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ABSTRACT

Measuring visual (dis)similarity between two or more instances within a data dis-
tribution is a fundamental task in many applications, especially in image retrieval.
Theoretically, non-metric distances are able to generate a more complex and ac-
curate similarity model than metric distances, provided that the non-linear data
distribution is precisely captured by the similarity model. In this work, we analyze
a simple approach for deep learning networks to be used as an approximation of
non-metric similarity functions and we study how these models generalize across
different image retrieval datasets.

1 INTRODUCTION

For humans, deciding whether two images are visually similar or not is, to some extent, a natural
task. However, in computer vision, this is a challenging problem and algorithms do not always
succeed in matching pictures that contain similar-looking elements. This is mainly because of the
well-known semantic gap problem, which refers to the difference or gap between low-level image
pixels and high-level semantic concepts. Estimating visual similarity is a fundamental task that
seeks to break this semantic gap by accurately evaluating how alike two or more pictures are. Visual
similarity is crucial for many computer vision areas including image retrieval, image classification
and object recognition, among others.

Given a query image, content-based image retrieval systems rank pictures in a dataset according
to how similar they are with respect to the input. This can be broken into two fundamental tasks:
1) computing meaningful image representations that capture the most salient visual information
from pixels and 2) measuring accurate visual similarity between these image representations to rank
images according to a similarity score.

In the last years, several methods to represent visual information from raw pixels in images have
been proposed, first by designing handcrafted features such as SIFT [Lowe| (2004), then by com-
pacting these local features into a single global image descriptor using different techniques such as
Fisher Vectors |Perronnin et al|(2010) and more recently by extracting deep image representations
from neural networks (Babenko et al.| (2014))). However, once two images are described by feature
vectors, visual similarity is commonly measured by computing a standard metric between them.
Although regular distance metrics, such as Euclidean distance or cosine similarity, are fast and easy
to implement, they do not take into account the possible interdependency within the dataset, which
means that even if a strong nonlinear data dependency is occurring in the visual collection, they
might not be able to capture it. This suggests that learning a similarity estimation directly from vi-
sual data can improve the performance on image retrieval tasks, provided that the likely nonlinearity
dependencies within the dataset are precisely learned by the similarity function.

Visual similarity learning is closely related to distance metric learning. Traditionally, distance metric
learning algorithms were based on linear metrics such as the Mahalanobis distance. However, if the
visual data presents any nonlinear interdependency, better results are expected when using nonlinear
approaches. According to some studies Tan et al.| (2000), standard metric axioms are not valid for
human perception of visual similarity and hence, visual similarity functions should not necessarily
satisfy distance metric conditions. Deep learning-based similarity learning methods are mostly fo-
cused on learning an optimal mapping from pixels to a linear space in which Euclidean distance can
be applied. Instead, we propose a simple approach based on neural networks to learn a non-metric
similarity score in the feature space.
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Figure 2: Siamese architectures (left) map pix-
els into high-quality vector representations. Our
similarity network (right) learns a similarity
function on top of the vector representations.

Figure 1: System overview. The feature extrac-
tion block computes visual representations of
images whereas the visual similarity block esti-
mates a similarity score using a neural network.

Figure [1| shows an overview of the proposed approach. By training a deep learning model, we can
estimate a visual similarity function that outperforms methods based on standard metric computa-
tions. One convolutional neural network extracts image representations from input images, while a
second neural network computes the visual similarity score. The visual similarity neural network
is trained using both pairs of similar and dissimilar images in three stages. The output score of the
similarity network can be directly applied as a similarity estimation to rank images in an image re-
trieval task. Experimental results on standard datasets show that our network is able to discriminate
when a pair of images is similar or dissimilar and improve standard metrics score on top of that.

2 RELATED WORK

Content-Based Image Retrieval. Content-based image retrieval searches for images by consider-
ing their visual content. Given a query image, pictures in a collection are ranked according to their
visual similarity with respect to the query. Early methods represent the visual content of images by
a set of hand-crafted features, such as SIFT |Lowe|(2004). As a single image may contain hundreds
of these features, aggregation techniques like bag-of-words (BOW) [Sivic et al.| (2003), Fisher Vec-
tors |[Perronnin et al.| (2010) or VLAD [Jégou et al.| (2010) encode local descriptors into a compact
vector, thereby improving computational efficiency and scalability. Recently, because of the latest
advancements on deep learning, features obtained from convolutional neural networks (CNN) have
rapidly become the new state-of-the-art in image retrieval.

