y) =

1

|
{
D(y) \ D1(y)

}
∪ I1(y)|+ |D(y)|

.

In each case, we set d(i,D) = +∞ to account for the fact that the depot can never be sampled during721

the process (except in the serve request / remove request move, where we allow the depot of722

the first empty route / last non-empty route to be selected, for which we use the average distance to723

other requests as explained earlier) – in fact, the distance measure from a client to the depot is not724

even defined in the original HGS implementation.725

The second correction factor needed is |Q(y)|
|Q(y′)| (see Algorithm 2). We compute it by checking if each726

move is allowed, i.e., if there exists at least one i ∈ V 1
s (y) such that V 2

s (y)[i] \ {i} ≠ ∅. This can be727

determined in O(Rω) for each move.728

D Details on the DVRPTW729

D.1 Overview of the challenge.730

We evaluate the proposed approach on a large-scale, ML-enriched combinatorial optimization prob-731

lem: the EURO Meets NeurIPS 2022 Vehicle Routing Competition [27]. In this dynamic vehicle rout-732

ing problem with time windows (DVRPTW), requests arrive continuously throughout a planning hori-733

zon, which is partitioned into a series of delivery wavesW = {[τ0, τ1] , [τ1, τ2] , . . . ,
[
τ|W|−1, τ|W|

]
}.734

At the start of each wave ω, a dispatching and vehicle routing problem must be solved for the set of735

requestsRω specific to that wave (in which we include the depot D), encoded into the system state736

xω . We note Y(xω) the set of feasible decisions associated to state xω .737

A feasible solution yω ∈ Y(xω) must contain all requests that must be dispatched before τω (the rest738

are postponable), allow each of its routes to visit the requests they dispatch within their respective739

time windows, and be such that the cumulative customer demand on each of its routes does not exceed740

a given vehicle capacity. It is encoded thanks to a vector
(
yωi,j
)
i,j ∈Rω , where yωi,j = 1 if the solution741

contains the directed route segment from i to j, and yωi,j = 0 otherwise. The set of requestsRω+1 is742

obtained by removing all requests dispatched by the chosen solution yω fromRω and adding all new743

requests which arrived between τω and τω+1.744

The aim of the challenge is to find an optimal policy f : X → Y assigning decisions yω ∈ Y(xω) to
system states xω ∈ X . This can be cast as a reinforcement learning problem:

min
f

E [cW(f)] , with cW(f) :=
∑
ω∈W

c(f(xω)),

where c : yω 7→ ∑
i,j ∈Rω ci,j y

ω
i,j gives the routing cost of yω ∈ Yω and where ci,j ≥ 0 is the745

routing cost from i to j. The expectation is taken over full problem instances.746
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D.2 Reduction to supervised learning.747

We follow the method of [4], which was the winning approach for the challenge. Central to this748

approach is the concept of prize-collecting dynamic vehicle routing problem with time windows749

(PC-VRPTW). In this setting, each request i ∈ Rω is assigned an artificial prize θωi ∈ R, that reflects750

the benefit of serving it. The prize of the depot D is set to θωD = 0. The objective is then to identify a751

set of routes that maximizes the total prize collected while minimizing the associated travel costs. The752

model gW predicts the prize vector θω = gW (xω). Denoting φ(y) := −⟨c,y⟩, the corresponding753

optimization problem can be written as754

ŷ(θω) = argmax
y∈Y(xω)

∑
i,j ∈Rω

θωj yi,j −
∑

i,j ∈Rω

ci,j yi,j = ⟨θω,y⟩+ φ(y). (10)

The overall pipeline is summarized in Fig. 1. Following [4], we approximately solve the problem755

in Eq. (10) using the prize-collecting HGS heuristic (PC-HGS), a variant of hybrid genetic search756

(HGS) [49]. We denote this approximate solver ỹ ≈ ŷ, so that their proposed policy decomposes757

as fW := ỹ ◦ gW . The ground-truth routes are created by using an anticipative strategy, i.e., by758

solving multiple instances where all future information is revealed from the start, and the requests’759

arrival times information is translated into time windows (thus removing the dynamic aspect of the760

problem). This anticipative policy, which we note f⋆ (which cannot be attained as it needs unavailable761

information) is thus the target policy imitated by the model – see Appendix D.7 for more details.762

D.3 Perturbation-based baseline.763

In [4], a perturbation-based method [6] was used. This method is based on injecting noise in the764

PC-HGS solver ỹ. Similarly to our approach, the parameters W can then be learned using a Fenchel-765

