
FaithfulPersona: Balancing Faithfulness and Personalization in Code
Explanations through Self-Critique

Zhuang Luo1∗, Yichuan Li1∗, Zexing Xu2, Kyumin Lee1, S. Rasoul Etesami2
1Worcester Polytechnic Institute, 2University of Illinois Urbana-Champaign
{zluo3,yli29,kmlee}@wpi.edu, {zexingx2,etesami1}@illinois.edu

Abstract
Code explanations are crucial in real-world
life, from educating students to aligning tech-
nical projects with business goals. However,
existing approaches face challenges balancing
faithfulness to the original code and personal-
ization for diverse user needs. This paper ad-
dresses these challenges by introducing a novel
benchmark and method for generating faithful
personalized code explanations. Our bench-
mark, FaithfulPersonaCodeX, incorporates
code samples and user profiles, employing vari-
ous evaluation metrics to evaluate both faithful-
ness and personalization. We propose DISCO, a
new method that uses a self-critique mechanism
and two-stage optimization to balance faithful-
ness and personalization in code explanations,
addressing the limitations of current large lan-
guage model approaches. Our proposed model,
DISCO, achieves a notable 3.7% improvement
in Pass@5 compared to the strong baseline
method, Self-Consistency, while maintaining
high personalization with a 61.08% win rate
in the LLM-as-a-Judge evaluation, effectively
balancing faithfulness and user-specific needs
in code explanations. Our code and data are
available at https://github.com/garyluozhuang/
FaithfulPersona.

1 Introduction
Code explanations are crucial in the digital land-
scape, serving as essential learning tools for tech
professionals and aligning technical projects with
business goals for stakeholders (Feng et al., 2020;
Husain et al., 2019; Guo et al., 2022). Beyond
industry professionals, code explanations are vital
in educating students, helping them gain knowledge
and improve understanding of complex systems.
These explanations also enhance the transparency
of software systems, making them more accessible
and comprehensible to a broader audience.

Two primary objectives emerge in code explana-
tion: faithfulness and personalization. Faithfulness

*The first two authors contributed equally to this work.

ensures that the explanation accurately represents
the code’s functionality and behavior (Schwettmann
et al., 2024; Li et al., 2023b), while personalization
tailors the explanation to the user’s background,
expertise, and specific needs (Chen et al., 2023a).
However, two significant challenges impede the
improvement of faithful and personalized code ex-
planations: the absence of suitable benchmarks to
evaluate the quality of different code explanation ap-
proaches and the poor performance of existing code
explanation methods in handling both faithfulness
and personalization.

Regarding the first challenge, most code expla-
nation benchmarks (Yan et al., 2023; Bhattacharya
et al., 2023; Tasnim Preoty, 2024) treat code com-
ments or summaries as ground truth. However,
this approach is inadequate for comprehensive code
explanation (Jiang et al., 2024). Code comments or
summaries often focus on specific implementation
details or function purposes, failing to capture the
broader context, algorithmic choices, or potential al-
ternative approaches. Moreover, these benchmarks
typically neglect personalized requests for code ex-
planations, which are crucial for addressing diverse
user needs. Some benchmarks (Sarsa et al., 2022;
Oli et al., 2023) highly rely on human annotations
through questionnaires, which, although they pro-
vide ground evaluation, is missing the extensibility
to testing new code explanation methods.

The second challenge arises from the limitations
of existing code explanation methods, including
those based on recent advancements in large lan-
guage models (LLMs) (Brown, 2020; Lewkowycz
et al., 2022). While LLMs have shown promise
in various language tasks, they still fail to gener-
ate faithful and personalized code explanations (Li
et al., 2023b; Jiang et al., 2024). This dual ob-
jective presents a significant challenge: Increasing
personalization often risks deviating from the code’s
functionality. At the same time, strict adherence to
the code may result in too technical explanations for

https://github.com/garyluozhuang/FaithfulPersona
https://github.com/garyluozhuang/FaithfulPersona

some users. Current LLM-based methods (Li et al.,
2023b), which often rely on single-turn approaches,
are insufficient for addressing this complex balance,
especially for intricate programming problems that
require iterative analysis and refinement.

To address these challenges, we propose a com-
prehensive solution that encompasses both a novel
benchmark and an innovative method for faithful
and personalized code explanation. Firstly, we in-
troduce a new faithful and personalized code expla-
nation benchmark named FaithfulPersonaCodeX.
That includes code samples, problem descriptions,
test cases, and user profiles. This benchmark is
designed to evaluate both the faithfulness and per-
sonalization aspects of code explanations. We
employ a multifaceted evaluation approach, devel-
oping two new metrics: This reference-free ap-
proach offers several advantages over traditional
reference-based metrics: it eliminates the need for
costly and time-consuming human-written ground
truth explanations, provides a more objective and
scalable evaluation method, and allows for dynamic
evaluation of explanations based on varying user
profiles and preferences.

Building upon this benchmark, we propose
DISCO, Dual-objective Iterative Self-Critiquing Op-
timization, a novel personalized code explanation
method. Our approach leverages and extends recent
advancements in iterative self-critiquing techniques
(Gou et al., 2023; Shinn et al., 2024; Welleck et al.,
2022). DISCO incorporates two key innovations: A
customized self-critique mechanism that generates
feedback through code regeneration, ensuring the
faithfulness of explanations to the original imple-
mentation. A two-stage optimization process that
balances the competing requirements of person-
alization and faithfulness. Experimental results
demonstrate DISCO’s effectiveness over baselines.
In summary, our work has the following contribu-
tions:
• Introduced FaithfulPersonaCodeX, a novel

benchmark for evaluating faithful and person-
alized code explanations.

• Proposed DISCO (Dual-objective Iterative Self-
Critiquing Optimization), an innovative method
for generating faithful and personalized code
explanations.

• DISCO significantly and consistently outperforms
many LLM-based code explanation methods
and commercial code explanation tools on
FaithfulPersonaCodeX.

2 Background and Related Work

2.1 Code Explanation Generation
LLMs like GPT-4 (Achiam et al., 2023) and Llama-
3 (Dubey et al., 2024) excel in language generation
(Yang et al., 2024) and reasoning (Zhang et al.,
2024), making them ideal for the code explanation
task crucial in software engineering (Rai et al.,
2022) and education (Sarsa et al., 2022). Recent
studies (Sarsa et al., 2022; Oli et al., 2023; Bhat-
tacharya et al., 2023; MacNeil et al., 2023; Li
et al., 2023b; Nam et al., 2024; Yan et al., 2024b,a;
Tasnim Preoty, 2024; Richards and Wessel, 2024;
Luo et al., 2024; Jiang et al., 2024) demonstrate
LLMs’ proficiency in code explanation through
few-shot, zero-shot capabilities, and task-specific
fine-tuning. (Oli et al., 2023) examines LLMs’ code
explanation generation, emphasizing variations due
to factors like few-shot prompting and evaluating
the readability and accuracy of outputs. (Jiang et al.,
2024) proposes a framework combining supervised
fine-tuning and reinforcement learning to enhance
LLMs’ self-debugging and explanation abilities.
Addressing the lack of ground truths, (Li et al.,
2023b) introduces a method for automatically gen-
erating explanations for <problem, solution> pairs
in competitive programming, evaluating their role
in assisting LLMs in problem-solving. However,
these approaches often rely on single-turn genera-
tion without self-correction or iterative refinement
and fail to address personalized code explanations,
which are crucial (Ullah et al., 2018).

