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Abstract
Transfer-based adversarial example is one of the
most important classes of black-box attacks. Prior
work in this direction often requires a fixed but
large perturbation radius to reach a good transfer
success rate. In this work, we propose a geometry-
aware framework to generate transferable adver-
sarial perturbation with minimum norm for each
input. Analogous to model selection in statistical
machine learning, we leverage a validation model
to select the optimal perturbation budget for each
image. Extensive experiments verify the effec-
tiveness of our framework on improving image
quality of the crafted adversarial examples. The
methodology is the foundation of our entry to the
CVPR’21 Security AI Challenger: Unrestricted
Adversarial Attacks on ImageNet, in which we
ranked 1st place out of 1,559 teams and surpassed
the runner-up submissions by 4.59% and 23.91%
in terms of final score and average image quality
level, respectively.

1. Introduction
Though deep neural networks have exhibited impressive
performance in various fields (He et al., 2016; Dosovit-
skiy et al., 2021), they are vulnerable to adversarial exam-
ples (Szegedy et al., 2014; Goodfellow et al., 2015; Bho-
janapalli et al., 2021; Shao et al., 2021), where test inputs
that have been modified slightly strategically cause misclas-
sification. Adversarial examples have posed serious threats
to various security-critical applications, such as autonomous
driving (Bojarski et al., 2016), face recognition (Parkhi et al.,
2015; Zhong & Deng, 2020), malware classification (Pas-
canu et al., 2015), etc. Most positive results on adversarial
attacks have focused on the white-box settings (Athalye
et al., 2018; Tramer et al., 2020), where the attacker can get
full access to the defense models. However, the problem
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Figure 1. Contour of average total score Stotal (see Eq (2), the
upper right corner represents a better result), which is defined as the
product of transfer success rate (y-axis) and average perturbation
reward SAPR (x-axis). Fixing transfer success rate as 80%, our
approach GA-DTMI-FGSM surpasses the baseline DTMI-FGSM
(see Eq (1)) by up to 43.35% in terms of average perturbation
reward, which benefits from the adaptive choice of perturbation
budgets w.r.t. distinct images in our geometry-aware framework.

becomes more challenging when it comes to the black-box
setting, where the attacker has no information about the
model architecture, hyper-parameters, and even the model
outputs. In this setting, adversarial examples are typically
generated via transfer-based methods (Szegedy et al., 2014;
Papernot et al., 2016; 2017), e.g., attacking an ensemble of
accessible source models and hoping that the same perturba-
tions are able to fool the unknown target (test) model (Liu
et al., 2017; Tramèr et al., 2017).

Despite a large amount of work on transfer-based attacks,
many fundamental questions remain unresolved. For exam-
ple, existing transfer-based attacks (Dong et al., 2018; Xie
et al., 2019; Dong et al., 2019) that search for adversarial ex-
amples in a fixed-radius ball often require high perturbation
budget to reach a good transfer success rate. However, such
perturbations might be perceptible to humans (see Figure
2). On the other hand, minimum-norm attacks (Carlini &
Wagner, 2017) that fool the source model with minimum
perturbation suffer from weak transferability to the target
model. This is in part due to the difference between the
decision boundaries of the source and target models. Given
the difficulty of trading transferability off against perturba-
tion budget, one of the long-standing questions is generating
minimum-norm adversarial perturbations that can transfer
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Figure 2. Comparison between our method GA-DTMI-FGSM and the baseline DTMI-FGSM (see Eq (1)) using various `∞ perturbation
radii. In the even columns, we present the top-5 confidence bars of the target (test) model for the images in the left. The ground-truth label
is marked by pink and other labels are marked by blue. In each row, the misclassified adversarial example with minimum perturbation
norm under DTMI-FGSM attack is highlighted by a blue bounding box. This indicates that the perturbation budgets required for distinct
images are different. Note that the “human-imperceptible” constraint is violated when the perturbation radius is too large. However, our
method GA-DTMI-FGSM (highlighted by red bounding boxes) generates transferable adversarial examples with lower budget.

well across various networks.

