
Published as a conference paper at ICLR 2017

LEARNING TO COMPOSE WORDS INTO SENTENCES
WITH REINFORCEMENT LEARNING

Dani Yogatama1, Phil Blunsom1,2, Chris Dyer1, Edward Grefenstette1, and Wang Ling1
1DeepMind and 2University of Oxford
{dyogatama,pblunsom,cdyer,etg,lingwang}@google.com

ABSTRACT

We use reinforcement learning to learn tree-structured neural networks for com-
puting representations of natural language sentences. In contrast with prior work
on tree-structured models, in which the trees are either provided as input or pre-
dicted using supervision from explicit treebank annotations, the tree structures
in this work are optimized to improve performance on a downstream task. Ex-
periments demonstrate the benefit of learning task-specific composition orders,
outperforming both sequential encoders and recursive encoders based on treebank
annotations. We analyze the induced trees and show that while they discover
some linguistically intuitive structures (e.g., noun phrases, simple verb phrases),
they are different than conventional English syntactic structures.

1 INTRODUCTION

Languages encode meaning in terms of hierarchical, nested structures on sequences of
words (Chomsky, 1957). However, the degree to which neural network architectures that com-
pute representations of the meaning of sentences for practical applications should explicitly reflect
such structures is a matter for debate. In this work, we use reinforcement learning to learn to con-
struct trees for computing sentence representations, guided by feedback from downstream tasks that
depend on these representations. The space of structures that are considered by the learner includes
both fully sequential structures (corresponding to traditional recurrent neural network “encoders”),
as well as all projective binary trees. Thus, although we take seriously the notion that good compo-
sitional architectures might be tree-structured, we specify neither the form of the tree nor whether a
tree is necessary at all, and instead leave those decisions up to the learner (and the data).

To place this work in context, there are three predominant approaches for constructing vector rep-
resentations of sentences from a sequence of words. The first composes words sequentially using
a recurrent neural network, treating the RNN’s final hidden state as the representation of the sen-
tence (Cho et al., 2014; Sutskever et al., 2014; Kiros et al., 2015). In such models, there is no explicit
hierarchical organization imposed on the words, and the RNN’s dynamics must learn to simulate it.
The second approach uses tree-structured networks to recursively compose representations of words
and phrases to form representations of larger phrases and, finally, the complete sentence. In con-
trast to sequential models, these models’ architectures are organized according to each sentence’s
syntactic structure, that is, the hierarchical organization of words into nested phrases that charac-
terizes human intuitions about how words combine to form grammatical sentences. Prior work on
tree-structured models has assumed that trees are either provided together with the input sentences
(Clark et al., 2008; Grefenstette & Sadrzadeh, 2011; Socher et al., 2012; 2013; Tai et al., 2015)
or that they are predicted based on explicit treebank annotations jointly with the downstream task
(Bowman et al., 2016; Dyer et al., 2016). The last approach for constructing sentence representa-
tions uses convolutional neural networks to produce the representation in a bottom up manner, either
with syntactic information (Ma et al., 2015) or without (Kim, 2014; Kalchbrenner et al., 2014).

Our work can be understood as a compromise between the first two approaches. Rather than using
explicit supervision of tree structure, we use reinforcement learning to learn tree structures (and
thus, sentence-specific compositional architectures), taking performance on a downstream task that
uses the computed sentence representation as the reward signal. In contrast to sequential RNNs,
which ignore tree structure, our model still generates a latent tree for each sentence and uses it to

1

Published as a conference paper at ICLR 2017

structure the composition. Our hypothesis is that encouraging the model to learn tree-structured
compositions will bias the model toward better generalizations about how words compose to form
sentence meanings, leading to better performance on downstream tasks.

This work is related to unsupervised grammar induction (Klein & Manning, 2004; Blunsom & Cohn,
2010; Spitkovsky et al., 2011, inter alia), which seeks to infer a generative grammar of an infinite
language from a finite sample of strings from the language—but without any semantic feedback.
Previous work on unsupervised grammar induction that incorporates semantic supervision involves
designing complex models for Combinatory Categorial Grammars (Zettlemoyer & Collins, 2005) or
marginalizing over latent syntactic structures (Naradowsky et al., 2012). Since semantic feedback
has been proposed as crucial for the acquisition of syntax (Pinker, 1984), our model offers a simpler
alternative.1 However, our primary focus is on improving performance on the downstream model, so
the learner may settle on a different solution than conventional English syntax. We thus also explore
what kind of syntactic structures are derivable from shallow semantics.