Deep Learning for Image Retrieval. Deep image retrieval extracts activations from CNNs as im-
age representations. At first, some methods Babenko et al.| (2014); [Sharif Razavian et al.| (2014);
Wan et al.| (2014); [Liu et al.| (2015) proposed to use representations from one of the last fully con-
nected layers of networks pre-trained on the classification ImageNet dataset Russakovsky et al.
(2015). When deeper networks such as GoogLeNet |Szegedy et al.|(2015) and VGG |Simonyan &
Zisserman| (2014)) appeared, some authors Babenko & Lempitsky|(2015);|Yue-Hei Ng et al.| (2015));
Sharif Razavian et al.|(2014); |Xie et al.[(2015) showed that mid-layer representations obtained from
the convolutional layers performed better in the retrieval task. Since then, there have been several
attempts to aggregate these high-dimensional convolutional representations into a compact vector.
For example, Gong et al.| (2014));|Yue-Hei Ng et al.|(2015)) compacted deep features by using VLAD,
Mohedano et al.| (2016) encoded the neural codes into an histogram of words, Babenko & Lempit-
sky| (2015); [Kalantidis et al.| (2016) applied sum-pooling to obtain a compact representation and
Razavian et al.| (2016); [Tolias et al.| (2016) aggregated deep features by max-pooling them into a
new vector. A different approach is to train the network to directly learn compact binary codes
end-to-end (Erin Liong et al., 2015; [Lin et al.l |2015). Some authors have shown that fine-tunning
the networks with similar data to the target task increases the performance significantly (Babenko
et al., [2014; \Gordo et al., |2016; RadenoviC et al., |2016; |Salvador et al., [2016; |Gordo et al., [2017).
Finally, recent work has shown that adding attention models to select meaningful features can be
also beneficial for image retrieval (Jiménez et al., 2017} Noh et al., 2017).

All of these methods are focused on finding high quality features to represent visual content effi-
ciently and visual similarity is computed by simply applying a standard metric distance. General
metrics, such as Euclidean distance or cosine similarity, however, might be failing to consider the
inner data structure of these visual representations. Learning a similarity function directly from data
may help to capture the human perception of visual similarity in a better way.
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Similarity Learning. Some of the most popular similarity learning work, such as OASIS |Chechik
et al.[{(2010) and MLR McFee & Lanckriet|(2010), are based on linear metric learning by optimizing
the weights of a linear transformation matrix. Although linear methods are easier to optimize and
less prone to overfitting, nonlinear algorithms are expected to achieve higher accuracy modeling
the possible nonlinearities of data. Nonlinear similarity learning based on deep learning has been
recently applied to many different visual contexts. In low-level image matching, CNNs have been
trained to match pairs of patches for stereo matching [Zagoruyko & Komodakis| (2015)); Luo et al.
(2016) and optical flow [Fischer et al.| (2015); [Thewlis et al.[(2016)). In high-level image matching,
deep learning techniques have been proposed to learn low-dimensional embedding spaces in face
verification |Chopra et al.|(2005), retrieval Wu et al.|(2013); Wang et al.|(2014), classification Hoffer
& Ailon| (2015); (Qian et al.| (2015); |Oh Song et al.| (2016) and product search |[Bell & Balal (2015)),
either by using siamese |Chopra et al.[(2005) or triplet Wang et al.|(2014) architectures.

In general, these methods rely on learning a mapping from image pixels to a low dimensional target
space to compute the final similarity decision by using a standard metric. They are designed to find
the best projection in which a linear distance can be successfully applied. Instead of projecting the
visual data into some linear space, that may or may not exist, our approach seeks to learn the non-
metric visual similarity score itself. Similarly, |L1 et al.|(2014)) and [Han et al.| (2015) used a CNN to
decide whether or not two input images are a match, applied to pedestrian reindentification and patch
matching, respectively. In these methods, the networks are trained as a binary classification problem
(i.e. same or different pedestrian/patch), whereas in an image retrieval ranking problem, a regression
score is required. Inspired by the results of Wan et al.| (2014}, which showed that combining deep
features with similarity learning techniques can be very beneficial for the performance of image
retrieval systems, we propose to train a deep learning algorithm to learn non-metric similarities for
image retrieval and improve results in top of high quality image representation methods.