1.1. Our methodology and results

In this work, we propose a novel geometry-aware frame-
work, into which existing fixed-radius methods can be inte-
grated to generate transferable adversarial perturbation with
minimum norm. Our intuition is that the smallest perturba-
tion budgets w.r.t. distinct images should be different (see
Figure 2) and should depend on their geometrical distances
to the decision boundary of the target model. Unfortunately,
finding transferable minimum-norm adversarial perturba-
tions is an intractable optimization problem (see Eq (3)).
We approximately solve this problem by discretizing the
continuous space of perturbation radius into a finite set and
choosing the minimum perturbation budget that is able to
fool the test model. The main challenge here is to evaluate
whether a given perturbation transfers well to the unknown
target model (Cheng et al., 2019b; Katzir & Elovici, 2021).

To overcome this challenge, we split all accessible white-
box source models into training and validation sets, where
adversarial perturbations are crafted only on the training
set. We use the validation set to select the smallest per-
turbation radius for each input that suffices to fool the val-
idation model with a certain confidence level through an
early-stopping mechanism. When the training (or valida-
tion) set consists of multiple models, we use their ensemble
with equal weights (Liu et al., 2017). Experimentally, our
method yields significant performance boost on the trade-off
between average perturbation reward (see Eq (2)) and trans-
fer success rate. As shown in Figure 1, the transfer success
rate of our method GA-DTMI-FGSM surpasses the baseline
DTMI-FGSM (see Eq (1)) by up to 16% in absolute value
under the same average perturbation reward.

1.2. Summary of our contributions

• We propose a geometry-aware framework, where exist-
ing fixed-radius methods can be integrated, to generate
transferable adversarial perturbation with minimum-
norm for each input. To the best of our knowledge, we
are the first to explore the method of using adaptive
perturbation radius in the transfer-based attacks.

• Our method improves the image quality of the crafted
adversarial examples by a large margin without the de-
crease of transfer success rate. By applying our method
to the CVPR’21 Security AI Challenger: Unrestricted
Adversarial Attacks on ImageNet, we ranked 1st place
out of 1,559 teams and surpassed the runner-up sub-
missions by 4.59% and 23.91% in terms of final score
and average image quality level, respectively.

2. Preliminaries
Notation. A deep neural network classifier can be de-
scribed as a function f(x;θ) : X → RC , parameterized
by weights θ, which maps a vector x ∈ X to its output
logits. Given an input x of class y ∈ {1, 2, · · · , C}, the
predicted label of f(x;θ) is f̂(x) := arg maxj fj(x;θ),
where fj(x;θ) represents the j-th entry of f(x;θ). We
use L (f(x;θ), y) to represent the cross-entropy loss and
denote the ε-neighborhood of x by B(x, ε) := {x′ ∈ X :
‖x′ − x‖ ≤ ε}. We denote the black-box test model by g,
and split the set of white-box source models into the set of
training models f and the set of validation models h.

2.1. Transfer-based black-box attacks

Adversarial perturbations can transfer well across different
networks that are trained on similar tasks (Papernot et al.,
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2016; 2017): adversarial examples that are generated on
training model f may also be misclassified by test model
g. This intriguing property can be leveraged to perform
transfer-based attacks. Existing transfer-based attacks typi-
cally search for adversarial examples in a fixed-radius ball.

Fixed-radius `∞ perturbations. Various methods were
proposed to boost transferability of adversarial examples,
such as input Diversity Iterative Fast Gradient Sign Method
(DI-FGSM) (Xie et al., 2019), Momentum-based Iterative
(MI-FGSM) method (Dong et al., 2018) and Translation-
invariant Iterative (TI-FGSM) method (Dong et al., 2019).
We formulate a strong baseline DTMI-FGSM by combining
all these techniques, i.e.,

mt+1 = µ ·mt +
W ∗ ∇xt

L (f (T (xt, p);θ) , y)

‖W ∗ ∇xt
L (f (T (xt, p);θ) , y) ‖1

,

xt+1 = ΠB(x,ε) (xt + α · sign(mt+1)) ,
(1)

where m0 = 0, W is a pre-defined kernel with a convo-
lution operation ∗, α is the step size, Π is the projection
operator, and µ is the decay factor for the momentum term.
T (xt, p) represents the input transformation on xt with
probability p. When µ = 0, DTMI-FGSM attack degener-
ates to the DTI-FGSM attack.