Young loss, since the loss is minimized when the perturbed solver correctly predicts the ground766

truth. However, since ỹ is not an exact solver, all theoretical learning guarantees associated with this767

method (e.g., correctness of the gradients) no longer hold.768

D.4 Proposed approach.769

Our proposed approach instead uses the Fenchel-Young loss associated with the proposed layer, which770

is minimized when the proposed layer correctly predicts the ground-truth. At inference time, however,771

we use fW := ỹ ◦ gW . We use a mixture of proposals, as defined in Algorithm 2. To design each772

proposal qs, we build randomized versions of moves specifically designed for the prize-collecting773

dynamic vehicle routing problem with time windows. More precisely, we base our proposals on774

moves used in the local search part of the PC-HGS algorithm, which are summarized in Table 4. The775

details of turning these moves into proposal distributions with tractable individual correction ratios776

are given in Appendix C.6.777

We evaluate three different initialization methods: (i) initialize y(0) by constructing routes dispatching778

random requests, (ii) initialize y(0) to the ground-truth solution, (iii) initialize y(0) by starting from779

the dataset ground-truth and applying a heuristic initialization algorithm to improve it. This heuristic780

initialization, similar to a short local search, is also used by the PC-HGS algorithm ỹ, and is set to781

take up to half the time allocated to the layer (a limit it does not reach in practice).782

D.5 Performance metric.783

As the Fenchel-Young loss ℓt actually minimized is intractable to compute exactly, we only use the784

challenge metric. More precisely, we measure the cost relative to that of the anticipative baseline,785
cW(fW )−cW(f⋆)

cW(f⋆) , which we average over a test dataset of unseen instances.786

D.6 Results.787

In Fig. 2, we observe that the initialization method plays an important role, and the ground-truth-based788

ones greatly outperform the random one.789

We observe that the number of Markov iterations K is an important performance factor. Interestingly,790

the ground-truth initialization significantly improves the learning process for small K.791
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In Table 2, we compare training methods with fixed compute time budget for the layer (perturbed792

solver or proposed MCMC approach), which is by far the main computational bottleneck. This793

parameter limits the time allowed for a single forward pass through the combinatorial optimization794

layer (be it the perturbed inexact oracle or the proposed method). In both cases, the backward pass795

through the layer is immediate, as a property of the expression of the gradient of Fenchel-Young796

losses. The models are selected using a validation set and evaluated on the test set. We observe that797

the proposed approach significantly outperforms the perturbation-based method [6] using ỹ in low798

time limit regimes, thus allowing for faster and more efficient training.799

Full experimental details and additional results on the impact of temperature are given in Ap-800

pendix D.7.801

D.7 Additional experimental details and results for Section 4802

Model, features, dataset, hyperparameters, compute. Following Baty et al. [4], the differentiable803

ML model gW is implemented as a sparse graph neural network. We also use the same feature804

set, which represents the system state xω as a vector comprising request-level features, such as805

coordinates, time windows, demands, travel time to the depot, and quantiles from the distribution806

of the travel time to all other requests (named complete feature set, and described in the Table 4 of807

their paper). We use the same training, validation, and testing datasets, which are created from 30, 15808

and 25 problem instances respectively. The training set uses a sample size of 50 requests per wave,809

while the rest use 100. The solutions in the training dataset, i.e., the examples from the anticipative810

strategy f⋆ imitated by the model, are obtained by solving the corresponding offline VRPTWs using811

HGS [49] with a time limit of 3600 seconds. During evaluation, the PC-HGS solver ỹ is used with812

a constant time limit of 60 seconds for all models. We use Adam [25] together with the proposed813

stochastic gradient estimators, with a learning rate of 5 · 10−3. Each training is performed using only814

a single CPU worker. For Fig. 2, we use a temperature t = 102. For Table 2, we use 1 Monte-Carlo815

sample for the perturbation-based method and 1 Markov chain for the proposed approach (in order to816

have a fair comparison: an equal number of oracle calls / equal compute).817

Statistical significance. Each training is performed 50 times with the same parameters and different818

random seeds. Then, the learning curves are averaged, and plotted with a 95% confidence interval.819

For the results in Table 2, we report the performance of the best model iteration (selected with respect820

to the validation set) on the test set. This procedure is also averaged over 50 trainings, and reported821

with 95% confidence intervals.822

Additional results. In Fig. 13, we report model performance for varying temperature t. Inter-823

estingly, lower temperatures perform better when using random initialization. In the ground-truth824

initialization setting, a sweet spot is found at t = 102, but lower temperatures do not particularly825

decrease performance.826
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Figure 13: Test relative cost (%). Left: varying temperature t with random initialization. Right:
varying temperature t with ground-truth initialization.

32



E Proofs827

E.1 Proof of Eq. (4)828

Proof. At fixed temperature tk = t, the iterates of Algorithm 1 (MH case) follow a time-homogenous829

Markov chain, defined by the following transition kernel Pθ,t:830

Pθ,t(y,y
′) =


q (y,y′)min

[
1, q(y′,y)

q(y,y′) exp
(

⟨θ ,y′⟩+φ(y′)−⟨θ,y⟩−φ(y)
t

)]
if y′ ∈ N (y),

1−∑y′′∈N (y) Pθ,t(y,y
′′) if y′ = y,

0 else.

