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ABSTRACT

True intelligence hinges on the ability to uncover and leverage hidden causal rela-
tions. Despite significant progress in AI and computer vision (CV), there remains
a lack of benchmarks for assessing models’ abilities to infer latent causality from
complex visual data. In this paper, we introduce CAUSAL3D, a novel and compre-
hensive benchmark that integrates structured data (tables) with corresponding vi-
sual representations (images) to evaluate causal reasoning. Designed within a sys-
tematic framework, Causal3D comprises 19 3D-scene datasets capturing diverse
causal relations, views, and backgrounds, enabling evaluations across scenes of
varying complexity. We assess multiple state-of-the-art methods, including clas-
sical causal discovery, causal representation learning, and large/vision-language
models (LLMs/VLMs). Our experiments show that as causal structures grow
more complex without prior knowledge, performance declines significantly, high-
lighting the challenges even advanced methods face in complex causal scenarios.
Causal3D serves as a vital resource for advancing causal reasoning in CV and
fostering trustworthy AI in critical domains.

1 INTRODUCTION

Computer vision (CV) has achieved remarkable success in tasks such as classification (Dosovitskiy
et al., 2021; Singh et al., 2022; Fang et al., 2023) and detection (Liu et al., 2021; Wang et al., 2023).
Although these systems excel at identifying statistical correlations within data, they often struggle
to infer deeper causal relations. This limitation significantly impacts their ability to be applied to
high-stakes domains or unseen scenes. For instance, without understanding the causal relations
between object depths, motions, and shapes, a vision-based autonomous driving system may easily
misidentify traffic signs due to spurious correlations or adversarial attacks, leading to sudden braking
and severe safety issues (Yang et al., 2022).

Unlike classification and detection tasks, which have thrived on large-scale datasets with explicit
labels, causal tasks in images demand more for study and evaluation — ideally, annotations with
clear causal relations among variables. This makes dataset collection significantly more challeng-
ing than in traditional CV tasks. The difficulty stems from two key factors: inherent complexity
and covert nature of causality: Real-world causal relations are often complex and not directly
observable, and causal variables are often high-level concepts (e.g., an object) instead of low-level
pixels, making causal relations in vision domain inherently challenging to discern; challenges in
visual representation: Even well-established causal rules are challenging to visually depict. For
example, in physics, magnetic fields are represented by invisible magnetic induction lines, making
them difficult to illustrate in realistic images. Similarly, abstract concepts like economic principles,
(e.g., supply and demand), are not easily encoded into visual forms.

Some existing datasets have been involved in causal studies in visual AI systems. However,
these datasets often have significant limitations. For instance, oversimplified 2D hypothetical
datasets (Yang et al., 2020) fail to capture the richness and complexity of real-world environments.
Similarly, domain-specific datasets like the CelebA face dataset (Liu et al., 2015) are not designed
for causal reasoning and lack the structural diversity required for comprehensive explorations.
Recent datasets developed for vision- and multimodal-language models (VLMs/MLMs) (Zimmer-
mann et al., 2021; Von Kügelgen et al., 2021; Mao et al., 2022; Tung et al., 2024) have improved in
complexity and realism but remain limited in explicitly representing causality and in offering diverse
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Figure 1: The proposed CAUSAL3D dataset. We display 8 real-world scenes (11 hypothetical scenes
are in the Appendix 6). We focus on 3 scenes: springs, parabolas, and water flow. 1) The blue block
represents multi-view images of each scene, offering four different views. The first row shows virtual
backgrounds, while the second row shows real backgrounds, with the same view in each column;
2) The green block provides textual descriptions; 3) The yellow block represents the causal graphs
for each scene, along with the meanings of each variable in the graphs; 4) The pink block shows
the structural equations (i.e., functions describing causal relations) for each scene. The bottom row
briefly presents an overview of the remaining 5 real-world scenes and their corresponding causal
graphs, including reflection, seesaw, convex lens, magnet, and pendulum. Detailed information on
these 5 scenes can be found in the Appendix 6.

causal relations. The absence of clearly defined causal relations within visual representations,
along with the lack of tabular records that are tightly aligned with these representations to provide
guidance, makes such physics-aware VLMs/MLMs datasets suboptimal for fine-grained causal
reasoning tasks. Especially, as interest in 3D data grows, causal learning in 3D settings introduces
new challenges, opportunities, and insights. The complexity of realistic 3D scenes—encompassing
lighting, texture, background, and viewpoint—can introduce spurious correlations and backdoor
paths, making causal inference more difficult. At the same time, 3D environments provide
multi-view consistency, allowing models to observe the same underlying causal relationships from
diverse perspectives, which helps disentangle true causality from viewpoint-dependent features.
This makes 3D datasets uniquely valuable for developing and evaluating robust, causally
grounded models in realistic settings. However, this area remains underexplored.

In general, existing visual datasets either lack explicit definitions of causal relations beyond visual
representation or are too specific and simplified to enable comprehensive exploration of diverse
causal relations. On the other hand, datasets in the causal research community, while rich in diverse
causalities and clear causal definitions, lack corresponding visual representations, making them un-
suitable for tasks involving causal reasoning in images, not to mention complicated 3D scenarios.
This disconnect makes it challenging to effectively advance and evaluate AI systems’ abilities of
reliable reasoning, thereby creating a significant bottleneck in advancing this field.

To address these limitations, we introduce CAUSAL3D, the first benchmark specifically designed to
systematically explore and evaluate causality learning through a combination of realistic 3D imagery
and explicit causal structures (i.e., causal graphs and structure equations). Using CAUSAL3D, we
conduct experiments on existing algorithms and tools, establishing a comprehensive benchmark
to evaluate models’ abilities to identify and leverage diverse causal relations.
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Table 1: Qualitative comparison between Causal3D and other causality related dataset. “Diverse
Structure” refers to whether the dataset covers different causal graph structures, e.g., our dataset
involves 13 different graph structures spanning from real and hypothetical scenes.