Experiments on various tasks (i.e., sentiment analysis, semantic relatedness, natural language infer-
ence, and sentence generation) show that reinforcement learning is a promising direction to discover
hierarchical structures of sentences. Notably, representations learned this way outperformed both
conventional left-to-right models and tree-structured models based on linguistic syntax in down-
stream applications. This is in line with prior work showing the value of learning tree structures in
statistical machine translation models (Chiang, 2007). Although the induced tree structures mani-
fested a number of linguistically intuitive structures (e.g., noun phrases, simple verb phrases), there
are a number of marked differences to conventional analyses of English sentences (e.g., an overall
left-branching structure).

2 MODEL

Our model consists of two components: a sentence representation model and a reinforcement learn-
ing algorithm to learn the tree structure that is used by the sentence representation model.

2.1 TREE LSTM

Our sentence representation model follows the Stack-augmented Parser-Interpreter Neural Network
(SPINN; Bowman et al., 2016), SPINN is a shift-reduce parser that uses Long Short-Term Memory
(LSTM; Hochreiter and Schmidhuber, 1997) as its composition function. Given an input sentence
of N words x = {x1, x2, . . . , xN}, we represent each word by its embedding vector xi ∈ RD.
The parser maintains an index pointer p starting from the leftmost word (p = 1) and a stack. To
parse the sentence, it performs a sequence of operations a = {a1, a2, . . . , a2N−1}, where at ∈
{SHIFT, REDUCE}. A SHIFT operation pushes xp to the stack and moves the pointer to the next
word (p++); while a REDUCE operation pops two elements from the stack, composes them to a
single element, and pushes it back to the stack. SPINN uses Tree LSTM (Tai et al., 2015; Zhu et al.,
2015) as the REDUCE composition function, which we follow. In Tree LSTM, each element of the
stack is represented by two vectors, a hidden state representation h and a memory representation c.
Two elements of the stack (hi, ci) and (hj , cj) are composed as:

i = σ(WI [hi,hj] + bI) o = σ(WO[hi,hj] + bI)

fL = σ(WFL
[hi,hj] + bFL

) fR = σ(WFR
[hi,hj] + bFR

)

g = tanh(WG[hi,hj] + bG) c = fL � ci + fR � cj + i� g

h = o� c

(1)

where [hi,hj] denotes concatenation of hi and hj , and σ is the sigmoid activation function.

A unique sequence of {SHIFT, REDUCE} operations corresponds to a unique binary parse tree of the
sentence. A SHIFT operation introduces a new leaf node in the parse tree, while a REDUCE operation
combines two nodes by merging them into a constituent. See Figure 1 for an example. We note that
for a sentence of lengthN , there are exactlyN SHIFT operations andN−1 REDUCE operations that
are needed to produce a binary parse tree of the sentence. The final sentence representation produced

1Our model only produces an interpretation grammar that parses language instead of a generative grammar.

2

Published as a conference paper at ICLR 2017

1 2 4 5

3 6

7

1 2 4 6

3

7

5

1 2 3 4

7

5

6

1 2 3 6

4

5

7

S, S, R, S, S, R, R S, S, S, R, R, S, R S, S, R, S, R, S, R S, S, S, S, R, R, R

Figure 1: Four examples of trees and their corresponding SHIFT (S) and REDUCE (R) sequences. In
each of the examples, there are 4 input words (4 leaf nodes), so 7 operations (4 S, 3 R) are needed
to construct a valid tree. The nodes are labeled with the timesteps in which they are introduced to
the trees t ∈ {1, . . . , 7}. A SHIFT operation introduces a leaf node, whereas a REDUCE operation
introduces a non-leaf node by combining two previously introduced nodes. We can see that different
S-R sequences lead to different tree structures.

by the Tree LSTM is the hidden state of the final element of the stack hN−1 (i.e., the topmost node
of the tree).