Irreducibility. As we assumed the neighborhood graph GN to be connected and undirected, the831

Markov Chain is irreducible as we have ∀y ∈ Y,∀y′ ∈ N (y), Pθ,t(y,y
′) > 0.832

Aperiodicity. For simplicity, we directly assumed aperiodicity in the main text. Here, we show833

that this is a mild condition, which is verified for instance if there is a solution y ∈ Y such that834

q(y,y) > 0. Indeed, we then have:835

Pθ,t(y,y) = 1−
∑

y′∈N (y)

Pθ,t(y,y
′)

= 1−
∑

y′∈N (y)

q (y,y′)min

[
1,

q(y′,y)
q(y,y′)

exp

( ⟨θ , y′⟩+ φ(y′)− ⟨θ, y⟩ − φ(y)

t

)]
≥ 1−

∑
y′∈N (y)

q (y,y′)

≥ q(y,y′)

> 0.

Thus, we have Pθ,t(y,y) > 0, which implies that the chain is aperiodic. As an irreducible and
aperiodic Markov Chain on a finite state space, it converges to its stationary distribution and the latter
is unique [18]. Finally, one can easily check that the detailed balance equation is satisfied for πθ,t,
i.e.:

∀y,y′ ∈ Y, πθ,t(y)Pθ,t(y,y
′) = πθ,t(y

′)Pθ,t(y
′,y),

giving that πθ,t is indeed the stationary distribution of the chain, which concludes the proof.836

E.2 Proof of Proposition 2.1837

Proof. Let θ ∈ Rd and t > 0. The fact that ŷt(θ) ∈ relint(C) = relint(conv(Y)) follows directly838

from the fact that ŷt(θ) is a convex combination of the elements of Y with positive coefficients, as839

∀y ∈ Y, πθ,t(y) > 0.840

Low temperature limit. Let y⋆ := argmaxy∈Y⟨θ,y⟩ + φ(y). The argmax is assumed to be841

single-valued. Let y ∈ Y \ {y⋆}. We have:842

πθ,t(y) =
exp

(
⟨θ,y⟩+φ(y)

t

)
∑

y′∈Y exp
(

⟨θ,y′⟩+φ(y′)
t

)
≤

exp
(

⟨θ,y⟩+φ(y)
t

)
exp

(
⟨θ,y⋆⟩+φ(y⋆)

t

)
≤ exp

(
(⟨θ,y⟩+ φ(y))− (⟨θ,y⋆⟩+ φ(y⋆))

t

)
−−−−→
t→0+

0,
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as ⟨θ,y⟩+ φ(y) < ⟨θ,y⋆⟩+ φ(y⋆) by definition of y⋆. Thus, we have:

πθ,t(y
⋆) = 1−

∑
y∈Y\{y⋆}

πθ,t(y) −−−−→
t→0+

1.

Thus, the expectation of πθ,t converges to y⋆. Naturally, if the argmax is not unique, the distribution843

converges to a uniform distribution on the maximizing structures.844

845

High temperature limit. For all y ∈ Y , we have:846

πθ,t(y) =
exp

(
⟨θ,y⟩+φ(y)

t

)
∑

y′∈Y exp
(

⟨θ,y′⟩+φ(y′)
t

)
−−−−→
t→+∞

1

|Y| ,

as exp(x/t) −−−−→
t→+∞

1 for all x ∈ R. Thus, πθ,t converges to the uniform distribution on Y , and its847

expectation converges to the average of all structures.848

Expression of the Jacobian. Let At : θ 7→ t · log∑y∈Y exp (⟨θ,y⟩+ φ(y)) be the cumulant849

function of the exponential family defined by πθ,t, scaled by t. One can easily check that we have850

∇θAt(θ) = ŷt(θ). Thus, we have Jθŷt(θ) = ∇2
θAt(θ). However, we also have that the hessian851

matrix of the cumulant function θ 7→ 1
tAt(θ) is equal to the covariance matrix of the random vector852

Y
t under πθ,t [51]. Thus, we have:853

Jθŷt(θ) = ∇2
θAt(θ)

= t · ∇2
θ

(
1

t
At(θ)

)
= t · covπθ,t

[
Y

t

]
=

1

t
covπθ,t

[Y ] .

854

E.3 Proof of Proposition 2.2855

Proof. Let Kθ,t be the Markov transition kernel associated to Algorithm 2, which can be written as:856

Kθ,t(y,y
′) =


∑

s∈Q(y)
s.t. qs(y,y′)>0

1
|Q(y)|qs(y,y

′)min
(
1, |Q(y)|

|Q(y′)| ·
qs(y

′,y)πθ,t(y
′)

qs(y,y′)πθ,t(y)

)
if y′ ∈ N̄ (y),

1−∑y′′∈N̄ (y) Kθ,t(y,y
′′) if y′ = y,

0 else.

As ∀y ∈ Y, ∀y′ ∈ N̄ (y),Kθ,t(y,y
′) > 0, the irreducibility of the chain on Y is directly implied by857

the connectedness of GN̄ .858

Thus, we only have to check that the detailed balance equation πθ,t(y)Kθ,t(y,y
′) =

πθ,t(y
′)Kθ,t(y

′,y) is satisfied for all y′ ∈ N̄ (y). We have:

πθ,t(y)Kθ,t(y,y
′) =

∑
s∈Q(y)

s.t. qs(y,y′)>0

[
qs(y,y

′)πθ,t(y)

|Q(y)| min

(
1,
|Q(y)|
|Q(y′)| ·

qs(y
′,y)πθ,t(y

′)
qs(y,y′)πθ,t(y)

)]
.