3 LEARNING VISUAL SIMILARITY

3.1 DEFINITION

Visual similarity is the task that measures how related two images are by using their visual content.
Given n samples in the training image collection I, for each image I; € I with ¢ € [1,n], a global
d-dimensional representation z; € R is obtained as z; = f(I;,w r), where f is the function that
maps images into global features and wy is the set of parameters of f. We define s; ; as the similarity
score which measures how alike two images I; and I; are. The higher s; ; is, the more similar I;
and I; are. The aim is to learn a visual similarity function S that computes the similarity score from
global image representations as:

Sij = S(l'i,l'j) = g(f(Iu wf)a f(Ija wf)awg)
s.t.  s;; > 8; — I;, I[;are more similar than I;, I,

(D

where g is a nonlinear function and wy is the set of parameters to optimize.

Note that g does not have to be a metric in order to be a similarity function and thus, it is not required
to satisfy the rigid constraints of metric axioms, i.e. non-negativity, identity of indiscernibles, sym-
metry and triangle inequality. Some non-metric similarity works such as [Tan et al.| (2006) suggest
that these restrictions are not compatible with human perception. As an example, they showed that
although a centaur might be visually similar to both a person and a horse, the person and the horse
are not similar to each other. A possible explanation for this phenomenon is that when comparing
two images, human beings may pay more attention to similarities and thus, similar portions of the
images may be more discriminative than dissimilar parts. To overcome the issues associated with
applying strong rigid constraints to visual similarity, we propose to learn the non-metric similarity
function ¢ using a neural network approach.

3.2 IMAGE REPRESENTATION

Here we describe the image representation method, f, we use. As this work aims to learn a non-
metric similarity estimation from visual data, our efforts are not focused on improving existing
image representation methods, but to learn how to compare them. Without loss of generality, we use
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Table 1: Network architectures. Fully connected layers (FC-{filters}) are always followed by a
ReLU layer except for the last one. Training: 22.5 million pairs. Validation: 7.5 million pairs.

Training Data Validation Data

Config Params MSE p MSE p
A FC-1024, FC-1024, FC-1 2.IM  0.00021 0.946 0.00035 0.909
B FC-4096, FC-4096, FC-1 21M  0.00008 0.978 0.00019 0.965
C FC-8192, FC-8192, FC-1 76M  0.00007 0.982 0.00012 0.974
D FC-4096, FC-4096, FC-4096, FC-1 ~ 38M  0.00009 0.978 0.00019 0.964

the RMAC descriptor proposed in [Tolias et al.| (2016) as image representation, although any other
image representation method can be considered as well.

RMAC is a deep global image representation obtained from the last convolutional layer of a pre-
trained CNN on ImageNet classification task Russakovsky et al.| (2015). When an image is fed into
the network, the last convolutional layer outputs a W x H x K response, where K is the number
of filters and W and H are the spatial width and height of the output, respectively, that depend on
the network architecture as well as on the size of the input image. The response of the k-th filter
of the last convolutional layer can be represented by €2, a 2D tensor of size W x H. If Q(p) is
the response at a particular position p, and R is a spatial region within the feature map, the regional
feature vector fr is defined as:

fr=1fr1- frr-- frK]" 2

where fr i = maxpycr Qk(p). Thus, fr consists of the maximum activation of each filter inside the
region R. Several regional features are extracted at different multi-scale overlapping regions. Each
of these regional vectors is independently post-processed with ¢2-normalization, PCA-whitening
and ¢2-normalization, as suggested in Jégou & Chum| (2012). Finally, regional vectors are summed
and ¢2-normalized once again to obtain the final compact vector. The size of the final vector is K,
which is independent of the size of the input image, its aspect ratio or the number of regions used.