Tracking LSTM. SPINN optionally augments Tree LSTM with another LSTM that incorporates
contextual information in sequential order called tracking LSTM, which has been shown to improve
performance for textual entailment. It is a standard recurrent LSTM network that takes as input the
hidden states of the top two elements of the stack and the embedding vector of the word indexed by
the pointer at timestep t. Every time a REDUCE operation is performed, the output of the tracking
LSTM e is included as an additional input in Eq. 1 (i.e., the input to the REDUCE composition
function is [hi,hj , e] instead of [hi,hj]).

2.2 REINFORCEMENT LEARNING

In previous work (Tai et al., 2015; Bowman et al., 2016), the tree structures that guided composition
orders of Tree LSTM models are given directly as input (i.e., a is observed and provided as an input).
Formally, each training data is a triplet {x,a,y}. Tai et al. (2015) consider models where a is also
given at test time, whereas Bowman et al. (2016) explore models where a can be either observed or
not at test time. When it is only observed during training, a policy is trained to predict a at test time.
Note that in this case the policy is trained to match explicit human annotations (i.e., Penn TreeBank
annotations), so the model learns to optimize representations according to structures that follows
human intuitions. They found that models that observe a at both training and test time are better
than models that only observe a during training.

Our main idea is to use reinforcement learning (policy gradient methods) to discover the best tree
structures for the task that we are interested in. We do not place any kind of restrictions when
learning these structures other than that they have to be valid binary parse trees, so it may result
in tree structures that match human linguistic intuition, heavily right or left branching, or other
solutions if they improve performance on the downstream task.

We parameterize each action a ∈ {SHIFT, REDUCE} by a policy network π(a | s;WR), where s is
a representation of the current state and WR is the parameter of the network. Specifically, we use a
two-layer feedforward network that takes the hidden states of the top two elements of the stack hi
and hj and the embedding vector of the word indexed by the pointer xp as its input:

s = ReLU(W1
R[hi,hj,xp] + b1

R) such that π(a | s;WR) ∝ exp(w2>
R s+ b2R)

where [hi,hj ,xp] denotes concatenation of vectors inside the brackets.

If a is given as part of the training data, the policy network can be trained—in a supervised training
regime—to predict actions that result in trees that match human intuitions. Our training data, on
the other hand, is a tuple {x,y}. We use REINFORCE (Williams, 1992), which is an instance of a
broader class of algorithms called policy gradient methods, to learn WR such that the sequence of
actions a = {a1, . . . , aT } maximizes:

R(W) = Eπ(a,s;WR)

[
T∑
t=1

rtat

]
,

3

Published as a conference paper at ICLR 2017

where rt is the reward at timestep t. We use performance on a downstream task as the reward func-
tion. For example, if we are interested in using the learned sentence representations in a classification
task, our reward function is the probability of predicting the correct label using a sentence represen-
tation composed in the order given by the sequence of actions sampled from the policy network, so
R(W) = log p(y | T-LSTM(x);W), where we use W to denote all model parameters (Tree LSTM,
policy network, and classifier parameters), y is the correct label for input sentence x, and x is rep-
resented by the Tree LSTM structure in §2.1. For a natural language generation task where the goal
is to predict the next sentence given the current sentence, we can use the probability of predicting
words in the next sentence as the reward function, so R(W) = log p(xs+1 | T-LSTM(xs);W).

Note that in our setup, we do not immediately receive a reward after performing an action at timestep
t. The reward is only observed at the end after we finish creating a representation for the current
sentence with Tree LSTM and use the resulting representation for the downstream task. At each
timestep t, we sample a valid action according to π(a | s;WR). We add two simple constraints to
make the sequence of actions result in a valid tree: REDUCE is forbidden if there are fewer than two
elements on the stack, and SHIFT is forbidden if there are no more words to read from the sentence.
After reaching timestep 2N − 1, we construct the final representation and receive a reward that is
used to update our model parameters.

