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Abstract

Recent advancements in large language models (LLMs) have sparked interest in
developing autonomous web agents capable of performing digital tasks through
web interfaces in a human-like manner. However, even the strongest closed-source
models often struggle to achieve robust results on several benchmarks, while a
notable performance gap exists between them and open-source counterparts. This
study investigates the potential of fine-tuning to enhance the performance of a
smaller, lower-performing but cost-efficient LLM by leveraging successful traces
from stronger LLMs, referred to as experts. We outline a comprehensive pipeline
for data collection, filtering, and supervised fine-tuning and explore various behav-
ior cloning parameters. Our experiments provide key insights into the challenges of
fine-tuning LLMs into web agents on benchmarks like MiniWoB and WorkArena.
Notably, we find that the fine-tuned agents’ ability to predict expert trajectories
does not consistently lead to improved downstream task performance. This raises
issues such as off-policy bias and the loss of reasoning abilities during fine-tuning.
We discuss potential solutions to these challenges and make both the codebase and
a dataset of 140M tokens open-source for the community to build upon.

1 Introduction

Figure 1: Success rate on WorkArena (left y-axis) and
modified likelihood of expert trajectories in the inter-
task generalization setup, throughout the fine-tuning
phase. The model with the worst ability to predict expert
trajectories performs best in this regime. Optimizing the
use of expert trajectory data remains a complex and open
research challenge.

Recent advancements in large language mod-
els (LLMs) [OpenAI, 2024, Team, 2024] have
sparked significant interest in developing au-
tonomous web agents capable of performing
a variety of tasks through web interfaces in
a human-like manner. These agents hold the
potential to automate numerous digital tasks,
ranging from simple web navigation and form
filling—tasks often explored in toy environ-
ments—to complex interactions with enter-
prise software applications, which are predom-
inantly accessed via web browsers. In enter-
prise settings, such automated agents can, for
example, resolve IT incidents or handle data
processing in customer relationship manage-
ment (CRM) platforms. Furthermore, they
can be applied to customer-facing tasks like
providing personalised restaurant recommen-
dations or booking flights, thereby enhancing
user experiences across various domains.
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Figure 2: Our generic pipeline: 1) Trajectories are generated using different configurations (Chain-of-thoughts:
, use error logs: , use screenshot: ) and different LLMs (highlighted by different colors). 2) Only the

successful trajectories are kept. As each prompt is truncated to fit in our trained model’s window, some key
information ( ) might get lost in the process. Those samples are discarded. 3) The pipeline now has a pool of
data, which can be used to build training sets with different properties. Here, we build an ablation dataset that
separates data with and without chain-of-thoughts, and a dataset that merges both. 4) After selecting a dataset,
we train our model starting from a base model to make a stronger finetuned LLM. 5) The latter is used along
with different agent configurations to assess the finetuning quality. 6) Finally, we can leverage AgentLab’s tools
to manually analyze the traces produced by the model.

The complexity of tasks explored in the literature varies widely, from basic UI commands on toy
web pages, as in benchmarks like MiniWoB [Liu et al., 2018, Shi et al., 2017], to intricate operations
on real-world websites [Zhou et al., 2023] and complex enterprise-level interactions [Drouin et al.,
2024]. Despite the capabilities of commercial, closed-source LLMs like GPT-4 [OpenAI, 2024]
and Claude [Anthropic, 2024], these models often struggle to achieve robust results across various
benchmarks [Zhou et al., 2023, Boisvert et al., 2024]. Moreover, their closed-source nature raises
concerns about data privacy, security, and cost. Open-source LLMs such as Llama [Meta, 2024]
and DeepSeek [DeepSeek-AI, 2024] offer better control and scalability but generally lag behind in
performance when acting as web agents [Drouin et al., 2024].

In this study, we investigate the potential of fine-tuning to enhance the performance of smaller,
cost-efficient open-source LLMs as web agents. By leveraging successful traces from stronger
LLMs (referred to as experts), we aim to bridge the performance gap We outline a comprehensive
pipeline for data collection, filtering, and supervised fine-tuning, and explore various behavior cloning
parameters.