3.3 SIMILARITY NETWORK

To compare two images and obtain a visual similarity score we learn the similarity function g by
training a deep learning architecture. Given two input images I; and I;, we first extract their rep-
resentations x; and x;, respectively, as explained in Section @ The two K-dimensional global
vectors are concatenated and fed into the similarity network, as shown in Figure[I] This process is
different to the standard siamese architecture (Chopra et al.| (2005) because the latter maps images
into vector representations and updates the shared weights according to the learning protocol and
our approach trains and updates the similarity network on top of high-quality vector representations.
Moreover, in the similarity network architecture, weights in the image representation block are not
necessarily shared. Figure 2] shows the difference between both approaches.

The similarity network is composed by a set of fully connected layers, each one of them followed
by a non-linear function, such as ReL U |[Krizhevsky et al.|(2012)). The input of the network is fixed
to be of 1 x K X 2 size, so the size of the first layer is 1 x K x 2 x C'h, where C'h is the number of
channels. We consider hidden layers of size 1 x C'h x 2 x Ch. Finally, the output layer is of size
1 x Ch x 2 x 1 and it is not followed by a ReLLU layer, as the output similarity score is expected to
cover a full range of values, both positive and negative. The regression loss function, L, penalizes
when the predicted score of the network is far away from an annotated similarity score, such as:

L(1;, I;) = |sij — yij| = |9(zi, 75, wy) — v 1 3)

where s; ; is the network output and y; ; is the annotated score. Four configurations A-D with
different number of filters C'h and number of hidden layers are proposed and tested during our
experiments, as shown in Table

3.4 TRAINING SIMILARITY

The visual similarity network is trained in three stages. In each stage the weights are initialized by
the trained weights of the previous stage while the learned task gets progressively more difficult.
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similarity.

STAGE 1: STANDARD METRIC

In Stage 1, the network learns a standard similarity function based on the cosine similarity. We
generate random pairs of vectors, x; and x;, and we assign the cosine similarity between them as
the score label y; ;:

X+ Ty
[EAlEA
In order to train the model in the full range of possible values, pairs are produced so that the cosine
similarity is uniformly distributed within the training set.

Yij = 4)

STAGE 2: VISUAL SIMILARITY

In Stage 2, the basic similarity network learns to increase the similarity score when given two match-
ing images and to decrease it when a pair of images is not a match. The weights in this training stage
are initialized by the weights obtained during Stage 1. We now use pairs of image representation
vectors x; and x;, randomly chosen from our training image dataset. The score label is set to:

m + A, if z; and x; are similar
= i .
Yioj i A otherwise
[ERNEA]

(&)

where A is the margin parameter. Thus, the model learns to discriminate when a pair of images are
similar (dissimilar) and assigns it a higher (lower) value than the standard score.

In this stage, the model learns how to compute a similarity score from examples of images that
are known to be matching or non-matching. Therefore a relevant dataset to the final retrieval task
should be used. Similarity between pairs might be decided using different techniques, such as image
classes, score based on local features or manual labeling, among others. Without loss of generality,
we consider two images as similar when they belong to the same class and as dissimilar when they
belong to different classes.

STAGE 3: HARD EXAMPLES

In the Stage 3, the similarity network is refined by training it specifically by using difficult pairs of
images. Previous works [Gordo et al.[(2016); [RadenoviC et al.| (2016)) have shown that fine-tunning
neural networks using difficult samples is very helpful in terms of performance. This is easy to
understand: if the network is only trained by using easy pairs (e.g. a car and a dog), it will not be
able to discriminate between difficult pairs (e.g. a car and a van). To choose the set of hard pairs we
compute the scores of a random set of image pairs by using the network trained in Stage 2. Those
pairs in which the network output is worse than the cosine similarity measure are selected as difficult
pairs for retraininﬂ Examples of difficult image pairs can be seen in Figure

' A worse score is a score that is lower in the case of a match and higher in the case of a non-match.



Under review as a conference paper at ICLR 2018

4 EXPERIMENTS

4.1 TESTING DATASETS

Our approach is evaluated on the standard image retrieval datasets described below.

Oxford5Sk |Philbin et al| (2007): a dataset that consists of 5,062 images of 11 different Oxford
landmarks. The query set contains 55 annotated images, 5 per landmark.

Paris6k Philbin et al.| (2008): a datasets that consists of 6,412 images of 11 different Paris land-
marks. The query set contains 55 annotated images, 5 per landmark.