The main point consists in noticing that the undirectedness assumption for each neighborhood graph
GNs

implies:
{s ∈ Q(y) : qs(y,y

′) > 0} = {s ∈ Q(y′) : qs(y
′,y) > 0}.

Thus, a simple case analysis on how |Q(y)|qs(y′,y)πθ,t(y
′) and |Q(y′)|qs(y,y′)πθ,t(y) compare859

allows us to observe that the expression of πθ,t(y)Kθ,t(y,y
′) is symmetric in y and y′, which860

concludes the proof.861
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E.4 Proof of strict convexity862

Proof. As At is a differentiable convex function on Rd (as the log-sum-exp of such functions), it is
an essentially smooth closed proper convex function. Thus, it is such that

relint (dom((At)
∗)) ⊆ ∇At(Rd) ⊆ dom((At)

∗),

and we have that the restriction of (At)
∗ to ∇At(Rd) is strictly convex on every convex subset

of ∇At(Rd) (corollary 26.4.1 in Rockafellar [42]). As the range of the gradient of the cumulant
function θ 7→ At(θ)/t is exactly the relative interior of the marginal polytope conv ({y/t,y ∈ Y})
(see appendix B.1 in Wainwright and Jordan [51]), and (At)

∗ =: Ωt, we actually have that
relint (dom(Ωt)) ⊆ relint(C) ⊆ dom(Ωt),

and that Ωt is stricly convex on every convex subset of relint(C), i.e., strictly convex on relint(C) (as863

relint(C) is itself convex).864

As At is closed proper convex, it is equal to its biconjugate by the Fenchel-Moreau theorem. Thus,
we have:

At(θ) = sup
µ∈Rd

{⟨θ,µ⟩ − (At)
∗(µ)} = sup

µ∈Rd

{⟨θ,µ⟩ − Ωt(µ)} .

Moreover, as ∇At(Rd) = relint(C), we have ||∇At(θ)|| ≤ RC := maxµ∈C ||µ||, which gives
dom(Ωt) ⊂ B(0, RC). Thus we can actually write:

At(θ) = sup
µ∈B(0,RC)

{⟨θ,µ⟩ − Ωt(µ)} ,

and now apply Danksin’s theorem as B(0, RC) is compact, which further gives:
∂At(θ) = argmax

µ∈B(0,RC)

{⟨θ,µ⟩ − Ωt(µ)} ,

and the fact that At is differentiable gives that both sides are single-valued. Moreover, as∇At(Rd) =
relint(C), we know that the right hand side is maximized in C, and we can actually write:

∇At(θ) = argmax
µ∈C

{⟨θ,µ⟩ − Ωt(µ)} .

We end this proof by noting that a simple calculation yields ∇At(θ) = Eπθ,t
[Y ] = ŷt(θ). The865

expression of ∇θℓt(θ ;y) follows.866

Remark E.1. The proposed Fenchel-Young loss can also be obtained via distribution-space regular-867

ization. Let sθ := (⟨θ , y⟩+ φ(y))y∈Y ∈ R|Y| be a vector containing the score of all structures, and868

L−tH : R|Y| ×∆|Y| → R be the Fenchel-Young loss generated by −tH , where H is the Shannon869

entropy. We have∇sθ (−tH)∗(sθ) = πθ,t. The chain rule further gives∇θ(−tH)∗(sθ) = Eπθ,t
[Y ].870

Thus, we have∇θL−tH(sθ ;py) = ∇θℓt(θ ;y), where py is the dirac distribution on y. In the case871

where φ ≡ 0 and t = 1, we have Ωt(µ) = −
(
maxp∈∆|Y| Hs(p) s.t. Ep [Y ] = µ

)
, with Hs the872

Shannon entropy [8], and ℓt is known as the CRF loss [29].873

E.5 Proof of Proposition 3.1874

Proof. The proof is exactly the proof of Proposition 4.1 in Berthet et al. [6], in which the setting is
similar, and all the same arguments hold (we also have that πθ0

is dense on Y , giving ȲN ∈ relint(C)
for N large enough). The only difference is the choice of regularization function, and we have to
prove that it is also convex and smooth in our case. While the convexity of Ωt is directly implied by
its definition as a Fenchel conjugate, the fact that is is smooth is due to Theorem 26.3 in Rockafellar
[42] and the essential strict convexity of At (which is itself closed proper convex). The latter relies
on the fact that C is assumed to be of full-dimension (otherwise At would be linear when restricted to
any affine subspace of direction equal to the subspace orthogonal to the direction of the smallest affine
subspace spanned by C), which in turn implies that At is strictly convex on Rd. Thus, Proposition 4.1
in Berthet et al. [6] gives the asymptotic normality:

√
N(θ⋆

N − θ0)
D−−−−→

N→∞
N
(
0,
(
∇2

θAt(θ0)
)−1

covπθ0,t
[Y ]
(
∇2

θAt(θ0)
)−1
)
.