Our experiments focus on both general web tasks, using benchmarks like MiniWoB [Shi et al., 2017],
and more complex, enterprise-related tasks, as in WorkArena [Drouin et al., 2024]. Notably, we find
that fine-tuned agents’ ability to predict expert trajectories does not consistently lead to improved
downstream task performance. This raises issues such as off-policy bias and the loss of pretraining
reasoning abilities during fine-tuning. We discuss potential solutions to these challenges and make
both the codebase and a dataset of 140 million tokens open-source for the community to build upon.

Our key contributions are:

1. We demonstrate that fine-tuning open-source LLMs to function as web agents can lead to
significant performance improvements, although the process is complex with challenges
related to task generalization and learning stability.

2. We provide empirical evidence that simply improving the agent’s ability to predict expert
trajectories does not correlate with better downstream performance, highlighting the need
for more sophisticated fine-tuning strategies.

3. We show that the choice of training data, particularly the inclusion of Chain-of-Thought
reasoning, plays a crucial role in boosting agent performance.

4. We release a dataset of 140 million tokens of high-quality web agent traces and open-source
our codebase to facilitate future research in this area.
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2 Web Agent Pipeline

Our experiments rely on an ecosystem of tools for web agents, which we release as open-source
contributions to the community to facilitate prototyping, evaluation, training, and reproducibility.

WorkArena1 (Fig. 5a, § A) is a benchmark for evaluating web agents on the ServiceNow plat-
form [Drouin et al., 2024]. It measures their ability to perform basic tasks using the main UI
components of its user interface. For example, one of the tasks consists in filling out a form after
receiving the explicit list of desired values for each field. It is the first benchmark to measure the
performance of web agents at solving work-related tasks in the enterprise setting.

BrowserGym2 (Fig. 5b, §A) is a gym environment that facilitates the design and evaluation of
web agents in a unified framework. The salient features of BrowserGym include: i) chat-based
agent-human interactions, ii) enriched multimodal observations: HTML, AXTree [Zhou et al., 2023],
screenshot, set-of-marks [He et al., 2024], element coordinates, etc. and iii) a standard and flexible
action space: click, type, etc..

AgentLab3 offers a full pipeline for the large-scale evaluation of web agents. It offers features such
as parallel evaluation, standardized data collection, and visual trace analysis and inspection tools.

3 Agent Design

We mostly follow the same agent design as Drouin et al. [2024]. For complete details and an example
prompt, see §B.

Input Our agents receive the current goal, the current page’s accessibility tree4 (AXTree) [Zhou
et al., 2023], and the error message, if any, that resulted from the execution of the previous action.
Our study focuses on pure LLM-based agents, hence we do not use screenshot observations.

Prompt We use a tool called dynamic prompting to build our agent’s prompt in a modular manner,
using different flags to activate or deactivate the desired features. For example, it allows us to
activate or deactivate chain-of-thoughts (CoT) reasoning [Wei et al., 2022], which is a technique that
encourages language models to generate intermediate reasoning steps to improve their performance
on tasks requiring complex problem-solving, rather than directly producing a final answer. It can also
activate error logging, or history logging, amongst other things. We use different configurations of
those flags in our experiments.

Output Our agent produces a textual reasoning (when CoT is active) plus an action in the form of a
function call. We use the high-level action space from BrowserGym, which allows sending messages
to the chat, and interacting with the webpage using element identifiers (bid attribute).

4 Finetuning Pipeline

The proposed finetuning pipeline for enhancing web agents systematically addresses the challenges
of developing models capable of reasoning, planning, and executing complex tasks in enterprise
environments. The process is structured into seven key stages:

Step 1: Data Collection We initiate by deploying a collection of web agents within the WorkArena
environment. These agents vary across multiple axes, such as the foundational LLMs, observation
modalities (AX tree vs. HTML), action spaces (high-level UI actions vs. Python API calls), and
prompting techniques like CoT reasoning. Each agent operates in real-world scenarios, collecting
interaction traces reflecting diverse approaches to solving tasks like form-filling and list manipulation.