LandS5k: a validation subset of the Landmarks database Babenko et al.| (2014)). It consists of the
4,915 validation images from 529 classes. A random selection of 45 images is used as queries.

Oxford105k, Paris106k: the large-scale versions of OxfordSk and Paris6k, respectively. They
include 100,000 distractor images from Flickr |Philbin et al. (2007).

In both the Oxford5k and the Paris6k collections query images are cropped according to the region
of interest provided by the authors of the datasets. Evaluation is performed by computing the mean
Average Precision (mAP), using the provided ground truth and algorithms. For Land5k we consider
an image to be relevant to the query when it belongs to the same class.

4.2 TRAINING DATASETS

For the purposes of this work, having a training dataset as similar as possible to the final similarity
task is essential. We create several versions of the training dataset to evaluate the effect of using
different samples in the training process.

Landmarks Gordo et al.[(2016): an automatically cleaned subset of the full Landmarks Babenko
et al.| (2014) dataset which officially contains about 49,000 images from 586 landmarks. However,
due to broken URLSs, we could only download 33,119 training images and 4,915 validation images.
This dataset does not contain images from classes that overlap with Oxford5k and Paris6k datasets
as they were manually removed.

Landmarks-extraS00: the Landmarks collection plus 250 random images from each of the Ox-
ford5k and Paris6k datasets. In total, it contains 33,619 training images.

Landmarks-extra: the Landmarks collection in addition to about 500 images from Oxford5k and
1,700 images from Paris6k classes. In total, it contains 35,342 training images belonging to 605
different landmarks. Note that query images are not added in any case and they remain unseen by
the system.

4.3 EXPERIMENTAL DETAILS

Image Representation. To compute RMAC representations we use the VGG16 network |Simonyan
& Zisserman| (2014), which has been previously pre-trained on the ImageNet dataset Russakovsky
et al.| (2015). Unless otherwise stated, we use the default values proposed in [Tolias et al.| (2016) to
obtain 512-dimensional RMAC vectors. VGG16 network is used off-the-shelf without any retraining
or fine-tunning performed on top of it. Experimental results have shown that RMAC representations
are very sensitive to the PCA matrices used in the post-processing step. As we are keeping query
images unseen by the system and not using them in the PCA matrices computation as in|Tolias et al.
(2016), our results are slightly different to theirs.

Visual Similarity Learning. Similarity learning is trained using almost a million of random pairs,
of which half of the pairs are visual matches and the other half are non-matches. PCA whitening is
done using ParisSk images. As RMAC representation performs better in high resolution images, we
re-scale all the images up to 1024 pixels, keeping the original aspect ratio of the pictures. For the
similarity network, four different configurations A-D (Table[I)) are explored during our experiments.
The network is optimized using backpropagation and stochastic gradient descent. We use a learning
rate of 0.001, a batch size of 100, a weight decay of 0.0005 and momentum of 0.9.
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Table 2: mAP when using different training configurations and A (in brackets) values.

Landmarks Landmarks-extra500 Landmarks-extra
Ox5k Pa6k LaSk Ox5k Pa6ék LaSk Ox5k Pa6k LaSk
Cosine 0.665 0.638 0.564 0.665 0.638 0.564 0.665 0.638 0.564
DeepCosine  0.638 0.596 0.549 0.638 0.596 0.549 0.638 0.596 0.549
OASIS 0.514 0.385 0.578 0.570 0.651 0.589 0.619 0.853 0.579
Linear (0.2) 0.598 0.660 0.508 0.611 0.632 0.514 0.602 0.581 0.502
DeepSim (0.2) 0.658 0.460 0.669 0.717 0.654 0.671 0.718 0.757 0.668
DeepSimH (0.2) 0.655 0.503 0.697 0.719 0.677 0.693 0.786 0.860 0.662
DeepSimH (0.4) 0.637 0.504 0.737 0.703 0.701 0.745 0.794 0.878 0.706
DeepSimH (0.6) 0.613 0.514 0.776 0.703 0.716 0.776 0.789 0.885 0.735
DeepSimH (0.8) 0.600 0.511 0.783 0.685 0.710 0.803 0.808 0.891 0.758

Computational cost. Standard metrics are relatively fast and computationally cheap. Our visual
similarity network involves the use of millions of parameters that inevitable increase the computa-
tional cost. However, it is still feasible to compute in a reasonable amount of time. In our exper-
iments, training time is about 5 hours in a GeForce GTX 1080 GPU and testing time for a pair of
images is 1.25 ms on average (0.35 ms when using cosine similarity).