Moreover, we already derived∇2
θAt(θ0) =

1
t covπθ0,t

[Y ] in Appendix E.2, leading to the simplified875

asymptotic normality given in the proposition.876

877
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E.6 Proof of Proposition 3.2878

Proof. The proof consists in bounding the convergence rate of the Markov chain
(
y(k)

)
k∈N (which879

has transition kernel Pθ,t) for all θ, in order to apply Theorem 4.1 in Younes [52]. It is defined as the880

smallest constant λθ such that:881

∃A > 0 : ∀y ∈ Y, |P(y(k) = y)− πθ,t(y)| ≤ Aλk
θ.

More precisely, we must find a constant D such that ∃B > 0 : λθ ≤ 1−Be−D||θ||, in order to882

impose Kn+1 >
⌊
1 + a′ exp

(
2D||θ̂n||

)⌋
.883

884

A known result gives λθ ≤ ρ(θ) with ρ(θ) = maxλ∈Sθ\{1} |λ| [32], where Sθ is the spectrum of the885

transition kernel Pθ,t (here, 1− ρ(θ) is known as the spectral gap of the Markov chain). To bound886

ρ(θ), we use the results of Ingrassia [23], which study the Markov chain with transition kernel P ′
θ,t,887

such that Pθ,t =
1
2

(
I + P ′

θ,t

)
. It corresponds to the same algorithm, but with a proposal distribution888

q′ defined as:889

q′ (y,y′) =


1
d∗ if y′ ∈ N (y),
1− d(y)

d∗ if y′ = y,
0 else.

As P ′
θ,t is a row-stochastic matrix, Gershgorin’s circle theorem gives that its spectrum is included890

in the complex unit disc. Moreover, one can easily check that the associated Markov chain is also891

reversible with respect to πθ,t, and the corresponding detailed balance equation gives:892

∀y,y′ ∈ Y, πθ,t(y)P
′
θ,t(y,y

′) = πθ,t(y
′)P ′

θ,t(y
′,y),

which is equivalent to:893

∀y,y′ ∈ Y,
√

πθ,t(y)

πθ,t(y′)
P ′
θ,t(y,y

′) =

√
πθ,t(y′)
πθ,t(y)

P ′
θ,t(y

′,y)

as πθ,t has full support on Y , which can be further written in matrix form as:894

Π
1/2
θ P ′

θ,tΠ
−1/2
θ = Π

−1/2
θ P ′⊤

θ,tΠ
1/2
θ ,

where Πθ = diag(πθ;t). Thus, the matrix Π
1/2
θ P ′

θ,tΠ
−1/2
θ is symmetric, and the spectral theorem895

ensures its eigenvalues are real. As it is similar to the transition kernel P ′
θ,t (with change of basis896

matrix Π
−1/2
θ ), they share the same spectrum S′

θ, and we have S′
θ ⊂ [−1, 1]. Let us order S′

θ as897

−1 ≤ λ′
min ≤ · · · ≤ λ′

2 ≤ λ′
1 = 1. As Pθ,t = 1

2

(
I + P ′

θ,t

)
, we clearly have ρ(θ) =

1+λ′
2

2 .898

Thus, we can use Theorem 4.1 of Ingrassia [23], which gives λ′
2 ≤ 1−G · Z(θ) exp(−m (θ)) (we899

keep their notations for Z and m, and add the dependency in θ for clarity), where G is a constant900

depending only on the graph GN , and with:901

Z(θ) =
∑
y∈Y

exp

( ⟨θ, y⟩+ φ(y)

t
−max

y′∈Y

[ ⟨θ, y′⟩+ φ(y′)
t

])

≥ |Y| exp
(
1

t

[
min
y∈Y
⟨θ, y⟩+min

y∈Y
φ(y)−max

y′∈Y
⟨θ, y′⟩ −max

y′∈Y
φ(y′)

])
≥ |Y| exp

(
−2RC

t
||θ|| − 2Rφ

t

)
,
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and:902

m(θ) ≤ max
y∈Y

{
max
y′∈Y

[ ⟨θ, y′⟩+ φ(y′)
t

]
− ⟨θ,y⟩+ φ(y)

t

}
− 2min

y∈Y

{
max
y′∈Y

[ ⟨θ, y′⟩+ φ(y′)
t

]
− ⟨θ,y⟩+ φ(y)

t

}
= max

y′∈Y

[ ⟨θ, y′⟩+ φ(y′)
t

]
−min

y∈Y

[ ⟨θ, y⟩+ φ(y)

t

]
≤ 1

t

(
max
y′∈Y
⟨θ, y′⟩+ max

y′∈Y
φ(y′)−min

y∈Y
⟨θ, y⟩ −min

y∈Y
φ(y)

)
≤ 2RC

t
||θ||+ 2Rφ

t
,

where RC = maxy∈Y ||y|| and Rφ = maxy∈Y |φ(y)|. Thus, we have:

