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Abstract

We propose a new method to optimize public transport schedules by minimizing the
waiting time during transfers. Using ticket validation data to construct a realistic
scenario-based model of the waiting times, our goal is to design shifts of the
current schedules that reduce the overall expected waiting time. We propose a
parallel local search heuristic that exploits the structure of the problem to efficiently
explore a large number of possible schedules. Compared to previous approaches,
our algorithm should allow to both treat more transfers (bigger cities) and more
scenarios (ensuring a better generalization). We provide promising preliminary
results on transit data collected from Nancy, France.

1 Introduction

Public transport planning is a complex process that has a significant impact on the overall quality of
the service. A key step in this process is to design timetables that take into account the transportation
resources, the law and regulations and the specific constraints of the city while satisfying the demand
and ensuring a smooth experience for the passengers. A major weakness of public transit, as perceived
by passengers is the time lost during transfers. This latter can be significant: for example it represents
an average of 23% of travel time for multi-modal trips in the UK [4]. Studies have shown that this
transfer waiting time inherent to the system is poorly perceived by the passengers [1, 11].

In the Operations Research community, numerous works have been done in the domain of schedule
synchronization. The goal is to coordinate the timetables of the different lines in order to minimize
the waiting time at the connections (see e.g. the surveys [6, 10]). Most of the Operations Research
approaches focus on the theoretical timetables and give the same importance to all the connections
at all times of the day. If we observe the real usage of the system however, it is clear that some
connections are more important than others in terms of the frequency and volume of passengers. That
is why transportation authorities often incorporate their expert knowledge of the system, as well
as experience’s rules of thumbs, to design the timetables. However, with the constant growth and
sophistication of public transport, these approaches reach their limit.

A natural alternative is to use the data that is generated by the transportation system to precisely
quantify and model transfer waiting times while accounting for the stochasticity of the system.
Among the first data-driven approaches to schedule optimization, [9] used the queries to an on-line
trip planner to approximate the real usage of the system in order to build a two-stage stochastic
linear program (LP) (see e.g. [2]). The idea was to compute shifts of the schedules that minimize
the expected waiting times across a number of scenarios. A recent extension [8] proposed to use the
real transit data taking into account the fact that passengers optimize their transfers according to the
schedules. This led to a two-stage stochastic linear program with mixed-integer variables (MILP).

While these approaches give finer and more realistic models, they inevitably lead to very large-scale
problems. In [8], only a sub-network was solved using an open-source MILP solver. Tackling an
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entire city with different modes and a substantial number of scenarios would be out of reach of
standard optimization solvers.

In this paper, we propose a new formulation of the stochastic waiting time minimization problem as
a quadratic mixed-integer program (MIQP). Although theoretically less appealing than the MILP
models, this formulation allows us to exhibit an interesting separability property that we exploit to
design our optimization algorithm. The basic idea is that for a given modification of the schedules,
the evaluation of its impact on the waiting times can be done in parallel for the different scenarios.
Even within a scenario, we show that the evaluation of certain aggregated transfers is separable
and can be done in parallel. Moreover, we show that the optimization subproblem that needs to be
solved for the evaluation has a closed-form solution, making the evaluation much more efficient.
We take advantage of these properties to design an efficient parallel local search algorithm that
explores random modifications of the current schedules looking for ones that reduce the waiting
time. Although there are no optimality guarantees, we observe in our experiments that the algorithm
quickly leads to a significant reduction of the expected waiting time.

The remainder of the paper is organized as follows. Section 2 describes the stochastic program for the
waiting time optimization. Section 3 describes the separability property and the special structure of
the evaluation subproblem and presents the local search heuristic that we propose. Finally Section 4
reports preliminary results of applying our algorithm to the city of Nancy, France.

2 Minimization of the transfer waiting time

2.1 Definitions and assumptions

We assume working with schedule-based public transport system, whose main components are: a
set of nodes N , a node being a stop or an aggregation of stops that allow connections from one to
another within walking distance; a set of routesR, a route being a transit service serving a series of
stops and is composed of a collection of trips r = {p1, p2, . . . , pn}; a set of trips P := ∪r∈R r; a set
of connections C, a connection being a triplet (r, s, i) ∈ R×R×N such that the node i is visited
by both routes r and s. We denote by ∆rsi the average walking time to transfer from route r to route
s at node i.