We experiment with two learning methods: unsupervised structures and semi-supervised structures.
Suppose that we are interested in a classification task. In the unsupervised case, the objective func-
tion that we maximize is log p(y | T-LSTM(x);W). In the semi-supervised case, the objective
function for the first E epochs also includes a reward term for predicting the correct SHIFT or RE-
DUCE actions obtained from an external parser—in addition to performance on the downstream task,
so we maximize log p(y | T-LSTM(x);W) + log π(a | s;WR). The motivation behind this model
is to first guide the model to discover tree structures that match human intuitions, before letting it
explore other structures close to these ones. After epochE, we remove the second term from our ob-
jective function and continue maximizing the first term. Note that unsupervised and semi-supervised
here refer to the tree structures, not the nature of the downstream task.

3 EXPERIMENTS

3.1 BASELINES

The goal of our experiments is to evaluate our hypothesis that we can discover useful task-specific
tree structures (composition orders) with reinforcement learning. We compare the following com-
position methods (the last two are unique to our work):

• Right to left: words are composed from right to left.2

• Left to right: words are composed from left to right. This is the standard recurrent neural
network composition order.

• Bidirectional: A bidirectional right to left and left to right models, where the final sentence
embedding is an average of sentence embeddings produced by each of these models.

• Balanced binary tree: words are composed according to a balanced binary parse tree of
the sentence.

• Supervised syntax: words are composed according to a predefined parse tree of the sen-
tence. When parse tree information is not included in the dataset, we use Stanford parser
(Klein & Manning, 2003) to parse the corpus.

• Semi-supervised syntax: a variant of our reinforcement learning method, where for the
first E epochs we include rewards for predicting predefined parse trees given in the super-
vised model, before letting the model explore other kind of tree structures at later epochs
(i.e., semi-supervised structures in §2.2).

• Latent syntax: another variant of our reinforcement learning method where there is no
predefined structures given to the model at all (i.e., unsupervised structures in §2.2).

2We choose to include right to left as a baseline since a right-branching tree structure—which is the output of
a right to left composition order—has been shown to be a reliable baseline for unsupervised grammar induction
(Klein & Manning, 2004).

4

Published as a conference paper at ICLR 2017

For learning, we use stochastic gradient descent with minibatches of size 1 and `2 regularization con-
stant tune on development data from {10−4, 10−5, 10−6, 0}. We use performance on development
data to choose the best model and decide when to stop training.

3.2 TASKS

We evaluate our method on four sentence representation tasks: sentiment classification, semantic
relatedness, natural language inference (entailment), and sentence generation. We show statistics of
the datasets in Table 1 and describe each task in detail in this subsection.

Table 1: Descriptive statistics of datasets used in our experiments.
Dataset # of train # of dev # of test Vocab size
SICK 4,500 500 4,927 2,172
SNLI 550,152 10,000 10,000 18,461
SST 98,794 872 1,821 8,201
IMDB 441,617 223,235 223,236 29,209

Stanford Sentiment Treebank. We evaluate our model on a sentiment classification task from the
Stanford Sentiment Treebank (Socher et al., 2013). We use the binary classification task where the
goal is to predict whether a sentence is a positive or a negative movie review.

We set the word embedding size to 100 and initialize them with Glove vectors (Pennington et al.,
2014)3. For each sentence, we create a 100-dimensional sentence representation s ∈ R100 with
Tree LSTM, project it to a 200-dimensional vector and apply ReLU: q = ReLU(Wps + bp), and
compute p(ŷ = c | q;wq) ∝ exp(wq,cq+ bq).

We run each model 3 times (corresponding to 3 different initialization points) and use the devel-
opment data to pick the best model. We show the results in Table 2. Our results agree with prior
work that have shown the benefits of using syntactic parse tree information on this dataset (i.e., su-
pervised recursive model is generally better than sequential models). The best model is the latent
syntax model, which is also competitive with results from other work on this dataset. Both the latent
and semi-supervised syntax models outperform models with predefined structures, demonstrating
the benefit of learning task-specific composition orders.

Table 2: Classification accuracy on Stanford Sentiment Treebank dataset. The number of parameters
includes word embedding parameters and is our approximation when not reported in previous work.