λ′
2 ≤ 1−G|Y| exp

(
−4Rφ

t

)
exp

(
−4RC

t
||θ||

)
,

and finally:903

λθ ≤ 1−
G|Y| exp

(
− 4Rφ

t

)
2

exp

(
−4RC

t
||θ||

)
,

so taking D = 4RC/t concludes the proof.904

905

Remark E.2. The stationary distribution in Ingrassia [23] is defined as proportional to exp (−H(y)),
with the assumption that the function H is such that miny∈Y H(y) = 0. Thus, we apply their results
with

H(y) := max
y′∈Y

[ ⟨θ, y′⟩+ φ(y′)
t

]
− ⟨θ,y⟩+ φ(y)

t

(which gives correct distribution πθ,t and respects this assumption), hence the obtained forms for906

Z(θ) and the upper bound on m(θ).907

E.7 Proofs of Proposition C.1 and Proposition C.2908

Proposition C.1. The distribution of the first iterate of the Markov chain with transition kernel defined909

in Eq. (3) and initialized at the ground-truth structure y is given by:910

(p
(1)
θ,y)(y

′) = Pθ,t(y,y
′)

=


q(y,y′)min

[
1, q(y′,y)

q(y,y′) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t)
]

if y′ ∈ N (y),

1−∑y′′∈N (y)(p
(1)
θ,y)(y

′′) if y′ = y,
0 else.

Let αy(θ,y
′) := q(y′,y)

q(y,y′) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t). Define also the following sets:911

N−
y (θ) = {y′ ∈ N (y) | αy(θ,y

′) ≤ 1} , N+
y (θ) = {y′ ∈ N (y) | αy(θ,y

′) > 1} .
The expectation of the first iterate is then given by:912

E
p
(1)
θ,y

[Y ] =
∑

y′∈N (y)

(p
(1)
θ,y)(y

′) · y′ +

1−
∑

y′′∈N (y)

(p
(1)
θ,y)(y

′′)

 · y
= y +

∑
y′∈N (y)

(p
(1)
θ,y)(y

′) · (y′ − y)

= y +
∑

y′∈N−
y (θ)

q(y′,y) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t) · (y′ − y) +
∑

y′∈N+
y (θ)

q(y,y′) · (y′ − y) .
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Let now fy : Rd ×N (y)→ R be defined as:913

fy : (θ ;y′) 7→
{
t · q(y′,y) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t) if αy(θ,y

′) ≤ 1,

t · q(y,y′)
(
[⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t+ 1− log q(y,y′)

q(y′,y)

)
if αy(θ,y

′) > 1.

Let Fy : θ 7→ ⟨θ,y⟩+∑y′∈N (y) fy(θ ;y′). We define the target-dependent regularization function
Ωy and the corresponding Fenchel-Young loss as:

Ωy : µ 7→ (Fy)
∗(µ), LΩy (θ ;y) := (Ωy)

∗(θ) + Ωy(y)− ⟨θ,y⟩.

• Ωy is t/Eq(y, · )||Y − y||22-strongly convex:914

One can easily check that fy( · ;y′) is continuous for all y′ ∈ N (y), as it is defined piecewise as
continuous functions that match on the junction affine hyperplane defined by:{

θ ∈ Rd | αy(θ;y
′) = 1

}
=

{
θ ∈ Rd | ⟨θ,y′ − y⟩ = t log

q(y,y′)
q(y′,y)

+ φ(y)− φ(y′)

}
.

Moreover, we have that fy( · ;y′) is actually differentiable everywhere as its gradient can be continu-
ously extended to the junction affine hyperplane with constant value equal to q(y,y′)(y′ − y). We
now show that fy( · ;y′) is 1

t q(y,y
′) · ||y′ − y||2-smooth. Indeed, it is defined as the composition of

the linear form θ 7→ ⟨θ,y′ − y⟩ and the function g : R→ R given by:

g : x 7→

t · q(y′,y) exp ([x+ φ(y′)− φ(y)] /t) if x ≤ t log q(y,y′)
q(y′,y) + φ(y)− φ(y′),

t · q(y,y′)
(
[x+ φ(y′)− φ(y)] /t+ 1− log q(y,y′)

q(y′,y)

)
if x > t log q(y,y′)

q(y′,y) + φ(y)− φ(y′).

We begin by showing that g is 1
t q(y,y

′)-smooth. We have:

g′ : x 7→
{
q(y′,y) exp ([x+ φ(y′)− φ(y)] /t) if x ≤ t log q(y,y′)

q(y′,y) + φ(y)− φ(y′),

q(y,y′) if x > t log q(y,y′)
q(y′,y) + φ(y)− φ(y′).

Thus, g′ is continuous, and differentiable everywhere except in x0 := t log q(y,y′)
q(y′,y) + φ(y)− φ(y′).

Its derivative is given by:

g′′ : x 7→
{

1
t q(y

′,y) exp ([x+ φ(y′)− φ(y)] /t) if x ≤ t log q(y,y′)
q(y′,y) + φ(y)− φ(y′),

0 if x > t log q(y,y′)
q(y′,y) + φ(y)− φ(y′).

• For x1, x2 ≤ x0, we have:915

|g′(x1)− g′(x2)| ≤ |x1 − x2| sup
x∈]−∞,x0[

|g′′(x)|

= |x1 − x2| limx→x0
x<x0

|g′′(x)|

=
1

t
q(y,y′) · |x1 − x2|.