2.2. Evaluation metric

It is important to keep high transfer success rate while main-
taining “human-imperceptible” constraint and good percep-
tual quality such that the crafted adversarial examples are
not easily detected (Grosse et al., 2017) by human inspectors.
Although the precise mathematical quantization of human
perception is difficult to obtain (Wang et al., 2004; Laidlaw
et al., 2021), typically smaller perturbation radius enjoys
better image quality (see Figure 2). Consider a dataset
Ŝ = {(xi, yi)}ni=1 and the corresponding adversarial exam-
ples Ŝadv = {(x′i, yi)}ni=1 that are crafted on the training
model f . Let n0 =

∑n
i=1 1{ĝ(x′i) 6= yi} be the number

of misclassified adversarial examples on test model g. We
define the average total score as follows:

Stotal =
1

n

n∑
i=1

1{ĝ(x′i) 6= yi} · Freward (‖x′i − xi‖)

=
n0
n
· 1

n0

n∑
i=1

1{ĝ(x′i) 6= yi} · Freward (‖x′i − xi‖)

def
=
n0
n
· SAPR,

(2)
where SAPR is the Average Perturbation Reward of adver-
sarial examples that are misclassified by test model g and
the reward function Freward is a decreasing function w.r.t.
the perturbation raidus ‖x′i − xi‖.

3. Methodology
Motivation. Eq (2) factorizes the average total score as the
product of transfer success rate and average perturbation
reward, which motivates us to find the smallest perturbation
δ∗ such that x + δ∗ is misclassified by the test model g,1

i.e.,

δ∗ = arg min
δ

‖δ‖, s.t. ĝ(x+ δ) 6= y. (3)

However, direct optimization of problem (3) is intractable,
in part due to the lack of information about test model g.
We approximately solve this problem by discretizing the
continuous space of perturbation radius into a discrete set
and choosing the minimum perturbation budget such that
the attack is able to fool the test model g. However, the
challenge is that it is typically difficult to decide whether a
given perturbation radius can also fool the test model (Cheng
et al., 2019b; Katzir & Elovici, 2021). This problem is also
known as model selection problem, and a classic approach
to tackle this problem is to use a validation model h to
select the right perturbation radius. More specifically, we
split all accessible source models into training model set and
validation model set. With validation model h, we are able
to generate transferable adversarial examples with smaller
perturbation budgets.

3.1. Geometry-aware framework for generating
transferable minimum-norm perturbations

Existing fixed-radius transfer-based methods typically ig-
nore the local geometry property, i.e., the geometrical dis-
tances of distinct images to the decision boundary of test
model g are different. To approximately solve problem
(3), we first divide the attack in the ball B(x, ε) into K
sub-procedures. In the k-th sub-procedure, we re-run a
fixed-radius attack algorithm A such as DTMI-FGSM (see
Eq (1)), under the perturbation budget

εk =
k

K
× ε, k = 1, 2, · · · ,K.

We start each sub-procedure from the solution of the last
sub-procedure to accelerate the convergence. To obtain
a minimum-norm solution, we perform an early-stopping
mechanism at the end of each sub-procedure if the proba-
bility of the true class on the validation model h is smaller
than a certain threshold η, i.e.,

P
(
ĥ(x) = y

)
=

exp (hy(x;θ))∑
j exp (hj(x;θ))

< η. (4)

Our geometry-aware framework is summarized in Algo-
rithm 1 and conceptually described in Figure 3.

1In contrast to existing white-box minimum-norm attack (Car-
lini & Wagner, 2017), g is a unknown model here.
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Figure 3. Existing fixed-radius methods typically overlook the the importance of geometrical distances from inputs to the decision
boundary of test model g. In contrast, our geometry-aware framework aims to find geometry-aware minimal-norm perturbation via a
validation model h. The goal is to prevent an attack algorithm overfitting f by forcing the solution to cross the decision boundary of h
with a certain margin. Our geometry-aware framework consists of multiple sub-procedures with adaptive perturbation budgets. In each
sub-procedure, we start from the solution of last sub-procedure (the red solid points) and re-run the attack algorithm on the training model
f . The procedure stops if the output probability of the true class on the validation model h is smaller than a certain threshold η.

4. Experiments
In this section, we compare fixed-radius baselines with our
geometry-aware framework. The methodology is the foun-
dation of our entry to the CVPR’21 Security AI Challenger,
in which we ranked 1st place out of 1,559 teams.