Dataset

Dual Representation
of Causality

Explicit Causal
Structures

Hybrid Causal
Framework

Diverse Structure
and 3D Scenes

Tabular Visual Linear Nonlinear Physical
Consistent

Hypothetical
Scenes

Diverse
Structure

Diverse 3D
Scenes

CauseMe (Runge et al., 2019a) ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗
CelebA (Liu et al., 2015) ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗

CausalVAE (Yang et al., 2020) ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗
Causal3DIdent (Zimmermann et al., 2021) ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓

Craft (Ates et al., 2022) ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗
CLEVR-Humans (Mao et al., 2022) ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓

Physion++ (Tung et al., 2024) ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓
Causal3D ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

To the best of our knowledge, CAUSAL3D (see Fig. 1) is the first dataset tailored for causality studies
that combines realistic 3D scenes with explicit causal graphs (i.e., Directed Acyclic Graphs (DAGs)
representing variables as nodes and causal relations as edges). This dataset stands out due to several
key features: 1) Dual Representation of Causality: CAUSAL3D provides a dual representation of
causality by including both tabular data (for high-level concepts) and strongly corresponding visual
representations in multiple 3D scenes. This design provides sufficient information for causal stud-
ies in vision, enabling precise evaluations of models in related domains. 2) Diverse Design: The
difficulty in CAUSAL3D is diversely structured, derived from different dimensions, including the
number of variables (ranging from 2 to 5), multiple causal structures, different (linear/nonlinear)
types of causal relations, and various camera views and backgrounds in 3D scenes. This design
enables benchmarking with progressively increasing levels of challenges, allowing for fine-grained
evaluation of model performance. 3) Physically Consistent and Hypothetical Scenes: CAUSAL3D
encompasses both real-world and hypothetical scenes. By leveraging established physical rules, it
creates datasets with realistic causal relations, enhancing the dataset’s authenticity. To further diver-
sify causal scenes, CAUSAL3D incorporates hypothetical causal relations, providing a broader range
of possibilities and enriching its utility for causality research. With the dataset, we designed sys-
tematic experiments to evaluate representative causal methods and LLMs/VLMs in different causal
tasks. In this work, our primary contributions are threefold:

• Dataset We introduce CAUSAL3D, a novel and comprehensive benchmark consisting of
19 datasets that span a wide range of causal structures, viewpoints, and background varia-
tions within realistic 3D scenes. The full dataset will be released to support further research.

• Evaluation We implement a thorough evaluation of models on CAUSAL3D, spanning
from traditional causal algorithms to advanced LLMs and VLMs for images, offering a
detailed analysis of the current state-of-the-art models on our benchmark.

• Insights We lay a strong foundation for advancing causal learning in CV by bridging
the gap between these fields through our benchmark and provide key insights from our
experimental observations.

2 RELATED WORK

Causal Discovery from Tabular Data Causal discovery is an important task in causal inference
(Pearl, 2009), aiming to identify the causal relations from data. Multiple methods have been devel-
oped for this task and most of them focus on tabular data (Wen et al., 2021; Tu et al., 2024; Wen
et al., 2022; Cinquini et al., 2021; Russo and Toni, 2023). These methods mainly include constraint-
based methods (e.g., PC (Spirtes et al., 2000b)) and score-based methods (e.g., GES (Chickering,
2002)). Many of them are statistical methods (e.g., CAM (Bühlmann et al., 2014), LiNGAM (Yang
et al., 2024)), which have good theoretical support but often suffer from strong assumptions, sensi-
tivity, and scalability issues.

Recently, deep learning-based methods have attracted lots of attention due to their improvement in
these aspects. Among them, causal-TGAN (Wen et al., 2022), GraN-DAG (Lachapelle et al., 2020),
DAG-GNN (Yu et al., 2019)) can model nonlinear causal relations in large datasets. Diffusion-
based approaches (e.g., DiffAN (Sanchez et al., 2023)) improve robustness against noises while
being computationally intensive and sensitive to hyperparameters.
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LLM-based Causal Discovery Recent advances in LLMs have broadened their role in causal dis-
covery (Ma, 2024; Jin et al., 2024; Liu et al., 2024b; Ban et al., 2023; Liu et al., 2024a; Wu et al.,
2024; Wan et al., 2024; Shen et al., 2024). LLM-based causal discovery spans pairwise and full-
graph discovery (Ma, 2024; Kıcıman et al., 2023; Jiralerspong et al., 2024), often leveraging prompts
such as binary or multiple-choice selection and natural question-answering. Among them, many
state-of-the-art models like ChatGPT 4o (Rawal et al., 2024) and Gemini-1.5 Pro (Carro et al., 2024)
have been widely explored for causal inference. Besides, some causality-specific agents like Causal
Copilot (Wang et al., 2024b) integrate LLMs for natural language-based causal queries. Despite
its promising performance, LLMs still face key limitations, including difficulty in handling latent
confounders and complex causal tasks.

Causal Methods in CV Causal inference in CV is essential for improving generalization and inter-
pretability (Yang et al., 2021; Schölkopf, 2022). Many causal tasks have thus been widely explored
in image data, one of them is causal representation learning, which aims to uncover disentangled
and causally meaningful representations corresponding to high-level variables from data (Liu et al.,
2022; Deng et al., 2022; Schölkopf et al., 2021). Many representative approaches in this area are
based on generative models (e.g., CausalVAE (Yang et al., 2023), DEAR (Shen et al., 2022)). How-
ever, they often depend on strong assumptions (e.g., available annotation of high-level concepts) that
may not always hold. Recently, explorations of VLMs in causal tasks under more general scenes
have also attracted increasing attention (Wang et al., 2024a; Zhao et al., 2024).