In addition to these static characteristics of the system, transfer waiting times depend on the actual
transfers that passengers make. These vary from day to day and are unknown at the moment of
designing the schedules. Instead, we assume that we have access to historical transit data, from which
we can extract observations of the unknown parameters. We treat this latter as a random variable ξ.
We call the set of observations scenarios denoted by S . Then for each scenario ξ ∈ S , we denote by
Tpqi(ξ) the number of passengers transferring from trip p to trip q at node i and Tpsi(ξ) the number
of passengers transferring from trip p to route s at node i (Tpsi :=

∑
q∈s Tpqi(ξ)). And we denote

by tpi(ξ) the observed arrival (and departure) time of trip p at node i in the scenario ξ. Because in
the data that we use for our experiments there is only one (approximate) value for the arrival and
departure time of a vehicle at a stop, we simplify our presentation by using the notation tpi(ξ) for
both. It would be straightforward to adapt our model were the two values available.

Figure 1 summarizes the main notations: it represents a schematic view of a transfer between two trips
of two routes and the passengers and waiting time associated with the transfer (in a given scenario).

Route r

Route s

p p+1p-1

q q+1q-1

Waiting time

Time @ Stop i

Figure 1: Illustration of a transfer from trip p of route r to trip q of route s at stop i in a given scenario
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Similarly to previous works (e.g. [9, 8]) we assume that the underlying probability distributions of the
demand in transfers and arrival times remain valid when the schedules are modified. This assumption
seems reasonable when the schedules are shifted by only a few minutes. Another standard assumption
is that the capacities of the vehicles are always sufficient to embark all entering passengers, so we do
not consider capacity constraints.

2.2 Problem formulation

Our goal is to find a shift (or offset) of each transit trip such that the expected transfer waiting time is
minimized.

We describe the ingredients of the optimization problem; some of them are common with [8] but for
sake of completeness we quickly recall them as well.

Decision variables.

• Offsets. For every trip p ∈ P , we introduce the continuous variable that represents its offset:

xp ∈ R : offset of the schedule of trip p.

Note that these variables define a unique offset per trip, i.e. an offset will be applied to the
departure time form the first stop, and the travel times will be preserved.

• Transfer choice. For every pair of trips (p, q) ∈ r × s of a connection (r, s, i) ∈ C, we
define the binary variable that expresses whether passengers seeking to go from route r to s
at node i and optimizing their journey would use this transfer:

ypqi(ξ) =

{
1 if passengers would transfer from p to q at node i in scenario ξ,
0 otherwise.

Of course this passenger choice will depend on the schedule offsets.

Note that the x variable does not depend on the scenarios because we want a unique offset that will
work for all the scenarios.

Constraints. We present here the minimal set of constraints; additional operational constraints that
depend on the city are not described here.

• Offset bounds. Transportation operators may impose bounds on the time shifts:

lp ≤ xp ≤ up. (1)

• Transfer necessity. For a trip p ∈ r of a connection (r, s, i), such that there are passengers
transferring from p to s in a scenario ξ (i.e. Tpsi(ξ) > 0), these passengers would choose at
least one transfer from p to a trip of s. This can be formulated as:

Tpsi(ξ)(
∑
q∈s

ypqi(ξ)− 1) ≥ 0.

• Transfer feasibility. A transfer from p ∈ r to q ∈ s of a connection (r, s, i) is feasible if
there is enough time between the arrival time of p and the departure time of q at node i for
passengers to walk from the stop of p to the stop of q. Let us denote by wpqi this difference
for the shifted schedules:

wpqi(x, ξ) := (tqi(ξ) + xq)− (tpi(ξ) + xp)−∆rsi. (2)

Passengers can only choose feasible transfers hence the constraint: wpqi(x, ξ) ypqi(ξ) ≥ 0.
Note that this constraint and the previous one link the variable y to the offset x.

Objective function. The objective to minimize is the total expected waiting time. In our context,
since we only have access to a discrete set of observations of the random variable ξ, we approximate
the expectation by:

min
x

Eξ[W (x, ξ)] ≈
∑
ξ∈S

pξW (x, ξ) with W (x, ξ) =
∑

(r,s,i)∈C

∑
(p,q)∈r×s

Tpsi(ξ)wpqi(x, ξ) ypqi(ξ).

where pξ is the probability of scenario ξ.
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Problem formulation. The problem of minimizing transfer waiting times can then be written as:

W (x, ξ) :=



min
x,y

∑
ξ∈S

pξ
∑

(r,s,i)∈C

∑
(p,q)∈r×s

Tpsi(ξ)wpqi(x, ξ) ypqi(ξ)

s.t.