• For x1, x2 ≥ x0, we trivially have |g′(x1)− g′(x2)| = 0.916

• For x1 ≤ x0 ≤ x2, we have:917

|g′(x1)− g′(x2)| = |(g′(x1)− g′(x0))− (g′(x2)− g′(x0))|
≤ |g′(x1)− g′(x0)|+ |g′(x2)− g′(x0)|

≤ 1

t
q(y,y′) · |x1 − x0|

≤ 1

t
q(y,y′) · |x1 − x2|.
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Thus, we have:

∀x1, x2 ∈ R, |g′(x1)− g′(x2)| ≤
1

t
q(y,y′) · |x1 − x2|,

and g is 1
t q(y,y

′)-smooth. Nevertheless, we have fy( · ,y′) = g(⟨ · ,y′ − y⟩). Thus, we have, for918

θ1,θ2 ∈ Rd:919

||∇θfy(θ1,y
′)−∇θfy(θ2,y

′)|| = ||g′(⟨θ1,y′ − y⟩)(y′ − y)− g′(⟨θ2,y′ − y⟩)(y′ − y)||
= |g′(⟨θ1,y′ − y⟩)− g′(⟨θ2,y′ − y⟩)| · ||y′ − y||

≤ 1

t
q(y,y′) · |⟨θ1,y′ − y⟩ − ⟨θ2,y′ − y⟩| · ||y′ − y||

≤ 1

t
q(y,y′) · ||y′ − y||2 · ||θ1 − θ2||,

and fy( · ,y′) is 1
t q(y,y

′) · ||y′ − y||2-smooth. Thus, recalling that Fy is defined as

Fy : θ 7→ ⟨θ,y⟩+
∑

y′∈N (y)

fy(θ;y
′),

we have that Fy is
∑

y′∈N (y)
1
t q(y,y

′) · ||y′ − y||2 = Eq(y, · )||Y − y||22/t-smooth. Finally, as920

Ωy := (Fy)
∗, Fenchel duality theory gives that Ωy is t/Eq(y, · )||Y − y||22-strongly convex.921

• E
p
(1)
θ,y

[Y ] = argmaxµ∈conv(N (y)∪{y}) {⟨θ,µ⟩ − Ωy(µ)}:922

Noticing that g is continuous on R, convex on
]
−∞, t log q(y,y′)

q(y′,y) + φ(y)− φ(y′)
[

and on]
t log q(y,y′)

q(y′,y) + φ(y)− φ(y′),+∞
[
, and with matching derivatives on the junction:

g′(t)
t→t log

q(y,y′)
q(y′,y)

+φ(y)−φ(y′)

−−−−−−−−−−−−−−−−−−→
t<t log

q(y,y′)
q(y′,y)

+φ(y)−φ(y′)

q(y,y′), g′(t)
t→t log

q(y,y′)
q(y′,y)

+φ(y)−φ(y′)

−−−−−−−−−−−−−−−−−−→
t>t log

q(y,y′)
q(y′,y)

+φ(y)−φ(y′)

q(y,y′),

gives that g is convex on R. Thus, fy( · ;y′) is convex on Rd by composition. Thus,

Fy : θ 7→ ⟨θ,y⟩+
∑

y′∈N (y)

fy(θ;y
′)

is closed proper convex as the sum of such functions. The Fenchel-Moreau theorem then gives that it
is equal to its biconjugate. Thus, we have:

Fy(θ) = sup
µ∈Rd

{⟨θ,µ⟩ − (Fy)
∗(µ)} = sup

µ∈Rd

{⟨θ,µ⟩ − Ωy(µ)} .

Nonetheless, the gradient of Fy is given by:923

∇θFy(θ) = y +
∑

y′∈N−
y (θ)

q(y′,y) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t) · (y′ − y) +
∑

y′∈N+
y (θ)

q(y,y′) · (y′ − y)

= E
p
(1)
θ,y

[Y ] .

Thus, we have ∇Fy(Rd) ⊂ conv (N (y) ∪ {y}), which gives:

∀θ ∈ Rd, ||∇Fy(θ)|| ≤ RN (y) := max
µ∈conv(N (y)∪{y})

||µ||,

so that we have dom(Ωy) ⊂ B(0, RN (y)). Thus we can actually write:

Fy(θ) = sup
µ∈B(0,RN(y))

{⟨θ,µ⟩ − Ωy(µ)} ,

and now apply Danksin’s theorem as B(0, RN (y)) is compact, which further gives:

∂Fy(θ) = argmax
µ∈B(0,RN(y))

{⟨θ,µ⟩ − Ωy(µ)} ,
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and the fact that Fy is differentiable gives that both sides are single-valued. Moreover, as∇Fy(Rd) ⊂
conv (N (y) ∪ {y}), we know that the right hand side is maximized in conv (N (y) ∪ {y}), and we
can actually write:

E
p
(1)
θ,y

[Y ] = ∇Fy(θ) = argmax
µ∈conv(N (y)∪{y})

{⟨θ,µ⟩ − Ωy(µ)} .