5 RESULTS

5.1 ARCHITECTURE DISCUSSION

Four different configurations A-D for the similarity neural network are proposed. We compare
the performance of each one during Stage 1, when the network is trained with the standard cosine
similarity measurement. If s; is the network score and y; is the cosine similarity of the [-th pair with
l = 1..L, we evaluate each network by computing the mean squared error, MSE, and the correlation
coefficient, p, as:

L L
1 1 SL— Ps Y1 — [
MSE=— (si—uy)* = : 4 6
LZ(Z ) p L—lz o - (6)
1=1 1=1
where (1, and o, are the mean and standard deviation of the vector of network scores s, and p,, and
oy are the mean and standard deviation of the vectors of cosine similarities y.

Results are shown in Table 1] Unsurprisingly, the configuration with bigger number of parameters,
C, achieves the best MSE and p results, both in training and validation sets. However, the perfor-
mance of networks B and D is very close to the performance of network C. As network B requires
only 21 million parameters and network C requires 76 million parameters, we keep configuration B
as our default architecture for the rest of the experiments.

5.2 EVALUATION OF THE SIMILARITY NETWORK

In this section, we study the benefits of using a non-metric distance function trained with neural
networks. In order to isolate the contribution of the visual similarity computation and perform
a fair comparison between different distance functions, we only train the similarity network part.
However, an end-to-end training of the whole image retrieval pipeline is explored in Appendix

To evaluate our similarity network, we compute the mAP at each stage of the training process (Sec-
tion 4.2). Results when using different training datasets can be found in Table 2] Cosine similarity
is computed as a baseline. We denote as DeepCosine the results obtained after the first stage, when
the network is trained to mimic cosine similarity. Naturally, DeepCosine performs worse than the
cosine similarity, as it is an estimation of the cosine metric. DeepSim refers to the results obtained
after the second stage, when the network is fine-tunned to learn visual similarity with random pairs
of images. DeepSimH are the results after the last stage, when the network is trained by using both
random and hard pairs of images. We compare our approach against the standard similarity learn-
ing algorithm OASIS [Chechik et al.| (2010). Finally, we also conduct experiments on linear metric
learning, which are denoted as Linear in Table 2] by training an affine transformation of the feature
vectors using the same training protocol as described in Equation [3]
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Table 3: mAP results for different state-of-the-art methods. Dim corresponds to the dimensionality
of the feature representation. Similarity is the similarity function.

Method Dim  Similarity Ox5k Ox105k Pa6k Pal06k
Babenko et al.| (2014) 512 L2 0.435 0.392 - -
Sharif Razavian et al. (2014} 4096 Averaged L2 0.322 - 0.495 -
Wan et al.| (2014) 4096 OASIS 0.466 - 0.867 -
+. [Babenko & Lempitsky|(2015) 256 Cosine 0.657 0.642 - -
E Yue-Hei Ng et al.[(2015) 128 L2 0.593 - 0.59 -
E Kalantidis et al.[(2016) 512 L2 0.708 0.653 0.797 0.722
< Mohedano et al. (2016} 25k Cosine 0.739 0.593 0.82 0.648
& Salvador et al. (2016) 512 Cosine 0.588 - 0.656 -
© Tolias et al.[(2016) 512 Cosine 0.669 0.616 0.83 0.757
Jiménez et al.| (2017) 512 Cosine 0.712 0.672 0.805 0.733
Ours (A = 0.8) 512 DeepSimH  0.808 0.772 0.891 0.818
Babenko et al. (2014) 512 L2 0.557 0.522 - -
=) Gordo et al.| (2016) 512 Cosine 0.831 0.786 0.871 0.797
é Wan et al.|(2014) 4096 OASIS 0.783 - 0.947 -
3 |Radenovic et al.| (2016) 512 Cosine 0.77 0.692 0.838 0.764
2 Salvador et al. (2016)) 512 Cosine 0.71 - 0.798 -
it |Gordo et al.[(2017) 2048 Cosine 0.861 0.828 0.945 0.906
Ours (A = 0.8) 512 DeepSimH  0.882 0.821 0.882  0.829