Causal Datasets in CV Tabular data has long dominated causal inference research (Runge et al.,
2019a; Runge, 2018; Runge et al., 2019b; Spirtes et al., 2000a; Zheng et al., 2018). With the recent
increasing need for causal studies in different data types and modalities, the community in CV and
VLM has also placed more emphasis on causality. Recent years have witnessed the emergence of
image and video datasets for causal reasoning (Zimmermann et al., 2021; Ates et al., 2022; Mao
et al., 2022; Tung et al., 2024), bridging the gap between CV learning and causal reasoning. Despite
these datasets addressing the absence of visual data encoded with causality, most of them still remain
limited. They either focus on specific scenes, restricting the diversity of causal relations or lack
rigorous causal definitions—such as explicit causal graphs and structured tabular records—to cap-
ture interactions among in-image variables. Consequently, a gap remains between traditional causal
research and the study of causality in CV and VLM, as summarized in Tab. 1. This highlights the
need for datasets that integrate explicit causal structures with both visual and tabular representations.

3 CAUSAL3D: THE PROPOSED BENCHMARK

We introduce CAUSAL3D, a realistic 3D image dataset designed for casual learning from obser-
vational visual data. Aiming to bridge the gap between causal study and CV/VLM community,
CAUSAL3D is established with structured tabular data and tightly aligned visual representation. To
build a comprehensive benchmark for evaluating models’ ability to uncover causality, CAUSAL3D
contains visual representations encoded with diverse causal relations among multiple variables. The
dataset comprises two main components: Physically Consistent 3D Scenes, which simulate real-
world settings to enhance the authenticity of the dataset, and Hypothetical 3D Scenes, introduced
to diversify the causal relations represented in the dataset. To simulate realistic images in 3D scenes,
we select or design causal relations to generate structured datasets and use Blender1 to render high-
quality images, as shown in Fig. 2. Furthermore, by introducing various views and backgrounds,
CAUSAL3D presents the same scene in different surroundings, enhancing dataset diversity and con-
textual richness.

3.1 DATASET COMPONENTS

Physically Consistent Scenes In the physically consistent setting, CAUSAL3D incorporates fun-
damental physical principles, such as light dynamics, magnetic fields, water pressure, and mechan-
ics, to ensure realistic causal relations. To systematically vary the complexity of causal discovery,
we curated 8 distinct scenes, each featuring 2 to 5 variables with unique causal structures. Each
scene contains 10K samples. We provide visual overviews of each scene in Appendix 6.
Hypothetical Scenes Since causal relations in reality are often complex and difficult to observe,
designing scenes with diverse causal graphs is challenging. In CAUSAL3D, we also introduce addi-

1https://www.blender.org/
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tional hypothetical scenes that broaden the range of causal relations in our benchmark. Specifically,
we explore causal relations under artificially defined hypothetical rules and synthesize causal re-
lations among three fundamental 3D objects in Blender: sphere, cuboid, and cone. By defining
specific dependencies among their variables (e.g., sphere radius, cuboid height), we construct both
linear and non-linear causal relations across various graph configurations. This process yields 11
hypothetical scenes, each containing 10K samples. More details can be found in Appendix 6.

3.2 DATA CONSTRUCTION Physical Scene Generation

Physical 
Entity

Causal 
Relation

Tabular
Data

Realistic 
Background

Virtual 
Background

Hypothetical Scene Generation

Hypothe
-tical 
Entity

Causal 
Relation

Tabular
Data

Virtual 
Background

Switch
Switch

Figure 2: Illustration of data construction pipeline.

The data construction process is shown
in Fig. 2. The upper half shows the
construction of real physical scenes. We
first collect physical entities that exist in
the real world, such as springs and mag-
nets, etc. Then, we explore the physical
laws within these entities and identify
the corresponding causal graphs. Based
on the causal graphs, we can generate
tabular data, where each row represents a
sample, and different columns correspond
to different values of various variables.
For variables without parents, we assign
values randomly using a uniform distribu-
tion, while the values of other variables are calculated according to the causal graphs and physical
laws. For example, if we select a spring and a block as our physical entities, the variables involved
include the spring constant k, the deformation X , and the weight of the block W . The physical law
governing these variables is Hooke’s Law: X = W/k. We can randomly assign values to W and
k, and then calculate X accordingly. The generated tabular data can then be input into Blender to
render multi-perspective scenes. It is worth noting that we have set a background switch to choose
whether to use a real or virtual background.
The lower half of Fig. 2 displays the construction of hypothetical scenes. We first identify various
dimensions of geometric bodies to serve as variables and then manually design the relations among
these variables. The remaining steps are the same as those in generating physical scenes, with the
only difference being that they do not include real backgrounds because the hypothetical objects
and relations do not exist in the real world.

3.3 TASK DESIGNS

Based on our dataset, we focus on three key causal tasks to evaluate state-of-the-art algorithms and
models in discovering and leveraging causal relations across diverse causal structures and scenes.
We focus on the widely adopted setting of causal learning from observational data. These tasks
include:
Causal discovery from tabular data This task focuses on identifying latent causal relations
among variables using only tabular data. In this setting, we have high-level causal variable val-
ues recorded in the tabular data and do not rely on image information. It is evaluated based on the
correctness of inferred causal structures across various datasets and underlying causal mechanisms.
Causal representation learning from images This task aims to learn disentangled and causally
meaningful representations from images, meanwhile enabling models to capture underlying causal
relations between high-level concepts. We use image data along with any additional information
required by the models as input. Evaluation is based on generated images after intervening on
learned representations, assessing whether they accurately reflect the corresponding causal variables
and causal relations.
Causal discovery & intervention from few images This task focuses on uncovering causal rela-
tions and assessing intervention results with a limited number of images. Unlike traditional causal
discovery methods that rely on large datasets, this task evaluates the ability of models to infer causal
structures from a small set of images. Furthermore, we conduct causal interventions by manipulating
a certain variable to observe its effect on the whole image. Causal intervention is often implemented
with the do-operator do(·) (Pearl, 2009). Here, do(X = x) means modifying a variable X to a
specific value x while keeping all other influences unchanged. Intervention evaluation is based on
whether the intervened images still remain consistent with the underlying causal relations.
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4 EVALUATIONS

Overview. In this section, we conduct a systematic evaluation on our benchmark Causal3D, focus-
ing on three major causal tasks as aforementioned. For each task, we select appropriate models to
assess their performance across diverse scenes. For causal discovery from tabular data, we evaluate
traditional causal discovery methods alongside an LLM-based causal agent. For causal representa-
tion learning, we benchmark state-of-the-art methods to examine their ability to extract meaningful
causal factors. Lastly, for causal discovery and intervention from few images, we test various VLMs
with different prompts. Our experiments span multiple settings with comprehensive insights.