• Smoothness of LΩy ( · ;y) and expression of its gradient:924

Based on the above, we have:

LΩy (θ ;y) = Fy(θ) + Ωy(y)− ⟨θ,y⟩.
Thus, the Eq(y, · )||Y − y||22/t-smoothness of LΩy ( · ;y) follows directly from the previously estab-
lished Eq(y, · )||Y − y||22/t-smoothness of Fy. Similarly, the expression of ∇θLΩy (θ ;y) follows
from the previously established expression of∇θFy(θ), and we have:

∇θLΩy (θ ;y) = ∇θFy(θ)− y = E
p
(1)
θ,y

[Y ]− y.

925

Proposition C.2. In the unsupervised setting, given a dataset (yi)
N
i=1, the distribution of the first926

iterate of the Markov chain with transition kernel defined in Eq. (3) and initialized by y(0) = yi, with927

i ∼ U(J1, NK), is given by:928

(p
(1)

θ,ȲN
)(y) =

∑
y′∈Y

(
N∑
i=1

1{yi=y′} ·
1

N

)
Pθ,t(y

′,y)

=
∑
y′∈Y

(
N∑
i=1

1{yi=y′} ·
1

N

)
p
(1)
θ,y′(y)

=
1

N

N∑
i=1

p
(1)
θ,yi

(y).

Thus, keeping the same notations as in the previous proof, previous calculations give:929

E
p
(1)

θ,ȲN

[Y ] =
1

N

N∑
i=1

E
p
(1)
θ,yi

[Y ]

=
1

N

N∑
i=1

∇θFyi(θ)

= ∇θ

(
1

N

N∑
i=1

Fyi

)
(θ).

Let FȲN
:= 1

N

∑N
i=1 Fyi Then, the exact same arguments as in the supervised case hold, and the930

results of Proposition C.2 are obtained by replacing Fy by FȲN
in the proof of Proposition C.1,931

and noticing that the previously shown Eq(yi, · )||Y − yi||22/t-smoothness of Fyi
gives that FȲN

is932

1
N

∑N
i=1 Eq(yi, · )||Y − yi||22/t-smooth. Similar arguments also hold for the regularized optimization933

formulation, by noting that this time we have∇FȲN
(Rd) ⊂ conv

(⋃N
i=1 {N (yi) ∪ {yi}}

)
.934

E.8 Proof of Proposition C.3935

Proof. The first point is directly given by the fact that E
p
(1)
θ,y

[Y ] is the expectation of a distribution936

over N (y) ∪ {y}. For the second and third points, as derived in Appendix E.7, we have:937

E
p
(1)
θ,y

[Y ] = y +
∑

y′∈N−
y (θ)

q(y′,y) exp ([⟨θ,y′ − y⟩+ φ(y′)− φ(y)] /t) · (y′ − y) +
∑

y′∈N+
y (θ)

q(y,y′) · (y′ − y) .
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Define then:938

Nbetter(y) := {y′ ∈ N (y) | ⟨θ,y′⟩+ φ(y′) > ⟨θ,y⟩+ φ(y)} ,
Nworse(y) := {y′ ∈ N (y) | ⟨θ,y′⟩+ φ(y′) < ⟨θ,y⟩+ φ(y)}

as the sets of improving and worsening neighbors of y respectively (assuming no neighbor of y has939

exactly equal objective value for simplicity, which is true almost everywhere w.r.t. θ ∈ Rd).940

Low temperature limit. We have:941

N+
y (θ) −−−−→

t→0+
Nbetter(y), and N−

y (θ) −−−−→
t→0+

Nworse(y).

Then, as x < 0 =⇒ exp(x/t) −−−−→
t→0+

0, we have effectively

E
p
(1)
θ,y

[Y ] −−−−→
t→0+

y +
∑

y′∈Nbetter(y)

q(y,y′) · (y′ − y).

High temperature limit. As ∀x ∈ R, exp(x/t) −−−−→
t→+∞

1, we have:942

N+
y (θ) −−−−→

t→+∞
{y′ ∈ N (y) | q(y′,y) > q(y,y′)} , and N−

y (θ) −−−−→
t→+∞

{y′ ∈ N (y) | q(y′,y) ≤ (y,y′)} .

Thus, we have:943

E
p
(1)
θ,y

[Y ] −−−−→
t→+∞

y +
∑

y′|q(y′,y)≤(y,y′)

q(y′,y) · (y′ − y) +
∑

y′|q(y′,y)>(y,y′)

q(y,y′) · (y′ − y),

which gives effectively:944

E
p
(1)
θ,y

[Y ] −−−−→
t→+∞

y +
∑

y′∈N (y)

min [q(y,y′), q(y′,y)] · (y′ − y).

945
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1256

may be required for any human subjects research. If you obtained IRB approval, you1257

should clearly state this in the paper.1258

• We recognize that the procedures for this may vary significantly between institutions1259

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1260

guidelines for their institution.1261

• For initial submissions, do not include any information that would break anonymity (if1262

applicable), such as the institution conducting the review.1263
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