1https://github.com/ServiceNow/WorkArena
2https://github.com/ServiceNow/BrowserGym
3https://github.com/ServiceNow/AgentLab
4AXTree is a simplified representation of the page in text format for visually impaired users. It contains

about 10x less token than the HTML and it is sufficient for most tasks in WorkArena
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The outcome of this step is a comprehensive corpus of agent-generated task traces that encapsulate
different strategies for tackling UI interactions.

Step 2: Data Processing The collected data undergoes rigorous filtering and transformation.
Successful traces — where agents complete tasks per WorkArena’s validation criteria — are retained
for training. To adapt the data to finetuning, we simulate interactions using smaller context windows,
trimming prompts when necessary. If key information (such as field identifiers) is missing, the trace
is discarded. This ensures training data consistency and high relevance to the finetuning models.

Step 3: Dataset Creation Next, we curate multiple datasets for finetuning. One comprehensive
dataset includes all traces, while additional ablation datasets focus on specific variables like CoT
reasoning. These ablation studies maintain uniform dataset sizes to avoid biasing results due to data
quantity, allowing us to isolate the impact of certain features on learning performance.

Step 4: Finetuning Experiments Finetuning is performed on selected base models supported
by our framework. We explore two primary experiment types. In Dataset Ablations, we finetune
the same model across various datasets, maintaining consistent hyperparameters. This experiment
evaluates which datasets or features are most beneficial for learning. In Hyperparameter Ablations,
we hold the dataset constant while systematically varying one hyperparameter (e.g., learning rate) to
assess its influence on model generalization. The outcome is a series of finetuned models, saved as
checkpoints for further evaluation.

Step 5: Evaluation of Finetuned Models The finetuned models are converted into web agents,
and configured with various evaluation flags. These agents are tested on unseen task instances and
configurations to assess their generalization abilities across two levels. In Inter-task Generalization,
we evaluate agent performance on unseen configurations (seeds) of tasks previously encountered
during training. In Cross-task Generalization we test the agents on entirely novel tasks that were not
part of the training set. The resulting evaluation data provides insights into the models’ robustness
and flexibility in handling diverse enterprise workflows.

Step 6: Analysis of Results The evaluation results are analyzed to extract key insights into model
performance. We generate visualizations and plots (as discussed in § 5.1) to highlight trends, such
as the impact of different datasets or finetuning strategies on agent success rates. Additionally,
tools like AgentLab’s AgentXray facilitate deeper inspection of agent behaviors, allowing us to
identify strengths and weaknesses in decision-making processes. These insights guide further model
refinements and inform future research directions.

5 Experiments

We evaluate the fine-tuning performance of Llama3.1-8B on the WorkArena and MiniWob bench-
marks. Experiments focus on learning rate ablation, dataset ablation (with and without CoT), and
generalization to unseen tasks. We measure success rates on held-out task configurations and unseen
tasks, using success rate and likelihood of expert trajectories as evaluation metrics. The data collec-
tion models are LLAMA3.1-70b and Mistral-Large-2. Additionally, we will fully open-source the
WorkArena training dataset, which consists of 32K successful episodes and 140M tokens.

We use two agent configurations: Advanced and Basic. The Advanced configuration employs a
more powerful set of prompt options, including CoT reasoning and the ability to generate multiple
actions simultaneously. This set of flags was optimized for the Llama-3-8B Instruct model through
hyperparameter search. For each reported experiment, we performed two fine-tuning runs and
averaged the results. The shaded area represents one standard error in each direction.

5.1 Empirical analysis

In Fig. 1 and Fig. 3, we present a learning rate ablation study on both intra-task and cross-task
generalization levels, respectively. For the Advanced agents, we observe that in the intra-task
generalization regime, the learning rate that results in the worst ability to predict expert trajectories
actually yields the best-performing agents on WorkArena. Notably, MiniWoB cannot be evaluated in
the intra-task regime due to insufficient task configurations. In the cross-task generalization regime,
while all learning rates converge to similar likelihoods of expert trajectories, the model that achieves

4



(a) WorkArena (b) MiniWob

Figure 3: Success rate on (left y-axis) and modified likelihood of expert trajectories in the cross-task
generalization setup, throughout the fine-tuning phase. Interestingly, the model’s improved ability to predict
expert trajectories does not directly translate to better performance on downstream tasks.

intermediate predictive accuracy on expert traces catastrophically forgets how to perform tasks in
both WorkArena and MiniWoB. Furthermore, in §B.2, we demonstrate that simply training for longer
periods and using smaller learning rates does not improve performance. For the results of the Basic
agents, please refer to §B.3.