4.1. Improved trade-off between transfer success rate
and average perturbation reward

We combine our Geometry-Aware framework with DI-
FGSM, DTI-FGSM and DTMI-FGSM, named GA-DI-
FGSM, GA-DTI-FGSM and GA-DTMI-FGSM, respec-
tively. In our experiment, the training model f and
validation model h are an ensemble of models {2, 3, 5}
and {1, 4, 6} in Table 2, respectively. The test model is
Inception-ResNet-v22. As shown in Table 1, our approach
yields significant performance boost on both the average
perturbation reward SAPR and the transfer success rate.

Table 1. Comparison of our geometry-aware framework with base-
lines. We report the results when both our approach and baselines
achieve highest average total score SAPR.

Method Transfer Success Rate SAPR (↑) Stotal (↑)
DI-FGSM 61.1% 0.0759 4.64%

GA-DI-FGSM (ours) 69.4% 0.0819 5.68%
DTI-FGSM 57.3% 0.1101 5.68%

GA-DTI-FGSM (ours) 67.9% 0.1176 7.98%
DTMI-FGSM 63.9% 0.1147 7.33%

GA-DTMI-FGSM (ours) 69.4% 0.1358 9.42%

4.2. Case study: CVPR 2021 Competition on
Unrestricted Adversarial Attacks on ImageNet

Competition settings. In the CVPR 2021 Competition
on Unrestricted Adversarial Attacks on ImageNet, contes-
tants were asked to submit adversarial examples without
any access to the defense models. The dataset is a subset of
ILSVRC 2012 validation set (Deng et al., 2009), which con-

2For more experimental setups, we refer to Appendix B.
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Figure 4. Top-6 results (out of 1,559 teams) in the CVPR’21 Secu-
rity AI Challenger: Unrestricted Adversarial Attacks on ImageNet.
The final scores were manually scored by multiple human referees.

sists of 5,000 images with 5 images per class. The final score
of each submission was manually scored from two aspects:
1) image semantic and 2) quality. If the semantic of the
submitted image changes, then Ss = 0, otherwise Ss = 1.
The image quality Sq (equivlent to our reward function
Freward) was quantified with five levels Sq ∈ {1, 2, 3, 4, 5}
by multiple human referees. The final score is given by∑

i 1{ĝ(x′i) 6= yi} × Ss(x
′
i)×

Sq(‖x′
i−xi‖)
5 .

Competition results. We apply our method GA-DTMI-
FGSM to the competition, where our entry ranked 1st place
out of 1,559 teams. We report the final score and average
image quality level (equivlent to our average perturbation
reward) in Figure 4. It shows that our method outperforms
other approaches by a large margin. In particular, we surpass
the runner-up submissions by 4.59% and 23.91% in terms
of final score and average image quality level, respectively.

5. Conclusion
In this work, We propose a geometry-aware framework,
where existing fixed-radius methods can be integrated to gen-
erate transferable adversarial perturbation with minimum-
norm for each input.
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A. Related Works
Generating `p adversarial examples. The attacks for gen-
erating `p adversarial examples can be summarized into
white-box attacks, query-based and transfer-based black-
box attacks. In white-box threat model, attackers have full
access to the defense model, such as gradients, parameters,
logits, etc. Existing gradient-based white-box attacks either
find adversarial examples in a fixed-radius ball (Goodfellow
et al., 2015; Kurakin et al., 2019; Madry et al., 2018), or
optimize the perturbation for each image independently to
get a minimum-norm solution such as CW attack (Carlini &
Wagner, 2017), DeepFool (Moosavi-Dezfooli et al., 2016),
Fast Adaptive Boundary (FAB) attack (Croce & Hein, 2020)
and Fast Minimum-Norm (FMN) attack (Pintor et al., 2021).
However, white-box assumption usually does not hold in
real-world scenarios; In query-based black-box threat model,
attackers utilize the output logits (score-based attacks (Chen
et al., 2017; Andriushchenko et al., 2020)) to generate ad-
versarial examples, or only use the output label of the target
model (decision-based attacks (Brendel et al., 2018; Cheng
et al., 2019a)). But all these query-based attacks typically
suffer from high query complexity, making it easy to be
detected (Willmott et al., 2021); In transfer-based black-
box threat model, attackers have no information about the
defense model. Dong et al. (Dong et al., 2018) boosted trans-
ferability by integrating momentum into iterative gradient-
based methods. Liu et al. (Liu et al., 2017) found that
attacking a group of substituted source models simultane-
ously can improve transferability. Besides, transferability
benefits from input transformations such as Diversity It-
erative Fast Gradient Sign Method (Xie et al., 2019) and
Translation-invariant Iterative Method (Dong et al., 2019).
Recent work (Wang et al., 2021) shows that momentum-
based method can be further enhanced by using gradients
of more data points.