Our similarity networks outperform OASIS in all the testing datasets. Moreover when using
Landmarks-clean-extra as training dataset, results are boosted with respect to the standard metric,
achieving improvements ranging from 20% (OxfordSk) to 40% (Pairs6k). When using a small subset
of images from OxfordSk and Paris6k classes, i.e. Landmarks-clean-extra-500 dataset, our similar-
ity networks also improve mAP with respect to the cosine similarity in the three testing datasets.
This indicates that visual similarity can be learnt even when using a reduced subset of the target im-
age domain. Experiments on affine transformations show that, unlike our proposed methods, simple
linear metrics are not able to properly fit Equation [5] However, visual similarity does not transfer
well across domains when no images of the target domain are used during training. An extended
discussion about the effects of the training dataset can be found in Appendix [A]

Overall, these results suggests that our network is able to learn whether two images are similar or
not and provide a similarity score accordingly. Figure 4|shows how the mAP is affected when using
different values of A. Except when A = 0 (i.e. visual similarity is not learned), DeepSimH always
improves mAP with respect to the standard cosine similarity.

5.3 COMPARISON WITH THE STATE OF THE ART.

Finally, we compare our method against several state-of-the-art techniques (Table [3). As standard
practice, works are split into two main groups: off-the-shelf and fine-tunning approaches. Off-the-
shelf are techniques that extract visual representations by using CNNs trained on ImageNet dataset
Russakovsky et al|(2015) without modifying the network. On the other hand, fine-tunning methods
retrain the network to compute more accurate visual representation. For a fair comparison, we only
consider methods that represent each image with a single compact vector and do not apply query
expansion or image re-ranking. When using off-the-shelf RMAC features, our DeepSimH approach
outperforms previous methods in every dataset. To compare against fine-tunned methods, we com-
pute RMAC vectors using the fine-tunned version of VGG16 proposed in [Radenovi¢ et al.| (2016)
and training our DeepSimH exactly in the same way as in the off-the-shelf version. Accuracy is
significantly improved when using our similarity network instead of the analogous cosine similarity
method [Radenovic et al.| (2016). DeepSimH achieves the best mAP precision in Ox5k dataset and
comes second in Ox105k and Pal06k after Gordo et al.[(2017), which uses the more complex and
higher-dimensional ResNet|He et al.|(2016) instead of a VGG16 network for image representation.

6 CONCLUSIONS

We have presented a method for learning visual similarity directly from visual data. Instead of using
a rigid metric distance, such as the standard cosine similarity, we propose to train a neural network
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model to learn a similarity estimation between a pair of visual representations previously extracted
from input images. Our method outperforms state-of-the-art approaches based on rigid distances in
standard image retrieval collection of images and experimental results showed that learning a non-
metric visual similarity function is beneficial in image retrieval tasks provided that a small subset
of images of the same domain are available during training. Standard image retrieval techniques
that are commonly applied after cosine similarity computation, such as query expansion or image
re-ranking, might also be applied on top of the similarity network. Finally, we end with an open
question, which is the subject of planned future work, concerning efficient computation of exact or
approximate K-nearest neighbours based on the learned network similarity function.
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Figure 5: mAP when using different number of target samples in the training set.

APPENDIX A TRAINING ON TARGET DATASET

In this appendix, a further discussion about the influence of the dataset used to train the similarity
network and estimate the visual similarity between a pair of images is carried out.

As we already noted in Section visual similarity does not transfer well across domains. A
subset of samples from the target dataset is required during training to learn a meaningful similarity
function. This is a well-known problem in the field of metric learning (Kulis et al.|(2013)). In Figure
[l we explore the effect on performance when we use different subsets of samples from the target
collection in addition to the Landmarks dataset (Gordo et al.| (2016)) during the second stage of our
training (Section [3.4).

Figure [5|shows that there is a clear correlation between the similarity network performance and the
number of samples from the target dataset used during training. Indeed, in agreement with previous
work in metric learning (Kulis et al.| (2013))), we observe that not considering samples from the
target dataset to train a similarity function might be harmful. The similarity network, however,
outperforms standard metric results even when a small number of samples from the target collection
is used during training: only 100 images from Ox5k and 250 images from Pa6k are required to
outperform cosine similarity in Ox5k and Pa6k datasets, respectively. This fact suggests that the
similarity network is able to generalize from a small subset of target samples and is not memorizing
the distances in the training collection.