lp ≤ xp ≤ up ∀p ∈ P
Tpsi(ξ)(

∑
q∈s ypqi(ξ)− 1) ≥ 0 ∀p ∈ r, (r, s, i) ∈ C, ξ ∈ S

wpqi(x, ξ) ypqi(ξ) ≥ 0 ∀(p, q) ∈ r × s, (r, s, i) ∈ C, ξ ∈ S
ypqi(ξ) ∈ {0, 1} ∀(p, q) ∈ r × s, (r, s, i) ∈ C, ξ ∈ S

(3)

With w(x, ξ) given by (2). Contrarily to previous works [9, 8], this problem is a mixed-integer
quadratic program. Even by relaxing the integrality constraints, the problem is not convex, because of
the form of the objective and the third family of constraints. However the problem has an interesting
property that will help us to design efficient heuristics.

3 Decomposition strategy

3.1 Separability property

In problem (3), if we fix the offset variable x, the optimization subproblem for y becomes separable
with respect to the scenarios and the aggregated trip-to-route transfers. Indeed, when the schedules
are fixed, we only need to determine which are the optimal choices of transfers for the passengers and
deduce the associated waiting time. This can be done independently for each scenario and aggregated
transfer. To exploit this property, we consider a two-stage optimization process, where the problem
can be rewritten (equivalently) as:

min
l≤x≤u

W (x) with W (x) =
∑
ξ∈S

pξ
∑

(r,s,i)∈C

∑
p∈r

W ∗psi(x, ξ), (4)

where W ∗psi(x, ξ) is the optimal value of the subproblem:

W ∗psi(x, ξ) =


min
y

∑
q∈s Tpsi(ξ)wpqi(x, ξ) ypqi(ξ)

s.t.

Tpsi(ξ)(
∑
q∈s ypqi(ξ)− 1) ≥ 0

wpqi(x, ξ) ypqi(ξ) ≥ 0 ∀q ∈ s
ypqi(ξ) ∈ {0, 1} ∀q ∈ s.

(5)

3.2 Subproblem structure

We can compute a closed-form optimal solution of the subproblem (5):

y?pqi =

{
1 if q = argminq∈s{wpqi(x) : wpqi(x) ≥ 0},
0 otherwise.

Note that if the argmin is not a singleton, one can simply take any index of the set. Therefore, for a
fixed offset, we can compute in parallel the solutions of the subproblems for the different scenarios
and potentially for batches of aggregated transfers. That ensures that it will take a near-constant
time regardless of the number of transfers we want to optimize and the number of scenarios that we
consider.

3.3 Decomposition algorithm

As we have seen it easy to solve the subproblems for fixed schedules; now the question is how do
we fix the schedules’ offsets? Several options are possible. For example the generalized Benders
decomposition [5] is well-suited for this situation. However, since the functionW in (4) is not convex,
there are no optimality guarantees. A more simple heuristic can be obtained using local search
techniques (see e.g. [7, 3]). The idea is to discretize the interval [lp, up] (by minute for example) and
explore the discrete set of possible offsets, seeking schedules that reduce the waiting time. Since each
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Algorithm 1 Basic local search algorithm for the optimization of the schedules
1: Inputs: Number of iterations or time limit, original schedule, scenarios, perturbation proportion

. Initialization
2: The best schedule is the original schedule

. Main loop
3: for the specified number of iterations or until the time is up do
4: Randomly select a subset of trips to offset
5: Randomly select a perturbation an offset (within the adequate bounds)
6: Evaluate the impact of the offset
7: if the new schedule is feasible and the waiting time is reduced then
8: Update the best schedule
9: end if

10: end for

evaluation of an offset will be very fast, we can potentially explore a very large space (and so reach
very good solutions) quickly.

We refine algorithm 1 with a few features:

• Greedy iterations: we add greedy iterations periodically in the algorithm. In these, we go
through all the transfers for which the transfer time is not 0 (starting with the ones with the
largest waiting time or in a random order) and we compute the optimal offset of the involved
trips for this transfer. Of course, this optimal offset may increase the waiting time at other
transfers or even make them infeasible. This is why the greedy iterations are not always
successful. However we observed that especially at the beginning of the algorithm, greedy
iterations help to quickly decrease the waiting time.

• Smart bounds: to avoid exploring offsets that would lead to infeasible schedules, we refine
the original bounds (1) to take into account the current offset and the schedules of the
previous and next trips.