2.2 Self-Critique of LLMs
LLMs have demonstrated strong performance in var-
ious NLP tasks (Qin et al., 2023a; Guo et al., 2023;
Suzgun et al., 2022), but they still suffer from issues
like hallucination (Zhang et al., 2023c), unfaithful
reasoning (Lyu et al., 2023), and toxicity (Shaikh
et al., 2023). One promising method to address
these challenges is self-correction through feed-
back, where the LLM adjusts its own output based
on feedback (Pan et al., 2023b). Self-correction
can be applied at different stages of the process.
During training, feedback is used to optimize the
model’s parameters (Huang et al., 2022; Zelikman
et al., 2022). During generation, feedback guides
the LLM to adjust its output as it is being produced
(Yang et al., 2022; Lightman et al., 2023). How-
ever, both approaches can be resource-intensive or
challenging to implement reliably. In this paper,
we focus on post-hoc self-correction (Madaan et al.,

2024; Gou et al., 2023; Chen et al., 2023b; Pan
et al., 2023a; Zhang et al., 2023a; Jiang et al., 2023;
Zhang et al., 2023b), which refines the output after it
is generated, without modifying model parameters.
This approach allows for diverse feedback from
self-feedback (generated by the LLM itself) or ex-
ternal feedback (trained models, code interpreters,
or search engines). While previous methods have
been effective, none have combined feedback from
both external tools and LLMs nor addressed two
tasks simultaneously in an iterative framework.

2.3 Role-Playing Language Agents

Recent advancements in LLMs have significantly
boosted the rise of role-playing language agents,
i.e., specialized AI systems designed to simulate as-
signed personas (Chen et al., 2024). The methodolo-
gies for constructing role-playing language agents
generally involve either parametric training (Wang
et al., 2023; Shao et al., 2023; Qin et al., 2023b) or
non-parametric prompting (Li et al., 2023a; Zhou
et al., 2023; Gupta et al., 2023; Ma et al., 2024;
Chen et al., 2024), with both approaches poten-
tially contributing to the development process. In
parametric training, role-playing language agents
are pre-trained using extensive raw text (Xu et al.,
2023; Gupta et al., 2023; Wang et al., 2023; Shao
et al., 2023). Conversely, non-parametric prompt-
ing involves presenting role-playing instructions
and examples (Zhou et al., 2023; Li et al., 2023a;
Shao et al., 2023; Deshpande et al., 2023). Cur-
rently, there is no established practice of employing
self-correction mechanisms to refine personalized
outputs produced by these agents.

3 FaithfulPersonaCodeX: Faithful and
Personalized Code Explanation
Benchmark

Our benchmark, FaithfulPersonaCodeX, focuses
on generating code explanations that are both faith-
ful to the original code and personalized to the
user’s background. This dual emphasis addresses
limitations in existing benchmarks (Tasnim Preoty,
2024; Bhattacharya et al., 2023; Sarsa et al., 2022;
Oli et al., 2023; Yan et al., 2023), which typically
focus on generic explanations without considering
user-specific contexts. To achieve this goal, we have
carefully designed our dataset collection process
and evaluation metrics. In the following subsec-
tions, we detail our approach to task description,
data collection, and evaluation design and compare

1 a=[*map(int,input().split())]
2 h=sum(1 for v in a if v<0)
3 b=[abs(a[i]) * (-1 if i<h else 1) for i
in range(len(a))]
4 print('yes' if sorted(b)==b else 'no')

Problem Statement: Sign Swap
Given an array of non-zero integers, decide can be sorted by
repeatedly swapping the signs of two elements with opposite
signs. A sorted array has elements in non-decreasing order.

Q1: What set of tiles of length N can be used to generate the
most amount of Scrabble-valid words?
<python><algorithm><scrabble>
Q2: Given a list of tuples, check to see if it's possible to
construct a word in which the second value in the tuple is not
consecutively repeated <python><algorithm><tuples>

Code

Code
Context

User
Profile

Figure 1: A code sample, code context, as well as a user
profile represented by the user question history. The
content is simplified.

our benchmark with existing works.

3.1 Task Description
Our benchmark focuses on generating explanations
for code problem solutions that are both faithful
to the original code and personalized to the user’s
background. Given the code s, code context p, and
user profiles h, the task is to produce an explanation
e that accurately reflects the code’s logic while
tailored to the user’s preferences and knowledge
level. This process can be modeled as:

e ∼ ExplainModel(·|p, s, h). (1)

An input example is shown in Fig. 1.

3.2 Comparison with Existing Code
Explanation Benchmarks

Existing code explanation benchmarks face signifi-
cant limitations in evaluating faithful and person-
alized explanations. As shown in Tab. 1, many
current benchmarks (e.g., Tasnim Preoty (2024),
Bhattacharya et al. (2023), Yan et al. (2023)) rely
on reference-based metrics like BLEU, BERTScore,
and ROUGE-L, treating code comments or sum-
maries as ground truth. However, they often over-
look faithfulness and personalization, focusing on
surface-level similarity rather than accurately re-
flecting code logic and user needs. Some bench-
marks (e.g., Sarsa et al. (2022), Oli et al. (2023))
use human evaluation, which provides ground truth
but lacks scalability and extensibility for testing
new methods. FaithfulPersonaCodeX addresses
these limitations by providing a comprehensive
dataset of 169 code samples with problem descrip-
tions, test cases, and 10 distinct user profiles. It
introduces novel evaluation metrics: Pass@k for

Dataset Codes Users Faith. Metric Persona. Metric

(Tasnim Preoty, 2024) 50 - BLEU; BERTScore -
(Bhattacharya et al., 2023) 100 - BLEU; BERTScore -

(Sarsa et al., 2022) 4 - Human Eval. -
(Oli et al., 2023) 5 - Human Eval. -
(Yan et al., 2023) 4838 - BERTScore; BLEU; Rouge-L -

FaithfulPersonaCodeX 169 10 Pass@k

ROUGE-L;
Word Overlap;

LLM-as-a-Judge

Table 1: Faithful and personalized code explanation
benchmark comparison.

faithfulness, and ROUGE-L, Word Overlap, and
LLM-as-a-Judge for personalization. This approach
eliminates the need for human-written ground truth,
offers scalable evaluation, and allows dynamic as-
sessment based on user profiles. By simultane-
ously evaluating faithfulness and personalization,
FaithfulPersonaCodeX provides a more compre-
hensive benchmark for assessing code explanations,
pushing the field towards more faithful and person-
alized explanations that cater to diverse user needs
in various contexts.