Model Acc. # params.
100D-Right to left 83.9 1.2m
100D-Left to right 84.7 1.2m

100D-Bidirectional 84.7 1.5m
100D-Balanced binary tree 85.1 1.2m

100D-Supervised syntax 85.3 1.2m
100D-Semi-supervised syntax 86.1 1.2m

100D-Latent syntax 86.5 1.2m
RNTN (Socher et al., 2013) 85.4 -

DCNN (Kalchbrenner et al., 2014) 86.8 -
CNN-random(Kim, 2014) 82.7 -

CNN-word2vec (Kim, 2014) 87.2 -
CNN-multichannel (Kim, 2014) 88.1 -
NSE (Munkhdalai & Yu, 2016a) 89.7 5.4m

NTI-SLSTM (Munkhdalai & Yu, 2016b) 87.8 4.4m
NTI-SLSTM-LSTM (Munkhdalai & Yu, 2016b) 89.3 4.8m

Left to Right LSTM (Tai et al., 2015) 84.9 2.8m
Bidirectional LSTM (Tai et al., 2015) 87.5 2.8m

Constituency Tree–LSTM–random (Tai et al., 2015) 82.0 2.8m
Constituency Tree–LSTM–GloVe (Tai et al., 2015) 88.0 2.8m

Dependency Tree-LSTM (Tai et al., 2015) 85.7 2.8m

3http://nlp.stanford.edu/projects/glove/

5

http://nlp.stanford.edu/projects/glove/

Published as a conference paper at ICLR 2017

Semantic relatedness. The second task is to predict the degree of relatedness of two sentences
from the Sentences Involving Compositional Knowledge corpus (SICK; Marelli et al., 2014) . In
this dataset, each pair of sentences are given a relatedness score on a 5-point rating scale. For each
sentence, we use Tree LSTM to create its representations. We denote the final representations by
{s1, s2} ∈ R100. We construct our prediction by computing: u = (s2 − s1)

2, v = s1 � s2,
q = ReLU(Wp[u,v] + bp), and ŷ = w>q q + bq , where Wp ∈ R200×200,bp ∈ R200,wq ∈
R200, bq ∈ R1 are model parameters, and [u,v] denotes concatenation of vectors inside the brackets.
We learn the model to minimize mean squared error.

We run each model 5 times and use the development data to pick the best model. Our results are
shown in Table 3. Similarly to the previous task, they clearly demonstrate that learning the tree
structures yields better performance.

We also provide results from other work on this dataset for comparisons. Some of these models (Lai
& Hockenmaier, 2014; Jimenez et al., 2014; Bjerva et al., 2014) rely on feature engineering and are
designed specifically for this task. Our Tree LSTM implementation performs competitively with
most models in terms of mean squared error. Our best model—semi-supervised syntax—is better
than most models except LSTM models of Tai et al. (2015) which were trained with a different
objective function.4 Nonetheless, we observe the same trends with their results that show the benefit
of using syntactic information on this dataset.

Table 3: Mean squared error on SICK dataset.
Model MSE # params.

100D-Right to left 0.461 1.0m
100D-Left to right 0.394 1.0m

100D-Bidirectional 0.373 1.3m
100D-Balanced binary tree 0.455 1.0m

100D-Supervised syntax 0.381 1.0m
100D-Semi-supervised syntax 0.320 1.0m

100D-Latent syntax 0.359 1.0m
Illinois-LH (Lai & Hockenmaier, 2014) 0.369 -

UNAL-NLP(Jimenez et al., 2014) 0.356 -
Meaning Factory (Bjerva et al., 2014) 0.322 -

DT-RNN (Socher et al., 2014) 0.382 -
Mean Vectors (Tai et al., 2015) 0.456 650k

Left to Right LSTM (Tai et al., 2015) 0.283 1.0m
Bidirectional LSTM (Tai et al., 2015) 0.274 1.0m

Constituency Tree-LSTM (Tai et al., 2015) 0.273 1.0m
Dependency Tree-LSTM (Tai et al., 2015) 0.253 1.0m

Stanford Natural Language Inference. We next evaluate our model for natural language infer-
ence (i.e., recognizing textual entailment) using the Stanford Natural Language Inference corpus
(SNLI; Bowman et al., 2015) . Natural language inference aims to predict whether two sentences
are entailment, contradiction, or neutral, which can be formulated as a three-way classification prob-
lem. Given a pair of sentences, similar to the previous task, we use Tree LSTM to create sentence
representations {s1, s2} ∈ R100 for each of the sentences. Following Bowman et al. (2016), we con-
struct our prediction by computing: u = (s2−s1)2, v = s1�s2, q = ReLU(Wp[u,v, s1, s2]+bp),
and p(ŷ = c | q;wq) ∝ exp(wq,cq+ bq), where Wp ∈ R200×400,bp ∈ R200,wq ∈ R200, bq ∈ R1

are model parameters. The objective function that we maximize is the log likelihood of the correct
label under the models.