• Parallel inner iterations: starting from a given schedule, we explore a number of different
local search iterations in parallel, then we retrieve the best solution, and start again.

4 Preliminary results

In this section, we present preliminary results of applying our decomposition method to a transit
system and compare it to the state of the art.

Data. We used the transit data of the city of Nancy extracted from e-card validation collection. As
a first step, we only considered the two main lines (a tramway and a bus) which are the most regular
and loaded. To generate the scenarios, we assumed that for similar weekdays, the distribution of ξ is
i.i.d. Hence, we carefully selected 3 “standard” days and took them as equi-probable. For the sake of
comparison, we test problems composed of 2 and 3 scenarios (days).

Because there are some inherent errors in the recording of the data and in the reconstruction of the
trips, we performed some data cleaning and filtering to make the data coherent. For example, we
filtered the observed transfers to keep only the ones for which the difference between departure and
arrival time is larger than the walking time between the stops. Moreover, for each route, we only kept
the trips that are common to the three days. An alternative would be to consider the number of trips
of a route per day as stochastic and add that as an additional random parameter. We ended up with a
few hundreds transfers per day to optimize.

Results. We compare our results to the approach of [8]. In this latter, the “trip window” parameter
allows to give more options for passengers to optimize their transfers according to the schedule shifts.
The larger this parameter, the more realistic the model but also the larger the optimization problem
(in terms of number of variables and constraints). In our experiments, we fixed this parameter to 15
(i.e passengers optimize their transfers within 15 trips of their original transfer). For both approaches,
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Table 1: Comparison of the reduction in the expected waiting time for 2 scenarios (in %) between the
MILP approach [8] and our local search approach

Offset bound 2 min 3 min 4 min 5 min 6 min 7 min 8 min 9 min 10 min Avg
MILP 80 89 95 96 95 98 99 99 99 94.44
LS 70 80 85 87 89 87 90 90 89 85.22
Difference 10 9 10 9 6 11 9 9 10 9.22

Table 2: Comparison of the reduction in the expected waiting time for 3 scenarios (in %) between the
MILP approach [8] and our local search approach

Offset bound 2 min 3 min 4 min 5 min 6 min 7 min 8 min 9 min 10 min Avg
MILP 72 79 87 86 86 90 83 87 56 80.66
LS 62 69 76 80 78 84 83 81 83 77.33
Difference 10 10 11 6 8 6 0 6 -27 3.33

we choose a time limit of one hour. Although we may spend more computing time on this problem
in a real-life setting, we believe that one hour is a good limit here since we only consider a small
subnetwork and few scenarios.

Table 1 presents the results for the stochastic optimization over 2 scenarios and Table 2 over 3
scenarios. For different values of the offset bounds (see constraint (1)), we report the reduction in
percentage of the expected waiting time for the optimized schedules compared to the initial ones.
We take the solution provided by the MILP [8] as a reference, although the solver that we used
(Coin-OR CBC) did not converge within the time limit of one hour in all but one case. In the case of
non-convergence, we retrieve the best value found by the solver.

We can see that the local search heuristic leads to a large reduction of the expected waiting times
in all cases (at least 62% and up to 90%). We observe that the reduction is generally larger when
the offset bound is larger, which is expected since the model offers more flexibility. We also notice
that for the same offset bound, the reduction is smaller for three than for two scenarios, which is also
intuitive: the more scenarios, the more various transfers to optimize and the more chances of getting
“conflicting” ones.

When we compare the LS solution to the MILP one, we see that we loose in the worst case 10% of
reduction in the waiting time. Moreover, this loss in smaller for three than for two scenarios (Table 1
versus 2) . We even get 27% more reduction in one 3-scenarios instance. These observations are
encouraging because our ultimate goal is to handle much more scenarios to have a stochastic model
that is as general and realistic as possible.

5 Conclusion

In this paper we proposed a new MIQP model for the stochastic optimization of the transfer waiting
times in a public transport system. We highlighted a separability property of the model that allowed us
to design an efficient two-stage optimization strategy. We proposed a simple and easy-to-implement
parallel local search heuristic. We presented some experiments on a subnetwork of the city of Nancy
(France) where our approach gave a considerable reduction of the expected waiting times. Compared
to previous approaches to the stochastic optimization of the schedules, our method does not rely on
generic optimization solvers and is parallel by construction. This should allow to handle much larger
problems, which is the goal of our future work.
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