3.3 Dataset Collection
The benchmark comprises two key components:
code solutions and user profiles, each crucial to our
evaluation framework.

Code Solutions. We collected diverse Python so-
lutions from the CodeContests dataset (Li et al.,
2022), focusing on validation (67 problems) and
test (102 problems) sets to prevent data leakage.
We chose this dataset because it comes from online
coding competitions where the problems exhibit
complex logic and detailed problem descriptions.
This complexity makes the benchmark more rigor-
ous in assessing the efficacy of explanation methods.
Additionally, this dataset has been utilized in other
works (Li et al., 2022, 2023b) for generating code
explanations and for various code-related tasks,
demonstrating its versatility and relevance to this
domain. For each problem, we selected the shortest
solution to accommodate LLM context limitations.
Each solution includes public and private test cases
for verification and evaluation and the correspond-
ing problem description for context. Therefore, we
have 169 <problem, solution> pairs.

User Profiles. To create diverse user profiles,
we utilized the Stack Overflow question history
dataset*, which offers richer insights into users’
programming knowledge and interests compared to
traditional demographic data. While demographic
data can provide some context, a user’s history

*https://data.stackexchange.com/

User1 User2 User3

Figure 2: Three user samples of different profiles. User
1 focuses on solving algorithms for programming games,
such as dynamic programming; User 2 is interested in
image processing; and User 3 focuses on data analysis.

of programming questions more directly reflects
their technical knowledge, areas of interest, and
skill levels. Moreover, the question data is readily
available and provides a rich, nuanced picture of
a user’s evolving expertise and challenges in pro-
gramming. We selected 10 users who had asked at
least 5 questions among the top 1000 most-viewed
questions, ensuring a range of expertise levels and
interests. The wordcloud of sampled user profiles
are shown in Fig. 2.

3.4 Evaluation Design

Our evaluation metrics address two critical aspects:
faithfulness and personalization. These metrics are
designed to evaluate the quality and relevance of
generated code explanations comprehensively.

Faithfulness Evaluation. We propose a novel
approach using LLMs to reconstruct code based
solely on the generated explanation. The recon-
structed code is evaluated using the Pass@k metric
on private test cases, effectively evaluating whether
the explanation conveys accurate functional infor-
mation. Pass@k (Qiu et al., 2024; Li et al., 2023b;
Ridnik et al., 2024) measures the probability that
at least one of k generated code samples passes all
test cases, providing a robust measure of the expla-
nation’s ability to capture the code’s functionality.

Personalization Evaluation. We employ a multi-
faceted approach to capture various aspects of per-
sonalization: ROUGE-L, Word Overlap and LLM-
as-a-Judge (Lin et al., 2023; Lin, 2004; Zheng
et al., 2023). Both ROUGE-L, Word Overlap cap-
ture the overlap between the generated explanation
and a user’s questions on Stack Overflow, as well
as the answers the user has selected as most helpful.
LLM-as-a-Judge is to pairwisely compare the code
explanation with our proposed method: DISCO*.

*The prompt for LLM-as-a-Judge is in Appendix C

https://data.stackexchange.com/

Stage 2: Personalization Refinement

Stage 1: Faithfulness Refinement

Problem Understanding

Executing and Analyzing

Problem
Description

Code

Concatenated
as Output

Faithful
Explanation

Profile Extraction

Personalized Explanation
Generation

Role-Playing and Rating

User Profile

Personalized
Explanation

Code

Problem
Description

Code
Intepreter

Role-Playing
LLMs

Faithful Explanation
Generation

Iterative Explanation Refinement

 e.g. Code Snippet:
...
 while len(set(str(n))) > k:

 if n%10==0:
 n = n//10

 else:
 n += 1

 ...

e.g. Problem Description:
1560_F1. Nearest Beautiful
Number (easy version) ...

e.g. Faithful Explanation:
..., calculates the number of trailing digits needed

to match the original length by appending the
minimum digit from the k-beautiful number, ...

Context

Code

No

Yes

If Correct? e.g. Failure and Analysis:
The issue with the implemented
code lies in how it handles the

trailing digits ...
<incorrect_output_list>...
</incorrect_output_list>

Context
Enrichment

Explanation
Generation Verification

Analysis

External
Feedback

Code
Interpreter

Role-Playing
LLMs

Input

Output

Figure 3: Illustration of DISCO. It generates code explanations through two iterative refinements: a faithfulness
refinement to ensure technical accuracy, and a personalization refinement to tailor the explanation to the user’s profile.
The refinements operate independently to optimize their respective objectives and navigate the potential trade-off
between personalization and faithfulness. The final explanation is the concatenation of faithful and personalized
explanations.

4 Method

We present DISCO*, a novel approach for generating
high-quality, faithful, and personalized code expla-
nations. The architecture of DISCO is illustrated in
Fig. 3. To balance the potentially conflicting goals
of faithfulness and personalization, DISCO employs
a sequential approach, addressing each objective in
turn. The key idea in this strategy is to break down
a complex problem into a series of simpler sub-
problems and then solve them in sequence (Zhou
et al., 2022). Both faithfulness and personalization
refinement are based on an iterative explanation
refinement process that leverages the LLMs’ capa-
bility to get better results through self-correction
based on external feedback.

4.1 Iterative Explanation Refinement
Inspired by the LLMs’ ability to refine complex
tasks iteratively (Shinn et al., 2024; Gou et al., 2023)
and incorporate external feedback, we propose a
multi-step process for generating high-quality code
explanations as detailed in the right part of Fig. 3.

This process begins with Context Enrichment,
where we augment the <problem, solution> pair
with crucial contextual information such as the
problem goal and the user knowledge domain ex-
tracted from the user profile. This enriched context
forms the foundation for the subsequent explanation
generation phase. In the Explanation Generation
stage, we employ Chain-of-Thought (CoT) (Wei
et al., 2022), providing the LLM with the <problem,
solution> pair, enriched context, and any feedback

*All the prompt samples can be found in Appendix D.1

from previous iterations. The LLM generates a
code explanation and refines iteratively. To ensure
continuously improving the quality of the generated
explanation, we introduce novel feedback mecha-
nisms in Verification and Analysis, which involves
the LLM interacting with external tools, such as
Python executors or other role-play LLMs, to eval-
uate the explanation against specific criteria for
faithfulness and personalization. Our method iden-
tifies errors and provides revision suggestions for
the explanation that does not meet the required
standards. These insights feed into the iterative
improvement phase, where the explanation under-
goes continuous refinement. This cyclical process
continues until the explanation satisfies predefined
quality criteria for both faithfulness to the original
code and personalization to the user’s profile.

4.2 Faithful and Personalized Explanation
Refinement

Our approach employs two sequential iterative re-
finements for faithfulness and personalization.