Finally, we present some visual results of our findings. Figure [6|and Figure[7]show the t-Distributed
Stochastic Neighbor Embedding (t-SNE) (Van Der Maaten| 2014)) representation of Ox5k images
when using RMAC as image representation, and cosine similarity or our similarity network as simi-
larity function, respectively. Although RMAC descriptor with a standard metric is already perform-
ing well in terms of visual similarity (e.g., in Figure [6|images from Radcliffe camera are grouped
together in the right bottom corner), performance can be pushed even more when our similarity net-
work is used instead (Figure[7] In summary, these results indicate the benefit of training a similarity
network over a standard metric function such as cosine similarity for the image retrieval task.

12



Under review as a conference paper at ICLR 2018

Figure 7: t-SNE plot for a subset of 500 Ox5k images when using RMAC and DeepSim.
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APPENDIX B END-TO-END TRAINING

So far, we have isolated the similarity computation part in the image retrieval pipeline by only
training the similarity network. In this way, it is easy to see that the improvement in the testing
datasets compare to when using other similarity methods (Section [5.2) is, in fact, due to the visual
similarity network function. In this appendix, however, we explore a real end-to-end approach for
image retrieval. The end-to-end approach consists on feeding the system with pixels to obtain a
visual similarity score between a pair of images. The whole pipeline is presented in Figure [§] For
the feature extraction part, we adopt the MAC compact image representation, following Radenovié
et al.| (2016) work. For the visual similarity part, we use our visual similarity network DeepSim.
The whole approach is end-to-end differentiable so backpropagation can be applied during training.

Max | L2
Pool | Norm

,:> Max | L2 Qi

Pool | Norm
Compact

Feature Vector |
Map /

Figure 8: End-to-End architecture. The feature extraction part consists on a VGG16 network fol-
lowed by a max-pooling and a 12-normalization layers. In the visual similarity part, two compact
vectors are concatenated and forwarded to the DeepSim network to obtain a similarity score.

In this case, we use MAC [Tolias et al.[| (2016) as compact image representation. After feeding a
VGG16 network [Simonyan & Zisserman| (2014} with a pre-processed image, the feature maps from
the last convolutional layer are obtained. These feature maps are then max-pooled over the whole
region to obtain a compact vector, which is 12-normalized. The final dimensionality of the MAC
vector does not depend on the input image size, but in the number of filters in the last convolutional
layer. Image pre-processing includes resizing the image to 720 pixels on its largest side (maintaining
aspect ratio) and mean subtraction.

We initialize the VGG16 network with the weights trained on ImageNet dataset. We then learn the
weights of the similarity network by freezing VGG16 weights and applying Stage 1 and Stage 2,
as described in Section Finally, for the end-to-end training, we unfreeze all the weights of the
architecture and fine-tune all the layers one last time. As all the layers have been already pre-trained,
the final end-to-end fine-tunning is performed in about 200,000 pairs of images from Landarmarks-
extra dataset (Section .2 for just 5,000 iterations. Note that we adopt MAC [Tolias et al| (2016)
instead of RMAC as it is easier to train and thus, the results are slightly worst. From TableE]we note,
firstly, a boost in performance when using DeepSim instead of the cosine similarity and finally, a
significant improvement when the architecture is trained end-to-end with respect to both the baseline
and when only training the visual similarity part.

The results are unsurprising as fine-tuning the entire architecture allows us to fit better to a particular
dataset. However the key message of the paper is that fine-tuning the final similarity computation,
instead on relying on cosines as researchers have been doing so far, may be a worthwhile step that
can push accuracy results higher irrespective of the feature vector computation.

Table 4: mAP when training different parts of the image retrieval pipeline. In blue, the modules that
are fine-tunned in every experiment.

Features Similarity OxfordSk Paris6k LandmarksSk

MAC Cosine 0.481 0.539 0.494
MAC DeepSim 0.509 0.683 0.589
MAC DeepSim 0.555 0.710 0.685
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