Adversarial defenses. There have been long-standing arms
races between defenders and attackers: while many defense
methods claimed non-trivial robustness, majority of them
were later broken by adaptive attacks (Athalye et al., 2018;
Tramer et al., 2020). Adversarial training (Goodfellow et al.,
2015) is one of the most promising defense methods. There
are various variants of adversarial training framework, e.g.,
ensemble adversarial training (Liu et al., 2017) for transfer-
based attack, PGD-based adversarial training (Madry et al.,
2018), and TRADES (Zhang et al., 2019) with a new ro-
bust loss based on the trade-off between robustness and
accuracy. Geometry-aware instance-reweighted adversarial
training (Zhang et al., 2021) shares similar insights with us
that the importance of distinct inputs in adversarial training

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
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should be different, however, is proven falling into gradi-
ent masking (Hitaj et al., 2021; Carlini & Wagner, 2016).
Schmidt et al. (Schmidt et al., 2018) proved that adversar-
ial robust generalization requires more data in a Gaussian
model. Recent work shows that adding more training data
can improve adversarial robustness, either unlabeled (Car-
mon et al., 2019) or synthetic data (Rebuffi et al., 2021;
Sehwag et al., 2021).

Beyond `p norms. The `p norm distance is not an ideal per-
ceptual similarity metric (Johnson et al., 2016; Isola et al.,
2017), which oversimplifies the diversity of real-world per-
turbations. Kang et al. (Kang et al., 2019) found that de-
fenses trained on `p bounded perturbation are not robust
against new types of unseen attacks. Adversarial training
against multiple `p attacks (Tramer & Boneh, 2019) solved
this issue partially, however, at the cost of efficiency and
robustness against single `p attack. Recent works (Laid-
law et al., 2021) integrate adversarial training with Learned
Perceptual Image Patch Similarity (LPIPS), aiming to im-
proving robustness against perturbations that were unseen
during training. Kireev et al. (Kireev et al., 2021) intro-
duced an efficient relaxation of perceptual adversarial train-
ing based on layer-wise adversarial perturbations. Instead of
constructing adversarial examples on perceptual distances,
Wong et al. (Wong & Kolter, 2021) used a conditional gener-
ator to define the perturbation set over a constrained region
of the latent space. Unrestricted adversarial examples has
received significant attention in recent years (Brown et al.,
2018; Song et al., 2018; Bhattad et al., 2020; Engstrom et al.,
2019; Zhao et al., 2020). However, constructing transferable
unrestricted adversarial examples is still an open problem.

B. Experiments
B.1. Experimental setup

Datasets & Networks. Attacking on images that are al-
ready misclassified is trivial. Similar to (Xie et al., 2019),
we randomly select 1,000 images from ILSVRC 2012 val-
idation set (Deng et al., 2009), which are almost correctly
classified by all the considered models. All these images
are resized to 229× 229× 3 beforehand. We consider eight
normally trained models and two ensemble adversarially
trained models (Tramèr et al., 2018). The weights of all
these models are publicly available at Wightman (2019).
More details about the networks are summarised in Table 2.
The transferability between all considered models is sum-
marised in Figure 5. The generated adversarial examples are
much easier to transfer from vision transformers to CNNs,
which is consist with the empirical observation in Shao et al.
(2021). Surprisingly, the robustness of naturally trained
vision transformers under transfer attack is even on par with
two ensemble adversarially trained CNNs.
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Figure 5. Transferability comparison between different networks
under DTMI-FGSM attack. The rows stand for the source models
and the columns stand for the target models. The crafted adversar-
ial examples are much easier to transfer from vision transformers
to CNNs. Surprisingly, the robustness of naturally trained vision
transformers under transfer attack is even on par with two ensem-
ble adversarially trained CNNs. Besides, adversarial examples
transfer well between models with similar architectures.