This result is quite surprising, as one would expect that a model better at approximating expert
behavior in a given situation would also perform better on WorkArena tasks. However, our empirical
findings demonstrate otherwise. This raises intriguing research questions: "How does a model
forget how to perform WorkArena tasks while learning to imitate an expert?" and "What can we
modify, either in the data or training process, to prevent this behavior and thereby develop better web
agents?". We discuss these questions further in the coming error analysis section and §8, respectively.

Figure 4: Chain-of-Thought dataset ablation on
WorkArena. Training strictly on expert data using CoT pro-
duces the best fine-tuned agents.

In Fig. 4, we present a dataset ablation
study, specifically focusing on Chain-of-
Thought (CoT) prompting. Throughout
training with the Advanced flags, we ob-
serve that while the three datasets initially
perform similarly, the dataset that strictly
uses CoT eventually achieves nearly a 15%
success rate increase over the base model
and outperforms the next best dataset by
almost 5%. This highlights how dataset
ablation can guide the iterative process of
dataset construction. In the next round
of data collection, we might consider al-
locating the entire data collection budget to
agents using CoT prompting.

5.2 Analysing
the Finetuned Model’s behaviour

When performing fine-tuning and particularly evaluating on unseen tasks, we observe that the model
is in-fact able to imitate the behavior based on the traces of the training data. For example, we see that
the model struggles significantly with tasks requiring navigation either due to not having encountered
them at all during training or having observed very similar navigation tasks, failing to acquire the
skill to solve them. Parallely, the model becomes powerful at previously unseen form filling tasks,
having observed and learnt from similar tasks in the training data. These observations indicate that
the model is able to imitate, or learn with fine-tuning on individual observation-action instances and
apply them for sequential decision making. Interestingly, it is often unable to improve over types of
tasks that were impossible for the base model to solve.
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Error Analysis As mentioned previously, the validation loss alone is insufficient to predict down-
stream task success. To understand why, we explored the traces from agent 1e− 05 in Fig. 3 at the
first 3 checkpoints of its training, respectively at 5,120, 10,240 and 15,360 samples. At 5,120 samples,
the model performs best, while the performance deteriorates markedly in subsequent checkpoints.

For instance, in all instances of a task asking the agent to change the current user, the model appears
to have memorized examples rather than reasoning through the task. At both 10,240 and 15,360
samples, all the initial actions consistently start with click(a324), which is the action provided as
an example in the prompt. This suggests the model is not distinguishing between the observed data
and the examples, highlighting a deficiency in its reasoning capabilities. Additionally, for these 2
checkpoints, very few traces include a "think" step.

At 10,240 samples, the model manages to complete only one task—likely by coincidence. This
task, the dashboard task, resembles a standard question-answering task and requires minimal agentic
abilities, mostly involving reading from the AxTree. A notable observation is that the model no
longer generates "think" steps at this stage, jumping directly into actions without reasoning.

By 15,360 samples, the model’s reasoning capabilities remain absent. It continues to default to
actions from the examples, such as frequently outputting the bid "a324" from the training set, further
reinforcing that the model is failing to adapt its actions based on actual observations. Overall, the
progression from 5,120 to 15,360 samples indicates a significant decline in the model’s agentic and
reasoning abilities, with increasing reliance on memorized examples rather than understanding the
task context and observations.