Faithful Refinement. This ensures that the gen-
erated explanation accurately represents the code’s
functionality. It begins with context enrichment,
extracting problem goals, inputs, outputs, and con-
ditions. The verification stage leverages the LLMs’
code generation capability (Li et al., 2022; Ridnik
et al., 2024; Ni et al., 2023) to test if the code gener-
ated from the explanation passes public test cases.
Interestingly, we found that LLMs excel more in
identifying code-related issues than textual prob-
lems. Consequently, our error analysis focuses on

the generated verification code, using these insights
to refine the explanation. This iterative process
ensures high fidelity to the original code. It should
be noted that during the iterative refinement, we
use public test cases, while for evaluation, we use
private test cases. There is no data leakage between
iteration and evaluation.

Personalization Refinement. This tailors the gen-
erated explanation to the individual user profile
iteratively. Unlike existing role-playing LLM stud-
ies (Chen et al., 2024; Wang et al., 2023; Shao
et al., 2023; Li et al., 2023a) that focus on demo-
graphic tags and conversation records, we extract
user profiles from their question histories on Stack
Overflow. This novel approach considers aspects
such as programming languages, skill levels, and
knowledge domains, allowing for more accurate per-
sona representation. The verification stage employs
a role-playing judging LLM to evaluate the expla-
nation’s alignment with the user’s profile, guiding
subsequent refinements.

Final Output. We prioritize the faithfulness re-
finement before the personalization refinement, en-
suring that a technically accurate base explanation
is then tailored to an individual user profile. This
sequential approach aligns with natural cognitive
processes and can adapt to scenarios where per-
sonal information is unavailable. The final output
combines the faithful and personalized explana-
tions, producing results that are both technically
accurate and accessible to users with varying levels
of programming expertise.

5 Experiments

5.1 Experimental Setup
Baseline Methods. To evaluate the faithfulness
and personalization ability of DISCO, we employ
two code explanation methods based on LLMs.
S2G (Li et al., 2023b): The LLM is required to
think step-by-step to generate explanations pro-
gressively, with detailed requirements provided for
each step. Self-Consistency (Wang et al., 2022):
The LLM generates n explanations and then ranks
them based on predefined criteria, simulating a
decision-making process to select the most suit-
able explanation. Ridnik et al. (2024) suggests
that LLMs are more effective at ranking multiple
options than making a single choice.

To further validate the effectiveness of our ap-
proach, we compare it with two commercial tools

Valid Test

Pass@1 Pass@5 Pass@1 Pass@5

ZZZ Code AI - - 16.67% 17.65%
AI Code Mentor - - 29.41% 29.41%

G
PT

-3
.5 S2G 25.11% 29.29% 21.57% 25.49%

Self-Consistency 26.08% 30.34% 22.60% 26.45%
DISCO 30.11% 34.89% 26.52% 30.15%

Cl
au

de
3 S2G - - 22.15% 25.77%

Self-Consistency - - 22.89% 26.61%
DISCO - - 26.81% 30.53%

Table 2: The table shows the Pass@k results for various
methods in the validation and test sets. The values are
presented as average percentages.

designed for code explanation. ZZZ Code AI*:
An online AI-powered programming code explain
tool. AI Code Mentor*: An explainer tool based
on AI for optimizing, refactoring, and reviewing
code. It is also worth mentioning that, due to cost
considerations, we only evaluated these tools on
the test dataset. Currently, commercial tools do
not have the capability to generate personalized
explanations. For instance, ZZZ Code AI only
offers code explanations with different tones (e.g.,
professional, friendly, academic, etc.), but it does
not allow for personalized adaptation based on in-
dividual user context. As a result, we are unable to
directly compare the personalization effectiveness
of our approach with these tools under the same
settings. Instead, we carefully compared our per-
formance against the existing commercial tools in
faithful explanation generation.

Implementation Details. We employed GPT-3.5-
turbo (OpenAI, 2023) and Claude 3 Sonnet (An-
thropic, 2024). To avoid generation uncertainty of
LLMs (Lin et al., 2023), we sample 4 times for each
problem and each chosen method. To simplify the
naming, in the following content, we will refer to
GPT-3.5 instead of GPT-3.5-turbo, and Claude 3
instead of Claude 3 Sonnet. It is worth mentioning
that due to the cost of API calls, we only conducted
experiments with Claude 3 on the test dataset.

5.2 Automatic Evaluation
Faithfulness. As mentioned in § 3.4, faithfulness
is evaluated by Pass@k (k = {1, 5}), which mea-
sures the success rate of the generated explanations
in solving coding problems. As demonstrated by
Tab. 2, our approach consistently achieves the high-

*zzzcode.ai/code-explain
*code-mentor.ai

zzzcode.ai/code-explain
code-mentor.ai

est performance across both the validation and test
datasets, surpassing even specialized online prod-
ucts like ZZZ Code AI and AI Code Mentor. These
improvements demonstrate the effectiveness of our
iterative refinement process, which yields more re-
liable and effective code explanations. Specifically,
when using GPT-3.5, our method outperforms Self-
Consistency, a strong baseline, with a 3.7% absolute
gain (13.99% relative) in Pass@5 on the test dataset.
Additionally, it achieves a 0.74% (2.51% relative)
improvement over AI Code Mentor, a paid online
code explanation tool. Similarly, Claude 3 shows
comparable performance.

Personalization. As discussed in § 3.4, personal-
ization is evaluated using ROUGE-L, Word Overlap,
and LLM-as-a-Judge, with a focus on the alignment
of generated explanations with individual user pro-
files. 1). As shown in Tab. 3, our method consis-
tently outperforms others in generating explanations
that closely align with users’ profiles, as measured
by ROUGE-L and Word Overlap, regardless of the
underlying LLM. Specifically, when using GPT-3.5,
our approach achieves a significant absolute gain
of 0.0131 (56.96% relative) in ROUGE-L and an
absolute gain of 2.45% (50.00% relative) in Word
Overlap compared to the Self-Consistency method.
Even greater improvements are seen with Claude
3, where ROUGE-L increases by 0.0264 (60% rela-
tive) and Word Overlap improves by 6.84% (61.62%
relative). 2). As illustrated in Fig. 4, our method
demonstrates significant superiority over compet-
ing approaches in LLM-as-a-Judge. Notably, with
GPT-3.5, our method achieves a win rate of 61.08%
on the test dataset against the robust baseline, Self-
Consistency, with only a slight loss of approxi-
mately 3%. Even better results are observed with
Claude 3, further reinforcing the effectiveness of
our approach. Similar trends can be seen in the
validation set, as detailed in Appendix B.1.

The results demonstrate that DISCO is superior in
both faithfulness and personalization. The iterative
refinement process not only improves the accuracy
and effectiveness of the generated explanations
but also ensures they are tailored to the individual
user’s needs. This method’s dual focus on quality
and personalization makes it robust to generating
faithful and personalized code explanations.

5.3 Effects of Iterative Refinement
To evaluate the model’s convergence speed and in-
cremental improvements in generating high-quality

Model Set Method ROUGE-L Word Overlap

G
PT

-3
.5

Validation

S2G 0.0230 4.99%
Self-Consistency 0.0232 5.04%

DISCO 0.0363 7.44%

Test

S2G 0.0227 4.86%
Self-Consistency 0.0230 4.90%

DISCO 0.0361 7.35%

Cl
au

de
3

Test
S2G 0.0439 11.08%

Self-Consistency 0.0440 11.10%
DISCO 0.0704 17.94%

Table 3: Comparison of ROUGE-L and Word Overlap
for different methods in the validation and test sets.
ROUGE-L is reported with mean values. Word Overlap
are reported as average percentages.