4.1 EXPERIMENT SETTINGS

Data Preprocessing. Both image and tabular data were meticulously prepared to ensure seamless
compatibility with the evaluated models. Image data were resized and normalized as required, and
tabular data were formatted to meet the input specifications of traditional causal discovery methods.

Evaluation Metrics. We mainly use two metrics to quantify the experimental results: 1) F1 Score
is used to evaluate causal discovery results, which represents the harmonic mean of precision and
recall of discovered causal relations. 2) Accuracy is used in causal intervention, which measures
the fraction of consistent causal relations in the intervened image. Each experiment is repeated 10
times per setting, and the final results are obtained by averaging these results for robust evaluation.

4.2 CAUSAL DISCOVERY FROM TABULAR DATA

2 Nodes 3 Nodes 4 Nodes 5 Nodes
Realistic Scenes

0

25

50

75

100

F1
 S

co
re

 (%
)

2 Nodes 3 Nodes 4 Nodes 5 Nodes
Hypothetical Scenes

CAM
NoTears

DAG GNN
DiffAN

PC
SCORE

GraN DAG
Causal Copilot

Figure 3: Results of different causal discovery methods
from tabular data on realistic/hypothetical scenes.

Evaluated Methods. We evaluate the
performance of various causal discov-
ery methods on tabular data, covering
both traditional algorithms and emerging
LLM-powered approaches. We assess
7 traditional methods: CAM, NoTears,
DAG GNN, DiffAN, PC, SCORE (Rol-
land et al., 2022), and GraN DAG; 1 LLM-
based method: Causal Copilot (Wang
et al., 2024b). All experiments were con-
ducted on an NVIDIA RTX 4090 GPU.

Results and Analysis. The results are shown in Fig. 3. We test all methods on datasets representing
both real and hypothetical scenes, categorized by causal graph complexity, ranging from 2- to 5-
node structures. Each method takes the input of given tabular data and outputs a causal graph, and
we compare it with the ground-truth causal graphs using the F1 score. The final evaluation metric
is computed by averaging F1 scores within each node category. As shown in Fig. 3, although the
performance of different methods varies within the same category, it can be observed in both realistic
scenes and hypothetical scenes that there is a general downward trend in performance from 2-node
to 5-node scenes. This aligns with our common sense and the laws of physics: the more variables
there are in a scene, the more difficult it is to uncover the underlying rules.

4.3 CAUSAL REPRESENTATION LEARNING

Evaluated Methods. In this section, we evaluate causal representation learning models, including
CausalVAE, DEAR, ICM-VAE (Komanduri et al., 2023), and CDG-VAE (An et al., 2023) on our
dataset. The images and other information needed by models (e.g., CausalVAE requires annotations
of causal variables) are taken as input. These methods are all based on the variational autoencoder
(VAE) framework and aim to learn a low-dimensional representation composed of multiple disen-
tangled yet causally related latent variables inside images.

Evaluation Strategy. Since many of these models require a (partial) causal graph as input or
supervision, it would be unfair to directly evaluate them with regular causal discovery metrics we
used in the previous subsection. Following the evaluation strategy of previous works (Yang et al.,
2020; Shen et al., 2022; Komanduri et al., 2023; An et al., 2023), we apply interventions on each
variable separately by modifying its corresponding causal representations, and then decode the
modified latent representation back to generate an intervened image. By assessing whether the

6
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causally related variables in the image change accordingly, we can evaluate whether the model has
effectively learned the causal relations within our dataset.

Cau
sa

lV
AE

DEA
R

IC
M

-V
AE

CDG-V
AE

Original Image Do(Cau) Do(Res) Original Image Do(Cau) Do(Res)

Figure 4: Examples of the 4 causal representation
learning model results. In each scene, the 3
columns show: 1) original images, 2) Do(Cau):
results after intervening on a “cause” variable,
and 3) Do(Res): after intervening on a “result”
variable.

Since these models only accept 2D images, we
render the 3D scenes from a fixed viewpoint
as inputs. For CausalVAE, DEAR, and ICM-
VAE, we use spring and seesaw for evalua-
tion. However, for CDG-VAE, which requires a
structured mask to distinguish each object (i.e.,
variable), meaning that each object must move
within a specific region, spring and seesaw do
not satisfy this requirement. Therefore, we se-
lect reflection and pendulum for evaluation.

Results and Analysis. Intervention results are
showcased in Fig. 4. For each given original
image, we select a pair of “cause” and “result”
variables to intervene with do-operation. For
spring, the cause is the weight of the wooden
block, and the result is the spring’s deforma-
tion. We first apply an intervention on the
weight of the wooden block (cause), with the
intervened image shown in the left-middle column. We observe that decreasing the block’s weight
leads to a corresponding decrease in the spring’s deformation. This aligns with the causal relation,
where the block’s weight directly influences the spring’s deformation. However, when we directly
modify the spring’s deformation (result), as shown in the left-last column, the block’s weight
remains unchanged. This confirms the unidirectional nature of causal relations, where the cause
affects the effect, but not vice versa. The results for the seesaw scene exhibit a similar pattern.
When we apply an intervention on the torque on the left side (cause), as shown in the right-middle
column, the seesaw’s direction (result) reverses accordingly. However, when we directly intervene
on the seesaw’s direction, the torque on both the left and right sides remains unchanged. Similar
observations hold for reflection, where the incident light serves as the cause and the reflected light
as the result, and for pendulum, where the pendulum’s angle acts as the cause, influencing the
position and length of its shadow.