We show the results in Table 4. The latent syntax method performs the best. Interestingly, the
sequential left to right model is better than the supervised recursive model in our experiments, which
contradicts results from Bowman et al. (2016) that show 300D-LSTM is worse than 300D-SPINN.
A possible explanation is that our left to right model has identical number of parameters with the
supervised model due to the inclusion of the tracking LSTM even in the left to right model (the
only difference is in the composition order), whereas the models in Bowman et al. (2016) have

4Our experiments with the regularized KL-divergence objective function (Tai et al., 2015) do not result in
significant improvements, so we choose to report results with the simpler mean squared error objective function.

6

Published as a conference paper at ICLR 2017

different number of parameters. Due to the poor performance of the supervised model relative
to the unsupervised model, semi-supervised training can only mitigate the loss in accuracy, rather
than improve over unsupervised learning. Our models underperform state-of-the-art models on this
dataset that have almost four times the number of parameters. We only experiment with smaller
models since tree-based models with dynamic structures (e.g., our semi-supervised and latent syntax
models) take longer to train. See §4 for details and discussions about training time.

Table 4: Classification accuracy on SNLI dataset.
Model Acc. # params.

100D-Right to left 79.1 2.3m
100D-Left to right 80.2 2.3m

100D-Bidirectional 80.2 2.6m
100D-Balanced binary tree 77.4 2.3m

100D-Supervised syntax 78.5 2.3m
100D-Semi-supervised syntax 80.2 2.3m

100D-Latent syntax 80.5 2.3m
100D-LSTM (Bowman et al., 2015) 77.6 5.7m
300D-LSTM (Bowman et al., 2016) 80.6 8.5m
300D-SPINN (Bowman et al., 2016) 83.2 9.2m

1024D-GRU (Vendrov et al., 2016) 81.4 15.0m
300D-CNN (Mou et al., 2016) 82.1 9m

300D-NTI (Munkhdalai & Yu, 2016b) 83.4 9.5m
300D-NSE (Munkhdalai & Yu, 2016a) 84.6 8.5m

Sentence generation. The last task that we consider is natural language generation. Given a sen-
tence, the goal is to maximize the probability of generating words in the following sentence. This is
a similar setup to the Skip Thought objective (Kiros et al., 2015), except that we do not generate the
previous sentence as well. Given a sentence, we encode it with Tree LSTM to obtain s ∈ R100. We
use a bag-of-words model as our decoder, so p(wi | s;V) ∝ exp(v>i s), where V ∈ R100×29,209

and vi ∈ R100 is the i-th column of V. Using a bag-of-words decoder as opposed to a recurrent
neural network decoder increases the importance of producing a better representation of the current
sentence, since the model cannot rely on a sophisticated decoder with a language model component
to predict better. This also greatly speeds up our training time.

We use IMDB movie review corpus (Diao et al., 2014) for this experiment, The corpus consists
of 280,593, 33,793, and 34,029 reviews in training, development, and test sets respectively. We
construct our data using the development and test sets of this corpus. For training, we process
33,793 reviews from the original development set to get 441,617 pairs of sentences. For testing,
we use 34,029 reviews in the test set (446,471 pairs of sentences). Half of these pairs is used as
our development set to tune hyperparamaters, and the remaining half is used as our final test set.
Our results in Table 5 further demonstrate that methods that learn tree structures perform better than
methods that have fixed structures.

Table 5: Word perplexity on the sentence generation task. We also show perplexity of the model
that does not condition on the previous sentence (unconditional) when generating bags of words for
comparison.