0% 20% 40% 60% 80% 100%
WinRate (%)

GPT-3.5

vs.SC

vs.S2G

56.00%

61.08%

0% 20% 40% 60% 80% 100%
WinRate (%)

Claude 3

88.89%

89.22%
DISCO Wins Tie DISCO Loses

Figure 4: Results of LLM-as-a-Judge for DISCO against
each baseline in the test set. SC is short for Self-
Consistency.

explanations, we perform experiments to evaluate
the effectiveness of our method by analyzing the
number of iterative refinements with GPT-3.5. As
illustrated in Fig. 5, increasing the number of itera-
tive refinements from 1 to 5 enhances performance
at both Pass@1 and Pass@5, demonstrating that
additional iterations facilitate refinement and error
correction in the explanations generating process
using our proposed method. Specifically, perfor-
mance at Pass@5 in the test dataset has improved
from 25.49% to 30.27% from the 1st iteration to
the 5th iteration. However, we found that the per-
formance improvements become less significant
between iterations 4 and 5. Therefore, considering
the trade-off between cost and effectiveness, we
typically select 4 iterations.

As shown in Fig. 5, there are performance dis-
crepancies between the validation and test set re-
sults. These discrepancies may arise because some
LLMs could have encountered parts of the valida-
tion dataset (Ridnik et al., 2024), leading to better
performance on those examples. Moreover, our ex-
planation pipeline was meticulously designed based
on the validation dataset, with a focus on optimizing
performance, which may contribute to the enhanced
performance specifically on the validation set.

5.4 Human Evaluation
We conduct human evaluation to ensure that the
generated explanations are not only accurate but

1 2 3 4 5
Iteration Count

22

24

26

28

30

32
Pa

ss
@

1
(%

)

21.57%

23.82%
25.15%

26.52%26.32%
25.11%

27.43%

29.51%
30.11%

31.64%

Test Pass@1
Valid Pass@1

1 2 3 4 5
Iteration Count

26

28

30

32

34

36

Pa
ss

@
5

(%
)

25.49%

28.92%
29.61%30.15%30.27%

29.29%

32.28%

33.92%
34.89%

35.78%

Test Pass@5
Valid Pass@5

Figure 5: Hyperparameter analysis of the number of
iterative refinement steps.

Usefulness Clearness Understanding
0

1

2

3

4

5

Sc
or

e

S2G SC DISCO

Figure 6: Human evaluation results. SC is short for
Self-Consistency.

also meaningful and comprehensible to end users.
Specifically, we randomly sample 20 code explana-
tion problems from the test dataset, accompanied
by the corresponding <problem, code> pairs. We
engage the services of 4 professional software de-
velopment engineers, who are considered qualified
for this task. Evaluators evaluate explanations gen-
erated by GPT 3.5 on Usefulness, Clearness, and
Understanding, assigning Likert scores from 1 (very
poor) to 5 (excellent) (Li et al., 2023b)*.

The results of our human evaluation demonstrate
the efficacy of our proposed method, as illustrated in
Fig. 6. Our findings reveal that DISCO consistently
outperforms the other two approaches across all
three aspects. This indicates that our method 1).
enhances the practical utility of explanations for
solving code problems, 2). effectively clarifies
explanations, making them less ambiguous and
easier to comprehend, and 3). helps in conveying
the core concepts more accurately.

5.5 Computational Cost Analysis

We conducted a detailed analysis of the computa-
tional cost associated with generating code expla-
nations using our method (DISCO) compared to a
strong baseline, Self-Consistency.

As shown in Tab. 4, our proposed method DISCO
incurs a slight computational cost increase, which

*Detailed questions can be found in Appendix A

Method Avg. Input Avg. Output Avg. Cost

Self-Consistency 5587.0 1513.2 $0.02
DISCO 14262.5 2608.5 $0.05

Table 4: Computational cost analysis of our DISCO and
Self-Consistency. The first two columns represent the
average token count for input and output, respectively.

is acceptable given the significant improvements
in explanation quality, such as a 3.7% Pass@5 in-
crease over the baseline Self-Consistency, and a
61.08% win rate in the LLM-as-a-Judge evaluation.
Importantly, DISCO requires no training, making it
easy to deploy across various scenarios. To improve
efficiency, we implemented an early stopping mech-
anism, with most cases converging in 1-2 iterations,
minimizing additional costs.

We also observe the token count for each input
and output step, and the detailed results can be seen
in Appendix B.2.

5.6 Individual User Analysis

We aim to understand how personalized explana-
tions, tailored to the user’s background, expertise,
and previous interactions, can improve their un-
derstanding of the code. As the result showed in
Tab. 5, we have observed that different users exhibit
varying levels of performance in metrics such as
win rate, ROUGE-L, and word overlap.

User ID Win Rate ROUGE-L Word Overlap

1 71.64% 0.0916 0.0623
2 74.63% 0.0840 0.0495
3 58.21% 0.0563 0.0296
4 47.76% 0.0667 0.0276
5 62.69% 0.0581 0.0295

Table 5: Personalization metrics for different users in the
test set, including LLM-as-a-Judge (Win Rate) against
Self-Consistency, ROUGE-L, and Word Overlap.

The varying effectiveness of generating person-
alized explanations can be explained by users’ past
question focuses. For example, User 2’s previous
questions on Stack Overflow were mostly related
to algorithm optimization, highly similar to code
contest problems. Our method can effectively link
code problems to this user’s background, leveraging
relevant knowledge from past questions for better
explanations. On the other hand, User 4’s previous
questions were mainly about the usage methods
of some machine learning libraries. These have
relatively little connection with the problems in
the code contest. Therefore, our method has more

difficulties in correlating the code problems with
the user’s background knowledge.

5.7 Case Study

Faithfulness

Initial
Output

Step-by-Step Description: 5. Calculate the number of missing digits at the end.
High-Level Explanation: The solution involves iterating over test cases. ... It
ensures that the resulting number has no more than k different digits in its decimal
representation.

Failure
Analysis

The issue with the implemented code lies in how it handles the trailing digits.
Instead of appending ’9’ to ensure at most k different digits, the correct approach is
to append the minimum digit from the k-beautiful number. ...

Corrected
Output

Step-by-Step Description: ... 5. Determine the number of trailing digits to add to n
by finding the minimum digit from the k-beautiful number.
High-Level Explanation: The solution iterates through each test case, finding the
minimum k-beautiful integer x greater than or equal to a given integer n…

Personalization

Initial
Output

… This aligns with your interest in complex algorithms and data processing,
showcasing how algorithms can be applied to solve specific number-related
problems effectively

Failure
Analysis

The explanation provided aligns well with the programmer’s skills and background
in Python and their interest in data analysis, image processing, and task scheduling.
... However, to improve the rating to a 5, specific examples or insights on real-world
applications of the solution could be included for better understanding.