Although these models may not perform optimally in certain scenes, exhibiting distortions in re-
constructed images and incomplete disentanglement of attributes, they still capture some underlying
causal relations. This indicates the rationality of our proposed benchmark and highlights the need
for further research in achieving more effective causal representation learning from images.

4.4 CAUSAL DISCOVERY FROM FEW IMAGES

Evaluated Methods. Unlike traditional causal discovery methods that rely on tabular data or large-
scale training images, we leverage pretrained VLMs to perform causal discovery using a small num-
ber of images. In this section we use ChatGPT2, Gemini3 and Claude4 to discover causal relations
by few image examples and textual prompts in real and hypothetical scenes. The VLMs are tasked
with uncovering causal relations by generating adjacency matrices representing causal graphs. Each
prompt specifies key variables in the scenes, explicitly guiding the models to infer causal structures.
We use 4 different prompting strategies, as detailed in Tab. 3 in the Appendix 7.

1) Basic Prompts: General instructions that broadly guide the models to identify causal relations.

2) Explicit Function Prompts: The model is designated as a causal discovery expert to identify
causal relationships among image variables.

3) Chain of Thought (CoT): The model is prompted to reason through the causal discovery pro-
cess step by step without any prior examples. This approach encourages structured reasoning and
provides insights into how the model interprets causal relations.

2https://platform.openai.com/docs/api-reference/introduction
3https://ai.google.dev/api?lang=python
4https://www.anthropic.com/api
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(a) Real-world scenes
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(b) Hypothetical scenes.
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Figure 5: Causal discovery results of VLMs
in various scenes, averaged over datasets
with 2–5 nodes in the causal graph.

4) Few-Shot: The model is given three exemplar
cases of causal discovery before performing the
task, enabling it to generalize better by leveraging
prior examples to improve causal relation identi-
fication. Performance is evaluated by comparing
the generated adjacency matrices with the ground
truth, providing a quantitative measure of the causal
discovery task.

Results and Analysis. Demonstrated in Fig. 5(a),
models performed significantly better in real-world
scenes (e.g., governed by Hooke’s Law, magnetic
fields and etc.) compared to hypothetical scenes,
benefiting from prior physical knowledge embedded
in their LLM components. However, as causal
relations became more complex and involved more
variables, performance declined, highlighting the
challenge of uncovering causality in such scenes. In the hypothetical scenes, the results, as shown
in Fig. 5(b), reveal poor performance. This suggests that when prior real-world knowledge is
unavailable and only a limited number of images are provided, models consistently fail to uncover
latent causal relations. Consequently, current closed-source VLMs have been shown to be unreliable
for causal discovery in hypothetical settings.

Worst Best M SMulti-views Single view
100.00 95.55

94.07

97.78

100.00 94.87

92.86

96.30

S M S M

S MS M

Figure 6: We select two scenes, Spring and Parabola. Us-
ing the F1 score as metric, we assess VLM performance in
causal discovery. The best and worst views are highlighted
to demonstrate the impact of different perspectives. To an-
alyze the effect of multi-view vs. single-view images, we
average the performance across 9 individual views in each
scene and compare it with the overall multi-view perfor-
mance. More detailed version is in Appendix 7.

Views and Backgrounds.
CAUSAL3D provides multi-view
images of the same scene, simulating
real-world 3D environments with both
virtual and realistic backgrounds.
This enables in-depth analysis of how
different viewpoints and background
contexts affect causal discovery
performance. Case studies from
the Spring and Parabola scenes are
shown in Fig. 6. Within the ex-
periments, different 3D views affect
the performance in causal discovery.
Interestingly, our results reveal that
intuitive views, such as a front view,
are not always the most effective for
uncovering latent causality. Different
viewpoints can either increase or
decrease task difficulty, with no single
“golden standard” view for causal dis-
covery. Additionally, when comparing
multi-view and single-view inputs in
the causal discovery task, multi-view
performance varies depending on the
scene (as shown in Fig. 9). In scenes
with simple causal relations (e.g., a
spring system with a linear relation among three variables), multi-view inputs tend to degrade model
performance, possibly introducing unnecessary noise. Conversely, in more complex 3D scenes
with intricate causal dependencies, like a parabola scene involving nonlinear relations among four
variables in the virtual background, multi-view perspectives enhance inference accuracy, suggesting
that additional viewpoints help capture richer causal structures in such settings.

Comparing virtual and realistic backgrounds, we find that realistic backgrounds introduce additional
noise, making causal discovery more challenging. Our experiments indicate that even when models
leverage prior real-world knowledge encoded in LLMs, the presence of realistic background
information increases task complexity and negatively impacts inference performance (quantitative
results shown in Fig. 37 in Appendix 7).
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Figure 7: Example of intervention
prompts for trained VLMs.

Magnet

Observing the provided images. Based on the causal 
relation among the variables: ….
Now, what will happen after I slightly rotate the 
orientation of magnetic bar in clockwise direction in the 
last image?
A. needle orientation rotate in clockwise direction
B. needle orientation will not change
C. needle orientation rotate in counter-clockwise direction

Question:

…

Answer:
The answer is: B. 
Explain: The needle in the images behaves like a 
compass needle, aligning itself with the magnetic field 
produced by the magnetic bar. If the magnetic bar is 
rotated in a clockwise direction, the needle will align 
accordingly, also rotating in the clockwise direction to 
align with the changed magnetic field orientation.

Answer:
The answer is: C. the magnification decreases
Explain: …When the object moves closer to the convex 
lens, the image moves farther from the lens
If we move the object closer to the lens from its current 
position … the image distance will increase.
The overall magnitude of magnification will decrease 
according to the mathematical relationship ….

Convex Lens

Observing the provided images. Based on the causal 
relation among the variables: …. 
Now, what will happen after I move the object closer to 
the convex lens in the last image?
A. the magnification will not change
B. the magnification increases
C. the magnification decreases

Question:

…

Figure 8: Case studies of failures. VLMs fail to grasp
causality within physically consistent scenes for interven-
tion tasks.