Model Perplexity # params.
100D-Unconditional 105.6 30k

100D-Right to left 101.4 6m
100D-Left to right 101.1 6m

100D-Bidirectional 100.2 6.2m
100D-Balanced binary tree 103.3 6.2m

100D-Supervised syntax 100.8 6m
100D-Semi-supervised syntax 98.4 6m

100D-Latent syntax 99.0 6m

7

Published as a conference paper at ICLR 2017

a wo
man

wea
ring

sun
glas
ses

is frow
ning . a boy drag

s his sled
s

thro
ugh the sno

w .

Figure 2: Examples of tree structures learned by our model which show that the model discovers
simple concepts such as noun phrases and verb phrases.

two men are playi
ng

frisb
ee in the park .fami

ly
me
mbe
rs

stan
ding

outs
ide a hom

e .

Figure 3: Examples of unconventional tree structures.

4 DISCUSSION

Learned Structures. Our results in §3 show that our proposed method outperforms competing
methods with predefined composition order on all tasks. The right to left model tends to perform
worse than the left to right model. This suggests that the left to right composition order, similar to
how human reads in practice, is better for neural network models. Our latent syntax method is able
to discover tree structures that work reasonably well on all tasks, regardless of whether the task is
better suited for a left to right or supervised syntax composition order.

We inspect what kind of structures the latent syntax model learned and how closely they match
human intuitions. We first compute unlabeled bracketing F1 scores5 for the learned structures and
parses given by Stanford parser on SNLI and Stanford Sentiment Treebank. In the SNLI dataset,
there are 10,000 pairs of test sentences (20,000 sentences in total), while the Stanford Sentiment
Treebank test set contains 1,821 test sentences. The F1 scores for the two datasets are 41.73 and
40.51 respectively. For comparisons, F1 scores of a right (left) branching tree are 19.94 (41.37) for
SNLI and 12.96 (38.56) for SST.

We also manually inspect the learned structures. We observe that in SNLI, the trees exhibit overall
left-branching structure, which explains why the F1 scores are closer to a left branching tree struc-
ture. Note that in our experiments on this corpus, the supervised syntax model does not perform
as well as the left-to-right model, which suggests why the latent syntax model tends to converge
towards the left-to-right model. We handpicked two examples of trees learned by our model and
show them in Figure 2. We can see that in some cases the model is able to discover concepts such as
noun phrases (e.g., a boy, his sleds) and simple verb phrases (e.g., wearing sunglasses, is frowning).
Of course, the model sometimes settles on structures that make little sense to humans. We show two
such examples in Figure 3, where the model chooses to compose playing frisbee in and outside a as
phrases.

Training Time. A major limitation of our proposed model is that it takes much longer to train
compared to models with predefined structures. We observe that our models only outperforms mod-
els with fixed structures after several training epochs; and on some datasets such as SNLI or IMDB,
an epoch could take a 5-7 hours (we use batch size 1 since the computation graph needs to be recon-
structed for every example at every iteration depending on the samples from the policy network).
This is also the main reason that we could only use smaller 100-dimensional Tree LSTM models in

5We use evalb toolkit from http://nlp.cs.nyu.edu/evalb/.

8

http://nlp.cs.nyu.edu/evalb/

Published as a conference paper at ICLR 2017

all our experiments. While for smaller datasets such as SICK the overall training time is approxi-
mately 6 hours, for SNLI or IMDB it takes 3-4 days for the model to reach convergence. In general,
the latent syntax model and semi-supervised syntax models take about two or three times longer to
converge compared to models with predefined structures.

5 CONCLUSION

We presented a reinforcement learning method to learn hierarchical structures of natural language
sentences. We demonstrated the benefit of learning task-specific composition order on four tasks:
sentiment analysis, semantic relatedness, natural language inference, and sentence generation. We
qualitatively and quantitatively analyzed the induced trees and showed that they both incorporate
some linguistically intuitive structures (e.g., noun phrases, simple verb phrases) and are different
than conventional English syntactic structures.

REFERENCES

Johannes Bjerva, Johan Bos, Rob van der Goot, and Malvina Nissim. The meaning factory: Formal
semantics for recognizing textual entailment and determining semantic similarity. In Proc. of
SemEval, 2014.