Corrected
Output

Given your intermediate to advanced level in Python and your interest in data
analysis, image processing, and task scheduling, ... For example, in data analysis,
the concept of ’k-beautiful’ numbers could be applied to ensure that certain
numerical data meets specific digit constraints, ...

Figure 7: Case study of the iterative refinement for
faithful and personalized code explanation. This case is
generated by DISCO based on GPT-3.5.

To illustrate the practical application of our ap-
proach and demonstrate the effectiveness of DISCO
in refining code explanations, we present a detailed
case study as indicated in Fig. 7.

Faithfulness. The corrected explanation offers a
more detailed and faithful description of the code
logic, particularly in the step-by-step breakdown.
Taking the failure analysis into consideration, it
clearly explains the process of checking and ad-
justing the number n based on its last digit, the
calculation of the trailing digits to match the origi-
nal length, and the concatenation and final output
steps. This detailed breakdown helps users under-
stand each part of the code more comprehensively,
ensuring they grasp the nuances of the logic and
how each condition affects the outcome. In con-
trast, the initial generated explanation provides a
more general overview without delving deeply into
the specifics of each step, which can leave gaps
in understanding, particularly for users trying to
follow the logic of adjusting n based on its digits.

Personalization. Following the LLM’s rating, the
corrected explanation excels in personalization by
connecting the code’s purpose to practical applica-
tions relevant to the user’s interests. It illustrates
how the concept of “k-beautiful” numbers can be
applied in real-world scenarios, like data analysis
and image processing, making the explanation more

relatable and valuable. On the other hand, the initial
generated explanation lacks the depth of connection
to the user’s specific areas of interest. While it men-
tions complex algorithms and data processing, it
does not provide tangible examples or applications
that resonate with the user’s background and skills.

In conclusion, DISCO improves code explanations
through iterative cycles. Each iteration makes the
explanation more accurate, detailed, and aligned
with the user’s needs. This process helps address er-
rors, enhances clarity, and ensures both faithfulness
to the code and relevance to the user’s interests.

6 Conclusion

This paper presents FaithfulPersonaCodeX, a
novel benchmark for evaluating code explana-
tions, and DISCO, an innovative method for gen-
erating personalized and faithful explanations.
FaithfulPersonaCodeX addresses limitations in
existing benchmarks by incorporating diverse code
samples, user profiles, and multifaceted metrics to
assess both faithfulness and personalization. DISCO
leverages a self-critique mechanism and a two-stage
optimization process to balance these competing ob-
jectives. Our experimental results demonstrate the
effectiveness of this approach, outperforming exist-
ing baselines and advancing the field toward more
comprehensive, user-tailored code explanations. By
addressing the dual challenges of faithfulness and
personalization, this work improves code compre-
hension across various contexts, from education to
professional software development.

7 Limitations

One primary limitation of this work is that code
problems in our benchmark were mainly selected
from only one source dataset - CodeContest. So, it
may be unclear whether our method can be further
generalized well to other problem sources, which
may contain different levels of code problems. How-
ever, we assume that competitive-level program-
ming problems in our benchmark are well-defined
so that the distribution shift will not be significant
between sources. The good news is that we tested
a couple of LLM backbones in this paper, so we
already mitigated the risk of potential performance
deviation by different LLM backbones.

Acknowledgments

This work was supported in part by NSF grant
IOS-2430277.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Anthropic. 2024. Introducing the next genera-
tion of Claude. https://www.anthropic.com/news/
claude-3-family.

Paheli Bhattacharya, Manojit Chakraborty,
Kartheek NSN Palepu, Vikas Pandey, Ishan
Dindorkar, Rakesh Rajpurohit, and Rishabh Gupta.
2023. Exploring large language models for code
explanation. arXiv preprint arXiv:2310.16673.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Eason Chen, Ray Huang, Han-Shin Chen, Yuen-Hsien
Tseng, and Liang-Yi Li. 2023a. Gptutor: a chatgpt-
powered programming tool for code explanation. In
International Conference on Artificial Intelligence in
Education, pages 321–327. Springer.

Jiangjie Chen, Xintao Wang, Rui Xu, Siyu Yuan, Yikai
Zhang, Wei Shi, Jian Xie, Shuang Li, Ruihan Yang,
Tinghui Zhu, et al. 2024. From persona to person-
alization: A survey on role-playing language agents.
arXiv preprint arXiv:2404.18231.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023b. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Ameet Deshpande, Vishvak Murahari, Tanmay Rajpuro-
hit, Ashwin Kalyan, and Karthik Narasimhan. 2023.
Toxicity in chatgpt: Analyzing persona-assigned lan-
guage models. arXiv preprint arXiv:2304.05335.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
Codebert: A pre-trained model for programming and
natural languages. arXiv preprint arXiv:2002.08155.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-
correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. arXiv
preprint arXiv:2301.07597.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Nan Duan, and Ming Zhou. 2022. Unixcoder:
Unified cross-modal pre-training for code representa-
tion. arXiv preprint arXiv:2203.01679.

Shashank Gupta, Vaishnavi Shrivastava, Ameet Desh-
pande, Ashwin Kalyan, Peter Clark, Ashish Sabhar-
wal, and Tushar Khot. 2023. Bias runs deep: Implicit
reasoning biases in persona-assigned llms. arXiv
preprint arXiv:2311.04892.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin
Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
2022. Large language models can self-improve. arXiv
preprint arXiv:2210.11610.

Hamel Husain, Ho-Hsiang Siddiqui, Huy Feng, Us-
ama Chowdhury, Eric Hammond, Boris Tran, Vinod
Mangal, Dima Kang, and Ankur Taly. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. In arXiv preprint arXiv:1909.09436.

Nan Jiang, Xiaopeng Li, Shiqi Wang, Qiang Zhou,
Soneya Binta Hossain, Baishakhi Ray, Varun Kumar,
Xiaofei Ma, and Anoop Deoras. 2024. Training llms
to better self-debug and explain code. arXiv preprint
arXiv:2405.18649.

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. Selfe-
volve: A code evolution framework via large language
models. arXiv preprint arXiv:2306.02907.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Cheng Li, Ziang Leng, Chenxi Yan, Junyi Shen, Hao
Wang, Weishi Mi, Yaying Fei, Xiaoyang Feng, Song
Yan, HaoSheng Wang, et al. 2023a. Chatharuhi:
Reviving anime character in reality via large language
model. arXiv preprint arXiv:2308.09597.

Jierui Li, Szymon Tworkowski, Yingying Wu, and Ray-
mond Mooney. 2023b. Explaining competitive-level
programming solutions using llms. arXiv preprint
arXiv:2307.05337.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. 2023.
Generating with confidence: Uncertainty quantifi-
cation for black-box large language models. arXiv
preprint arXiv:2305.19187.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang,
Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong, Yankai
Lin, Yingli Zhang, et al. 2024. Repoagent: An
llm-powered open-source framework for repository-
level code documentation generation. arXiv preprint
arXiv:2402.16667.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip
Rao, Eric Wong, Marianna Apidianaki, and Chris
Callison-Burch. 2023. Faithful chain-of-thought rea-
soning. arXiv preprint arXiv:2301.13379.