4.5 CAUSAL INTERVENTION IN VLMS

Evaluated Methods. To further assess the ability to learn causality from images, causal interven-
tion serves as a crucial step beyond causal discovery. In this experiment, we leverage VLMs in
interventions. This task is formulated as a multiple-choice problem, where the model must identify
the correct outcomes based on induced causal changes. The detailed inference pipeline is illustrated
in Fig. 7. In this setup, VLMs are provided with a few images along with questions about the
variables present in the scene. By posing queries such as “What will happen after changing variable
X?”, we expect the model to return the correct answer based on the causal relations depicted in
the given images. This evaluation determines whether VLMs genuinely comprehend and reason
causal relations rather than relying solely on statistical patterns. In this experiment, intervention
performance is measured by model selection accuracy. We evaluate 3 popular commercial VLMs
on this task: ChatGPT-4o, Gemini-1.5-Pro, and Claude-3.5-Haiku5.

Table 2: Causal intervention in VLMs: Evaluation us-
ing three real-world rules, with accuracy (%) reported.

Models Reflection Lens Mag. Field
ChatGPT 96.67 100.00 50.00
Gemini 100.00 100.00 0.00
Claude 100.00 96.67 13.33

Results and Analysis. As shown in
Tab. 2, our experiments indicate that
current VLMs struggle to handle complex
rules, e.g. magnetic fields, in causal
intervention tasks. We found that the
models’ inferences are dominated by the
prior knowledge embedded in the LLMs,
while visual cues—despite containing the
ground truth—are largely ignored (see Fig. 8).

5 CONCLUSION

CAUSAL3D is a comprehensive benchmark designed to evaluate causal reasoning in visual AI,
including causal tasks of discovery, disentanglement, and intervention. Our dataset integrates
structured causal graphs with corresponding 3D visual representations, providing a rigorous
assessment framework across diverse physical and hypothetical scenes. Experimental results
demonstrate that: 1) the performance of current causal discovery algorithms decreases as the
increasing of the complexity of causal structures; 2) for causal representation learning, the current
state-of-arts can not well handle our realistic and diverse 3D scenes; 3) commercial VLMs struggle
with causal inference based on visual cues and complex scenarios, particularly in hypothetical
settings where prior knowledge is absent. CAUSAL3D serves as a critical step toward bridging the
gap between traditional causal research and computer vision, enabling a more comprehensive and
fine-grained evaluation of causal inference. We envision CAUSAL3D as a foundation for future
research, fostering advancements in causal-aware AI models and driving progress toward more
reliable and interpretable machine intelligence.

5Model versions are those publicly available as of January 2025.
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APPENDIX
In the appendix, we will supplement the scenes and their data details that were not presented in the
main text. Additionally, we will also display the remaining experiment setups and results.

6 ADDITIONAL SCENES AND DATA DETAILS

Fig. 9, Fig. 10, and Fig. 11 show the dataset details of different scenes, including the following
information: name of scenes, the number of causal variables (i.e., nodes in causal graph), the relation
types (linear or non-linear), causal graphs, and structural equations. For realistic scenes, we also
add a brief description. Furthermore, we showcase all the scenes by randomly sampling 2D images
from different viewpoints and surroundings for illustration (shown from Fig. 12 to Fig. 36). For
notational simplicity, we omit the exogenous noise variables in the structural equations, all of which
follow uniform distributions. For example, in the Reflection scene, the expression A = B is a
shorthand for the structural equation B = A + ϵ, where ϵ is an independent uniform noise term.
This non-Gaussianity ensures the identifiability of the causal direction A → B.

Scene Description Causal Graph

Structure Equations

Magnet,
Non-Linear

A magnet and 
a needle 

displaying its 
magnetic field.

Reflection,
Linear

A B
Light reflects 
off a mirror.

𝐴 = 𝐵

𝐷 =
𝜇!
4𝜋

(
3 𝐵, 𝐶 𝐴 𝐵, 𝐶

𝐵, 𝐶 "
−

𝐴

𝐵, 𝐶 #
)

Seesaw,
Non-Linear

A seesaw with 
a cylinder on 
each end.

A B

C

𝐶 = 𝑠𝑖𝑔𝑛(𝐴 − 𝐵)

Convex Lens,
Non-Linear

A candle and 
its image 

formed by a 
convex lens.

A: Incident light.
B: Outgoing light.

Structure Equation

A: Left torque.
B: Right torque.
C: Seesaw tilt direction.

A

B C

A: Distance from lens to 
the object.
B: Distance from the lens 
to the image.
C: Magnification factor.

1
𝑓
=
1
𝐴
+
1
𝐵

𝐶 = −
𝐴
𝐵

is the focal length, 
which is a constant.

𝑓

A B

D

C
A: Rotation angle of the bar 
magnet.
B: The x-coordinate of the 
magnetic needle.
C: The y-coordinate of the 
magnetic needle.
D: Orientation of the magnetic 
field at the needle.

Pendulum,
Non-Linear

A light source, 
a pendulum, 

and its shadow.

A B C

D E

A: Light position.
B: Pendulum angle.
C: Pendulum length.
D: Shadow middle point position.
E: Shadow length.

𝐷

=
1
2
7

8

−
𝑦$𝑥% + 𝑦$𝐶𝑠𝑖𝑛𝐵 + 𝐴𝐶𝑐𝑜𝑠𝐵 − 𝑦%𝐴

𝑦% − 𝐶𝑐𝑜𝑠𝐵 − 𝑦$

−
𝑦$𝑥% − 𝑦%𝐴
𝑦% − 𝑦$

𝐸

= −
𝑦$𝑥% + 𝑦$𝐶𝑠𝑖𝑛𝐵 + 𝐴𝐶𝑐𝑜𝑠𝐵 − 𝑦%𝐴

𝑦% − 𝐶𝑐𝑜𝑠𝐵 − 𝑦$

+ −
𝑦$𝑥% + 𝑦$𝐶𝑠𝑖𝑛𝐵 + 𝐴𝐶𝑐𝑜𝑠𝐵 − 𝑦%𝐴

𝑦% − 𝐶𝑐𝑜𝑠𝐵 − 𝑦$
is the coordinate of the pendulum 
end point.