6 Related Works

LLM-based Web Agents AI researchers have long pursued the development of autonomous agents,
and recent advances in LLMs, combined with improvements in reasoning and planning capabilities,
suggest that this goal within reach [Wei et al., 2022, Yao et al., 2023, 2024]. One prominent class
of agents focuses on equipping a powerful model with defined action and observation spaces [Zhou
et al., 2023, Deng et al., 2023, Drouin et al., 2024]. Alongside using already trained models to
mimic agentic behavior, multiple different fine-tuning methods have been suggested to improve the
domain-specific performance of using models as agents. In WebLinx [Lù et al., 2024], authors have
used supervised fine-tuning based on expert traces to predict the next action to take in multi-step
interactions. Recent approaches [Putta et al., 2024, Song et al., 2024] generate successful and
unsuccessful example traces to fine-tune their agent with preference optimization methods like Direct
Preference Optimization [Rafailov et al., 2024]. Finally, other methods have used reinforcement
learning approaches for fine-tuning agents [Zhou et al., Zhai et al., 2024].

Off-Policy Bias & Knowledge Distillation Knowledge Distillation [Bucila et al., 2006, Hinton,
2015] transfers knowledge from a larger "teacher" model to a smaller "student" model. In sequential
decision-making tasks like web agents, this process introduces off-policy bias when the student is
trained on expert trajectories generated by the teacher. The student may struggle during inference
when encountering states resulting from its own actions, leading to error accumulation due to the
mismatch in state-action distributions [Ross et al., 2010].

To mitigate off-policy bias, methods such as DAgger [Ross et al., 2010] collect data by rolling out
the student policy and aggregating it with previous datasets, enabling the model to learn from states
it is likely to encounter during inference. An analogous issue in supervised learning is exposure
bias [Ranzato et al., 2015, Bengio et al., 2015], where models trained with teacher forcing on
ground-truth tokens face distribution mismatch during inference when relying on their own outputs.
Techniques like Scheduled Sampling [Bengio et al., 2015] and methods that minimize divergence
between student and teacher models [Gu et al., 2023, Agarwal et al., 2024] help mitigate this mismatch
by better simulating inference conditions or training the student on its own generated sequences.

Knowledge Distillation (KD) [Bucila et al., 2006, Hinton, 2015] has emerged as a successful tech-
nique for transferring the knowledge of a larger or more complex model to a more efficient model.
Distillation involves training a "student" model, which is generally smaller, to replicate the behavior of
a "teacher" model, which is generally larger. In text generation, distillation approaches have attempted
to either train the student model for token-level predictions using outputs of the teacher model [Sanh
et al., 2019], or train the student model to make predictions at the sequence-level [Kim and Rush,

6



2016, Chiang et al., 2023, Peng et al., 2023]. However, distilling knowledge from a significantly
more capable model to a student model often has complications, often leading to exposure bias when
there is a difference in training and inference settings for the student model [Ranzato et al., 2015,
Bengio et al., 2015].

7 Discussion & Future Work

Our findings suggest that the decline in model performance, despite improved trajectory prediction,
is due to two key factors: (1) off-policy bias from training on expert traces, and (2) catastrophic
forgetting of reasoning abilities learned during pretraining. Our future work will focus on addressing
these challenges to develop more robust web agents.

Addressing Off-Policy Bias: Training solely on expert trajectories introduces off-policy bias, as
it fails to represent the conditions encountered during real-world task execution. To mitigate this,
we propose using Iterative Self-Improvement, where traces generated by the fine-tuned model are
iteratively added to the training data. This allows the model to learn from its own mistakes, improving
adaptability and reducing reliance on expert-only traces. For Dataset Diversification, we aim to train
on a more diverse subset of tasks to prevent premature overfitting. By exposing the model to varied
task types and complexities, it can extract more relevant knowledge. Additionally, model-based
learning will focus on predicting environmental state transitions, reducing overfitting to specific
expert actions.

Preventing Catastrophic Forgetting: Fine-tuning can lead to the loss of general reasoning ca-
pabilities acquired during pretraining. To counteract this, we propose Model Merging, periodically
merging the fine-tuned model with the base model by interpolating their parameters. This approach
helps retain general reasoning skills while incorporating new task-specific knowledge. Addition-
ally, Continued Pretraining on a mix of original and new task-specific data will maintain emergent
reasoning capabilities, ensuring the model retains its general problem-solving skills

8 Conclusion

We investigated fine-tuning open-source LLMs to function as web agents on benchmarks like
MiniWoB and WorkArena. While fine-tuning led to performance gains, challenges such as task
generalization, learning instability, and off-policy bias persist. Notably, improved prediction of expert
trajectories did not consistently enhance downstream task performance, suggesting that imitation
learning alone may be insufficient.