Xiao Ma, Swaroop Mishra, Ariel Liu, Sophie Ying
Su, Jilin Chen, Chinmay Kulkarni, Heng-Tze Cheng,
Quoc Le, and Ed Chi. 2024. Beyond chatbots: Ex-
plorellm for structured thoughts and personalized
model responses. In Extended Abstracts of the CHI
Conference on Human Factors in Computing Systems,
pages 1–12.

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne
Kim, Sami Sarsa, Paul Denny, Seth Bernstein, and
Juho Leinonen. 2023. Experiences from using code
explanations generated by large language models in a
web software development e-book. In Proceedings
of the 54th ACM Technical Symposium on Computer
Science Education V. 1, pages 931–937.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Daye Nam, Andrew Macvean, Vincent Hellendoorn,
Bogdan Vasilescu, and Brad Myers. 2024. Using an
llm to help with code understanding. In Proceedings
of the IEEE/ACM 46th International Conference on
Software Engineering, pages 1–13.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoy-
anov, Wen-tau Yih, Sida Wang, and Xi Victoria Lin.
2023. Lever: Learning to verify language-to-code
generation with execution. In International Con-
ference on Machine Learning, pages 26106–26128.
PMLR.

Priti Oli, Rabin Banjade, Jeevan Chapagain, and Vasile
Rus. 2023. The behavior of large language models
when prompted to generate code explanations. arXiv
preprint arXiv:2311.01490.

2023 OpenAI. 2023. Introducing ChatGPT. https:
//openai.com/index/chatgpt/.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023a. Logic-lm: Em-
powering large language models with symbolic
solvers for faithful logical reasoning. arXiv preprint
arXiv:2305.12295.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2023b.
Automatically correcting large language models: Sur-
veying the landscape of diverse self-correction strate-
gies. arXiv preprint arXiv:2308.03188.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023a. Is
chatgpt a general-purpose natural language processing
task solver? arXiv preprint arXiv:2302.06476.

Ruiyang Qin, Jun Xia, Zhenge Jia, Meng Jiang, Ahmed
Abbasi, Peipei Zhou, Jingtong Hu, and Yiyu Shi.
2023b. Enabling on-device large language model
personalization with self-supervised data selection
and synthesis. arXiv preprint arXiv:2311.12275.

Ruizhong Qiu, Weiliang Will Zeng, Hanghang
Tong, James Ezick, and Christopher Lott. 2024.
How efficient is llm-generated code? a rigor-
ous & high-standard benchmark. arXiv preprint
arXiv:2406.06647.

Sawan Rai, Ramesh Chandra Belwal, and Atul Gupta.
2022. A review on source code documentation. ACM
Transactions on Intelligent Systems and Technology
(TIST), 13(5):1–44.

Jonan Richards and Mairieli Wessel. 2024. What you
need is what you get: Theory of mind for an llm-
based code understanding assistant. arXiv preprint
arXiv:2408.04477.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. 2024.
Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint
arXiv:2401.08500.

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen.
2022. Automatic generation of programming exer-
cises and code explanations using large language mod-
els. In Proceedings of the 2022 ACM Conference on
International Computing Education Research-Volume
1, pages 27–43.

Sarah Schwettmann, Tamar Shaham, Joanna Materzyn-
ska, Neil Chowdhury, Shuang Li, Jacob Andreas,
David Bau, and Antonio Torralba. 2024. Find: A
function description benchmark for evaluating inter-
pretability methods. Advances in Neural Information
Processing Systems, 36.

Omar Shaikh, Hongxin Zhang, William Held, Michael
Bernstein, and Diyi Yang. 2023. On second thought,
let’s not think step by step! bias and toxicity in zero-
shot reasoning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4454–4470.

Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu.
2023. Character-llm: A trainable agent for role-
playing. arXiv preprint arXiv:2310.10158.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement

https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/

learning. Advances in Neural Information Processing
Systems, 36.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Anika Tasnim Preoty. 2024. Implementing zero-shot
learning in code-llm for effective code explanation
generation. Master’s thesis, A. Tasnim Preoty.

Zahid Ullah, Adidah Lajis, Mona Jamjoom, Abdul-
rahman Altalhi, Abdullah Al-Ghamdi, and Farrukh
Saleem. 2018. The effect of automatic assessment
on novice programming: Strengths and limitations
of existing systems. Computer Applications in Engi-
neering Education, 26(6):2328–2341.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Zekun Moore Wang, Zhongyuan Peng, Haoran Que,
Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu,
Hongcheng Guo, Ruitong Gan, Zehao Ni, Man Zhang,
et al. 2023. Rolellm: Benchmarking, eliciting, and
enhancing role-playing abilities of large language
models. arXiv preprint arXiv:2310.00746.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman,
Tianxiao Shen, Daniel Khashabi, and Yejin Choi.
2022. Generating sequences by learning to self-
correct. arXiv preprint arXiv:2211.00053.

Benfeng Xu, An Yang, Junyang Lin, Quan Wang,
Chang Zhou, Yongdong Zhang, and Zhendong Mao.
2023. Expertprompting: Instructing large language
models to be distinguished experts. arXiv preprint
arXiv:2305.14688.

Hao Yan, Thomas D Latoza, and Ziyu Yao. 2024a.
Intelliexplain: Enhancing interactive code gener-
ation through natural language explanations for
non-professional programmers. arXiv preprint
arXiv:2405.10250.

Litao Yan, Alyssa Hwang, Zhiyuan Wu, and Andrew
Head. 2024b. Ivie: Lightweight anchored explana-
tions of just-generated code. In Proceedings of the
CHI Conference on Human Factors in Computing
Systems, pages 1–15.

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe
Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan

Zhao, Li Zhu, Shuiguang Deng, et al. 2023. Code-
scope: An execution-based multilingual multitask
multidimensional benchmark for evaluating llms on
code understanding and generation. arXiv preprint
arXiv:2311.08588.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian
Han, Qizhang Feng, Haoming Jiang, Shaochen Zhong,
Bing Yin, and Xia Hu. 2024. Harnessing the power
of llms in practice: A survey on chatgpt and beyond.
ACM Transactions on Knowledge Discovery from
Data, 18(6):1–32.

Kaiyu Yang, Jia Deng, and Danqi Chen. 2022. Gen-
erating natural language proofs with verifier-guided
search. arXiv preprint arXiv:2205.12443.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. Advances in Neural Information Processing
Systems, 35:15476–15488.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023a.
Self-edit: Fault-aware code editor for code generation.
arXiv preprint arXiv:2305.04087.