Implementation details. For our geometry-aware frame-
work, we set K = 5 and the maximum perturbation size
ε = 20. The reward function is set to Freward(x) = 1/x.
The optimal threshold η∗ was chosen from a finite set rang-
ing from 0.001 to 0.9. For DTMI-FGSM, we set the step
size α = 1.25×ε

T with T = 10. For fair comparison, we set
the iteration number N = (0.125ε+ 0.5)× T for baselines
to keep the same total perturbation budget as our geometry-
aware framework. For the momentum term, we set the decay
factor µ = 1 as in Dong et al. (2018). For DI-FGSM (Xie
et al., 2019), we set the transformation probability to p = 0.7
and the input x is first randomly resized to an r × r × 3
image with r ∈ [(1 − γ)s, (1 + γ)s], and then padded to
size (1 + γ)s × (1 + γ)s × 3. The transformed input is
then resized to s× s× 3 for different input size s of various
models, i.e., 224, 299 or 384. We set γ = 0.1 as default.
For TI- FGSM (Dong et al., 2019), we use Gaussian kernel
with kernel size equals to 5× 5.

B.2. Ablation Studies

The optimal η depends on the combination of f, h, g It
is natural to ask that how should we choose the training
model f and validation model h. As illustrated in Figure 3,
the effectiveness of our geometry-aware framework relies
on relationship between the decision boundaries of training
model f , validation model h and test model g. Thus we
compared various kinds of partition of training models, vali-
dation models and test model in Figure 7, from which we
can conclude the following observations:
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Figure 6. Comparison between our method GA-DTI-FGSM and the baseline DTI-FGSM using various `∞ perturbation radii. In the even
columns, we present the top-5 confidence bars of the target (test) model for the images in the left. The ground-truth label is marked by
pink and other labels are marked by blue. In each row, the misclassified adversarial example with minimum perturbation norm under
DTI-FGSM attack is highlighted by a blue bounding box. Our method GA-DTI-FGSM (highlighted by red bounding boxes) generates
transferable adversarial examples with lower budget.

Table 2. An overview of all considered networks. Top-1 represents the accuracy on the ILSVRC 2012 validation set (Deng et al., 2009).
Training Method Index Model Name Top-1 Index Model Name Top-1

Normal

0 ViT-S/16 76.01% 1 ViT-B/16 81.08%
2 Swin-B/patch4-window7 84.23% 3 ResNeXt101-32x8d-swsl 83.62%
4 ResNeXt50-32x4d-ssl 78.90% 5 ResNet50-swsl 79.97%
6 Inception-v3 76.94% 7 Inception-ResNet-v2 79.85%

Ensemble 8 Ens3-adv-Inception-v3 76.49% 9 Ens-adv-Inception-ResNet-v2 78.98%
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Figure 7. Comparison between various kinds of partition of train-
ing models, validation models and test model. The index in the
legend corresponds to the model index in Table 2. As the threshold
η for early-stopping (see Eq (4)) increases, the generated adversar-
ial examples have higher confidence (probability of the true class)
on the validation model h, thus leading to a lower transfer success
rate (left). Besides, the optimal η that yields maximum average
total score is dependent on the partition of the models (right).

• The role of training model f and validation model h
is not symmetrical. The transfer success rate changed
a lot when we exchanged the role of models {4, 5, 6}
and {1, 2, 3} for training or validation.

• Ensembling more models yields better performance.
When additional models were added into the training
and validation sets, the average total score achieves
significantly improvement.

Algorithm 1 Geometry-Aware Framework for Transferable
Minimum-Norm Perturbations
Require:

Benign input x with label y; training models f ; valida-
tion model h; number of sub-procedures K; maximum
perturbation size ε and threshold η; attack algorithm A

Ensure:
Transfer-based adversarial example x′;

1: x0 = x;
2: for k = 1, 2, · · · ,K do
3: xk = A(x,xk−1, f,

kε
K );

4: conf ← exp(hy(xk;θ))∑
j exp(hj(xk;θ))

;
5: if conf < η then
6: Return xk;
7: end if
8: end for
9: Return xK ;