(𝑥% , 𝑦%)

𝑦$ is the y-coordinate of the light.

Figure 9: Data details of realistic scenes (as a supplement to Fig. 1).

7 EXPERIMENT DETAILS

In this section, we present four detailed prompt strategies for performing causal discovery tasks on
VLMs (see Tab. 3). Additionally, the results of causal discovery in 3D scenes through VLMs are
also shown in Fig. 37.
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Scene Causal Graph

Structure Equations

3 Variables,
V-Structure,

Linear

2 Variables, 
Linear

A B 𝐵 = 1.5𝐴

2 Variables, 
Non-Linear

3 Variables, 
Fully Connected, 

Linear

A: Volume of the ball.
B: Volume of the cube.

Structure Equation

A: Volume of the ball.
B: Height of the cuboid.
C: Base area of the cone.

A B A: Volume of the ball.
B: Volume of the cube. 𝐵 = cos(𝐴)

A

B C

𝐵 = 4𝐴

𝐶 = −10𝐴 + 10𝐵

A

B C

A: Volume of the ball.
B: Height of the cuboid.
C: Base area of the cone.

𝐶 = tan 𝐴 + 0.7𝐵
3 Variables,
V-Structure,
Non-Linear

A

B C

A: Volume of the ball.
B: Height of the cuboid.
C: Base area of the cone.

𝐶 = 0.4𝐴 + 0.7𝐵

Figure 10: Data details of hypothetical scenes (2 variables and 3 variables).

8 BROADER IMPACT

CAUSAL3D advances the integration of causal reasoning in computer vision, contributing to more
robust, interpretable, and generalizable AI systems. By introducing a structured benchmark and
systematically evaluating state-of-the-art methods, our research provides valuable insights into the
challenges and opportunities of causal learning in visual data. The proposed benchmark fosters
interdisciplinary collaboration, bridging causal inference, computer vision, and machine learning
communities. It serves as a foundation for future research, enabling the development of models
that can better generalize across domains, adapt to distribution shifts, and provide meaningful
explanations. Furthermore, by improving causal understanding in vision tasks, this work has poten-
tial applications in fields such as healthcare, autonomous systems, and scientific discovery, where
reliability and transparency are essential. While our evaluation framework is based on the authors’
consensus, we encourage community discussions to refine causal reasoning criteria and enhance
benchmarking standards. We will release evaluation scripts to support innovation and aid the
development of new methodologies. Additionally, we emphasize the responsible use of CAUSAL3D
and strictly prohibit any form of data leakage or test set optimization to maintain fairness and
integrity in evaluation. Our work does not raise any ethical concerns that require disclosure.

9 LIMITATIONS

Although CAUSAL3D is comprehensive, there remains room for improvement. First, the current
benchmark is constructed solely from observational data; incorporating interventional data in the
future would enable user interaction and support more interactive causal evaluation. Second, the
dataset complexity could be further enriched by introducing more nodes in the causal graphs and
incorporating finer-grained visual details, such as textures of objects.
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Scene Causal Graph

Structure Equations
4 Variables, 

No V-structure 
Linear

𝐴 = 0.5𝐷A: Volume of the ball.
B: Volume of the cube.
C: Base area of the cuboid.
D: Base area of the cone.

Structure Equation

𝐶 = 0.3𝐴 + 0.7𝐵

𝐷 = 0.4𝐶

𝐵 = 0.045𝐷

𝐵 = 0.01𝐴

4 Variables,
V-Structure,

Linear

4 Variables,
V-Structure,
Non-Linear

A

B C D

A: Volume of the ball.
B: Volume of the cube.
C: Base area of the cuboid.
D: Base area of the cone.

A: Volume of the ball.
B: Volume of the cube.
C: Base area of the cuboid.
D: Base area of the cone.

𝐵 = 0.3𝐴
𝐶 = 0.4𝐴 + 0.6𝐵 + 0.9𝐵

A B

C

D

A B

C

D

𝐶 = 50 sin 𝐴 + 20𝐵

𝐷 = 1100cos(𝐶)

𝐶 = −0.01𝐴 + 16𝐵5 Variables, 
No V-structure 

Linear

A

B C D

E
A: Volume of the ball.
B: Volume of the cube.
C: Base area of the cuboid.
D: Base area of the cone.
E: Height of the cone.

𝐷 = 1.2𝐶
𝐸 = 5𝐴 − 0.5𝐶 + 2𝐷

5 Variables,
V-Structure,

Linear

A: Volume of the ball.
B: Volume of the cube.
C: Base area of the cuboid.
D: Base area of the cone.
E: Height of the cone.
A: Volume of the ball.
B: Volume of the cube.
C: Base area of the cuboid.
D: Base area of the cone.
E: Height of the cone.

5 Variables,
V-Structure,
Non-Linear

A B

C D

E

𝐶 = 0.03𝐴 + 10𝐵

𝐸 = 0.01𝐶 + 0.02𝐷

𝐵 = 60sin(𝐷)

𝐶 = 400 cos 𝐴 + 20𝐵

𝐸 = 35 tan 𝐶 + 0.1𝐷

A B

C D

E

Figure 11: Data details of hypothetical scenes (4 variables and 5 variables).
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Figure 12: Reflection (Real Background).

Figure 13: Reflection (Virtual Background).

10 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT, Claude and Gemini to evaluate our datasets. The LLM was not involved in data
generation, model training, or writing of technical content.
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Figure 14: Spring (Real Background).

Figure 15: Spring (Virtual Background).
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Figure 16: Seesaw (Real Background).