Kexun Zhang, Danqing Wang, Jingtao Xia,
William Yang Wang, and Lei Li. 2023b. Algo: Syn-
thesizing algorithmic programs with generated oracle
verifiers. Advances in Neural Information Processing
Systems, 36:54769–54784.

Muru Zhang, Ofir Press, William Merrill, Alisa
Liu, and Noah A Smith. 2023c. How language
model hallucinations can snowball. arXiv preprint
arXiv:2305.13534.

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang,
Adrian de Wynter, Yan Xia, Wenshan Wu, Ting Song,
Man Lan, and Furu Wei. 2024. Llm as a mastermind:
A survey of strategic reasoning with large language
models. arXiv preprint arXiv:2404.01230.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595–46623.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Jinfeng Zhou, Zhuang Chen, Dazhen Wan, Bosi Wen,
Yi Song, Jifan Yu, Yongkang Huang, Libiao Peng,
Jiaming Yang, Xiyao Xiao, et al. 2023. Character-
glm: Customizing chinese conversational ai char-
acters with large language models. arXiv preprint
arXiv:2311.16832.

A Human Evaluation Questions
To comprehensively evaluate the quality of the ex-
planation, we ask the following three questions:
Usefulness, Clearness, and Understanding, to en-
sure that the explanation effectively solves the prob-
lem, is clear and unambiguous, and accurately
captures the key idea behind the solution.

• Usefulness - How useful is the explanation for
solving the problem?

• Clearness - How clear and unambiguous is the
explanation?

• Understanding - How well does the explana-
tion capture the key idea behind the solution?

B Experiment Results
B.1 Win Rate in the Validation Set
Fig. 8 indicates the results of LLM-as-a-Judge for
various methods in the validation set using GPT-3.5.

0% 20% 40% 60% 80% 100%
WinRate (%)

GPT-3.5

vs. SC

vs. S2G

56.87%

60.49%

DISCO Wins Tie DISCO Loses

Figure 8: Results of LLM-as-a-Judge for DISCO against
each baseline in the validation set using GPT-3.5. SC is
short for Self-Consistency.

B.2 Token Count
Tab. 6 shows the average token count for each step
in the process.

Type Stage Avg Token #

Context Enrichment Problem Understanding 142.93
Input Faithfulness Input 1128.75

Verification and Analysis Failure Analysis 126.09
Explanation Generation Faithful Explanation 202.00

Context Enrichment Profile Extraction 145.51
Input Personalization Input 1119.70

Verification and Analysis Role-Playing and Rating 92.33
Explanation Generation Personalized Explanation 182.92

Table 6: Average token count of each step in the process.

C LLM-as-a-Judge Prompt

LLM-as-a-Judge Prompt

Imagine you are a programmer with the
following inquiry history:
{User Question History}
You are given a code contest problem and
an accepted correct solution code:
{Problem Description}
{Code Solution}
You are trying to understand the code.
You have two code explanations to choose
from:
{Personalized Explanation A}
{Personalized Explanation B}
Now create a leaderboard by ranking the
two code explanations based on your skill
level, background and preferences inferred
from the content in the inquiry history, to
determine which explanation is more helpful
and informative to you.

D Explanation Generation Prompt

D.1 Faithfulness Refinement Prompt

Problem Understanding Prompt

You are given a code contest problem: {Prob-
lem Description}
Given the code contest problem, you should
reflect on the problem and describe it in your
own words. Pay attention to small details,
nuances, notes, and examples in the problem
description.

Faithful Explanation Prompt

Your task is to comprehend a competitive
programming problem and interpret its
solution.
You are given a code contest problem, and a
self-reflection on the problem:
{Problem Description}
{Problem Understanding}
Additionally, you are given an accepted
correct solution:
{Code Solution}

Let’s think step-by-step.
- First, provide a step-by-step description of
the solution.
- Next, give a high-level explanation of the
solution.

Verification Prompt

You are given a code contest problem:
{Problem Description} The following is a
hint that can lead to one correct solution of
the problem:
{Imperfect Faithful Explanation}

Your task is to read and understand
the problem, analyze the hint and how
to use it to solve the problem, think of
a solution accordingly and complete the
python code of the solution.

Failure Analysis Prompt

You are given a code contest problem and a
self-reflection on the problem:
{Problem Description}
{Problem Understanding}
Additionnally, you are given an accepted
correct solution:
{Code Solution}
A Python code solution was generated for
the problem:
{Reconstructed Code}
However, when running on the given input,
the code solution above failed to produce
the expected output:
{Incorrect Output}
Your task is to analyze the failure.
Let’s think step by step.

Faithfulness Refinement Prompt

You are given a code contest problem, a
self-reflection on the problem, an input list
of test cases and an expected output list:
{Problem Description}
{Problem Understanding}
You are also given one correct solution to
the problem and its explanation:
{Code Solution}
{Imperfect Faithful Explanation}
Your task is to revise the provided explana-
tion based on the following feedback.
A coder attempted to implement a solu-
tion with the hint of the explanation above.
However, the code did not yield the correct
output:
{Reconstructed Code}
{Incorrect Output}
Here’s also a failure analysis of the coder’s
solution:
{Failure Analysis}
Please revise the provided explanation, con-
sidering the failure analysis of the coder’s
solution.
When other coders read your revised expla-
nation, they should avoid the same mistakes
made by the coder who failed to produce the
correct solution.

D.2 Personalization Refinement Prompt

Role-Playing and Rating Prompt

Imagine you are a programmer with the fol-
lowing individual programming skills and
background:
{Extracted Profile}
Your are given a code contest problem:
{Problem Description}
You are also given an accepted correct solu-
tion:
{Code Solution}
Your task is to rate the following personal-
ized explanation of the solution based on
how well it aligns with your programming
skills and background:
{Imperfect Personalized Explanation}
The score should be in the range of 1 to
5. If the rating is under 5, please provide
some revision suggestions in the reasoning
section.

Personalized Explanation Prompt

Your task is to personalize the explanation
of the solution based on the following user’s
programming skills and background:
{Extracted Profile}
You are given a code contest problem:
{Problem Description}
You are also given one correct solution to
the problem and its explanation:
{Code Solution}
{Faithful Explanation}
You should provide a personalized expla-
nation of the solution based on the user’s
programming skills and background and the
explanation provided above.

Personalization Refinement Prompt

Your are given a code contest problem:
{Problem Description}
You are also given one correct solution to
the problem and its explanation:
{Code Solution}
{Faithful Explanation}
A personalized explanation of the solution
was generated for a user with the following
programming skills and background:
{Extracted Profile}
This is the generated personalized explana-
tion:
{Imperfect Personalized Explanation}
The user rated the personalized explanation
and provided some revision suggestions:
{Rating}
Please revise the personalized explanation
based on the user’s feedback so that the user
will rate the revised personalized explana-
tion higher.

Profile Extraction Prompt

Given the user’s Stack Overflow question
history provided below, analyze and infer the
user’s programming skills and background.
{User Question History}
Consider the following aspects: Program-
ming Languages, Skill Level, Topics of In-
terest, Problem-Solving Approach, Experi-
ence.