Phil Blunsom and Trevor Cohn. Unsupervised induction of tree substitution grammars for depen-
dency parsing. In Proc. of EMNLP, 2010.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large anno-
tated corpus for learning natural language inference. In Proc. of EMNLP, 2015.

Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D. Manning, and
Christopher Potts. A fast unified model for parsing and sentence understanding. In Proc. of ACL,
2016.

David Chiang. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228,
2007.

Kyunghyun Cho, Bart van Merriënboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint, 2014.

Noam Chomsky. Syntactic Structures. Mouton, 1957.

Stephen Clark, Bob Coecke, and Mehrnoosh Sadrzadeh. A compositional distributional model of
meaning. In Proc. of the Second Symposium on Quantum Interaction, 2008.

Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J. Smola, Jing Jiang, and Chong Wang.
Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). In Proc.
of KDD, 2014.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural network
grammars. In Proc. of NAACL, 2016.

Edward Grefenstette and Mehrnoosh Sadrzadeh. Experimental support for a categorical composi-
tional distributional model of meaning. In Proc. of EMNLP, 2011.

Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Sergio Jimenez, George Duenas, Julia Baquero, Alexander Gelbukh, Av Juan Dios Batiz, and
Av Mendizabal. UNAL-NLP: Combining soft cardinality features for semantic textual similarity,
relatedness and entailment. In Proc. of SemEval, 2014.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for
modelling sentences. In Prof. of ACL, 2014.

9

Published as a conference paper at ICLR 2017

Yoon Kim. Convolutional neural networks for sentence classification. In Proc. EMNLP, 2014.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. Skip-thought vectors. In Proc. of NIPS, 2015.

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proc. of ACL, 2003.

Dan Klein and Christopher D. Manning. Corpus-based induction of syntactic structure: Models of
dependency and constituency. In Proc. of ACL, 2004.

Alice Lai and Julia Hockenmaier. Illinois-lh: A denotational and distributional approach to seman-
tics. In Proc. of SemEval, 2014.

Mingbo Ma, Liang Huang, Bing Xiang, and Bowen Zhou. Dependency-based convolutional neural
networks for sentence embedding. In Proc. ACL, 2015.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano Menini, and Roberto
Zamparelli. Evaluation of compositional distributional semantic models on full sentences through
semantic relatedness and textual entailment. In Proc. of SemEval, 2014.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, and Zhi Jin. Natural language inference by
tree-based convolution and heuristic matching. In Proc. of ACL, 2016.

Tsendsuren Munkhdalai and Hong Yu. Neural semantic encoders. arXiv preprint, 2016a.

Tsendsuren Munkhdalai and Hong Yu. Neural tree indexers for text understanding. arXiv preprint,
2016b.

Jason Naradowsky, Sebastian Riedel, and David A. Smith. Improving nlp through marginalization
of hidden syntactic structure. In Proc. of EMNLP, 2012.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Proc. of EMNLP, 2014.

Steven Pinker. Language Learnability and Language Development. Harvard, 1984.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. Semantic composition-
ality through recursive matrix-vector spaces. In Proc. of EMNLP, 2012.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment tree-
bank. In Proc. of EMNLP, 2013.

Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D Manning, and Andrew Y Ng.
Grounded compositional semantics for finding and describing images with sentences. Trans-
actions of the Association for Computational Linguistics, 2:207–208, 2014.

Valentin I. Spitkovsky, Hiyan Alshawi, Angel X. Chang, and Daniel Jurafsky. Unsupervised depen-
dency parsing without gold part-of-speech tags. In Proc. of EMNLP, 2011.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
In Proc. NIPS, 2014.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations
from tree-structured long short-term memory networks. In Proc. of ACL, 2015.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-embeddings of images and
language. In Proc. of ICLR, 2016.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Luke S. Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Structured
classification with probabilistic categorial grammars. In Proc. of UAI, 2005.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. Long short-term memory over recursive struc-
tures. In Proc. of ICML, 2015.

10

	Introduction
	Model
	Tree LSTM
	Reinforcement Learning

	Experiments
	Baselines
	Tasks

	Discussion
	Conclusion