Figure 17: Seesaw (Virtual Background).
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Figure 18: Convex Lens.

Figure 19: Magnet (Real Background).
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Figure 20: Magnet (Virtual Background).

Figure 21: Parabola (Real Background).
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Figure 22: Parabola (Virtual Background).

Figure 23: Pendulum.
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Figure 24: Water Flow (Real Background).

Figure 25: Water Flow (Virtual Background).
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Figure 26: Hypothetical Scene (2 Variables, Linear).

Figure 27: Hypothetical Scene (2 Variables, Non-Linear).
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Figure 28: Hypothetical Scene (3 Variables, Linear, Fully-Connected).

Figure 29: Hypothetical Scene (3 Variables, Linear, V-Structure).
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Figure 30: Hypothetical Scene (3 Variables, Non-Linear, V-Structure).

Figure 31: Hypothetical Scene (4 Variables, Linear, Fully-Connected).
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Figure 32: Hypothetical Scene (4 Variables, Linear, V-Structure).

Figure 33: Hypothetical Scene (4 Variables, Non-Linear, V-Structure).
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Figure 34: Hypothetical Scene (5 Variables, Linear, Fully-Connected).

Figure 35: Hypothetical Scene (5 Variables, Linear, V-Structure).
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Figure 36: Hypothetical Scene (5 Variables, Non-Linear, V-Structure).

98.12 89.23

98.10 86.2293.78

90.74

93.86

97.62 95.46

93.80 89.04

98.52

93.89

84.7695.55100.00

97.78

94.07

94.87100.00

91.21
83.81

92.86

96.30

Average: average performance of 9 views Combined: performance of  multi-views 

Spring Water flow Parabola

V
irt

ua
l

R
ea

l

: worst : best
Figure 37: Performance Comparison in 3D scenes: selecting 3 scenes for case studies: Spring,
Water flow, and Parabola. Using F1 score as the evaluation metric, we assess inference performance
in the causal discovery task. The best and worst views are highlighted to demonstrate the impact
of different perspectives. To analyze the effect of multi-view vs. single-view inputs, we average
the performance across 9 individual views and compare it with the overall multi-view performance,
highlighting the better results in green.
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Table 3: Examples of the four prompt strategies used for causal discovery tasks in VLMs evaluation.

PROMPT STRATEGY TEMPLATE EXAMPLE

BASIC ANALYZE THE PROVIDED IMAGES AND IDENTIFY CAUSAL RELATION-
SHIPS BETWEEN THE VARIABLES. COMPLETE THE CAUSALITY ADJA-
CENCY MATRIX BASED ON THE IDENTIFIED RELATIONSHIPS AND BRIEFLY
EXPLAIN YOUR CONCLUSIONS. THERE ARE {VARIABLES}: X, Y, Z.
PLEASE FILL THIS CAUSALITY ADJACENCY MATRIX: 
IN THIS MATRIX, MATRIX[I][J] = 1 MEANS VARIABLE i CAUSES
VARIABLE j , WHILE MATRIX[I][J] = 0 MEANS THERE IS NO DIRECT
CAUSAL RELATIONSHIP.

EXPLICIT FUNCTION YOU ARE A CAUSAL DISCOVERY EXPERT. YOUR OBJECTIVE IS TO AN-
ALYZE THE PROVIDED IMAGES AND IDENTIFY ANY CAUSAL RELATION-
SHIPS BETWEEN THE VARIABLES.
USE THE IDENTIFIED RELATIONSHIPS TO COMPLETE THE CAUSALITY
ADJACENCY MATRIX AND PROVIDE A BRIEF EXPLANATION SUPPORTING
YOUR CONCLUSIONS.THERE ARE VARIABLES: X, Y, Z ...

ZERO-SHOT-COT ANALYZE THE PROVIDED IMAGES AND IDENTIFY CAUSAL RELATION-
SHIPS BETWEEN THE VARIABLES ...
LET’S THINK STEP BY STEP ...

FEW-SHOT ANALYZE THE PROVIDED IMAGES AND IDENTIFY CAUSAL RELATION-
SHIPS BETWEEN THE VARIABLES ...
EXAMPLE 1: TO DETERMINE THE CAUSAL RELATIONSHIPS BETWEEN
THE SPRING CONSTANT, WEIGHT, AND DEFORMATION OF THE SPRING,
WE CAN USE HOOKE’S LAW, WHICH STATES THAT THE FORCE EXERTED
BY A SPRING IS DIRECTLY PROPORTIONAL TO THE DEFORMATION (DIS-
PLACEMENT) OF THE SPRING, GIVEN BY:

F = k · x

WHERE:

• F IS THE FORCE APPLIED (RELATED TO WEIGHT),
• k IS THE SPRING CONSTANT,
• x IS THE DEFORMATION OF THE SPRING.

FROM THIS, WE CAN INFER: 1. SPRING CONSTANT k AFFECTS THE DE-
FORMATION OF THE SPRING (x): IF THE SPRING CONSTANT INCREASES,
FOR THE SAME WEIGHT, THE DEFORMATION DECREASES.
2. WEIGHT AFFECTS DEFORMATION OF THE SPRING (x): AN INCREASE
IN WEIGHT CAUSES MORE DEFORMATION.
3. THE SPRING CONSTANT (k) AND WEIGHT DO NOT DIRECTLY AFFECT
EACH OTHER.
BASED ON THESE RELATIONSHIPS, THE CAUSALITY ADJACENCY MATRIX
IS: 0 0 1

0 0 1
0 0 0


EXPLANATION:

• ELEMENT (1,3) IS 1 BECAUSE THE SPRING CONSTANT AFFECTS
DEFORMATION.

• ELEMENT (2,3) IS 1 BECAUSE THE WEIGHT AFFECTS DEFORMA-
TION.

• THE OTHER ENTRIES ARE 0 BECAUSE THERE IS NO DIRECT
CAUSAL RELATIONSHIP OTHERWISE.

EXAMPLE 2: ...;
EXAMPLE 3: ... ;
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