Our results emphasize the importance of training data composition, particularly the inclusion of Chain-
of-Thought reasoning, in boosting agent capabilities. Addressing off-policy bias and preventing
catastrophic forgetting are critical for future work. We release our codebase and a dataset of high-
quality web agent traces to facilitate further research toward more robust web agents.
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A Software

(a) WorkArena

Browser
Web Agent

Observation

Chat

User: show me 
flights from 
MTL to NYC

Action

HTML

Screenshot

AXTree

click(bid="103")mouse_click(x=47.2, y=152.6)

page.get_by_label("Search").click()

Python (unsafe)

coord-based bid-based

(b) BrowserGym

Figure 5: (a) WorkArena is a collection of tasks which measure the ability of web agents to interact with basic
UI components in the ServiceNow platform. (b) BrowserGym is a framework to execute web agents that receive
a natural-language goal from a human user via chat, perceive the environment (web browser) through a set of
multimodal observations (e.g., HTML and screenshot), and control it via a standardized set of available actions.

B Agent Design

Below are the general design choices of our LLM-based web agent with chain-of-thought prompt-
ing [Wei et al., 2022].

Language models: Our study focuses on open-source LLMs. For data collection we use
both Llama3.1-70b [Meta, 2024] (meta-llama-3.1-70b-instruct, 70B parameters, 128K
context) and Mistral Large 2 [Jiang et al., 2024] (mistral-large-2407, 123B parameters,
128K context). For fine-tuning we consider a smaller Llama3.1-8b [Meta, 2024] model
(meta-llama-3.1-8b-instruct, 70B parameters, 128K context). These LLMs are deployed
using Hugging Face’s Text Generation Inference (TGI) library on 4 A100 GPUs.

Observation space: Our observation space is composed of the goal, the current page’s HTML
and/or AXTree,5 the currently focused element, and the error from the previous action if any. We
also augment each element with two extra boolean properties provided by BrowserGym, clickable
and visible.

Action space: We use BrowserGym’s high-level action space with chat and bid primi-
tives [Drouin et al., 2024] which respectively allow the agent to send messages to the chat
(‘send_msg_to_user(text)‘, necessary for information retrieval tasks), and to interact with the
page’s HTML elements using their unique identifiers (e.g., click(bid), type(bid, text) etc.).
The bid primitives rely on the unique bid attribute given by BrowserGym to each HTML element,
which is made available textually in the HTML and AXTree. The full action space is described to
the agent in the prompt, with individual examples of valid function calls for each primitive. For an
example prompt, see Fig. 6.

History: To extend the horizon window of our agent, at each time step we re-inject into the agent’s
prompt the history of all previous actions and thoughts (from chain-of-thought) since the start of
the episode. This gives our agent a chance to recall its previous thoughts, thereby providing a crude
memorization mechanism to otherwise memory-less agents.

Zero-shot examples: In the prompt, we provide a single generic example of how the chain-of-
thought and action outputs should be formatted. This contrasts with other methods [Kim et al., 2023]
where task-specific few-shot examples are provided, yet aligns with our objective of developing
zero-shot agents able to solve a large range of new tasks.

5On WebArena and WorkArena we only use AXTrees because HTML is prohibitively large. On MiniWoB
we use both AXTree and HTML as it consistently gives the best performance.
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Example Prompt - Order Sales Laptop task
# Instructions
Review the current state of the page and all other information to find the best
possible next action to accomplish your goal. Your answer will be interpreted
and executed by a program, make sure to follow the formatting instructions.

## Goal:
Go to the hardware store and order 6 "Sales Laptop" with configuration
{’Additional software requirements’: ’Slack, Zoom, Google Workspace, HubSpot, Adobe Creative Cloud’,
’Adobe Acrobat’: True, ’Adobe Photoshop’: False, ’Microsoft Powerpoint’: False, ’Siebel Client’: False}

# Observation of current step:

## AXTree:
Note: [bid] is the unique alpha-numeric identifier at the beginning of lines for each element in the
AXTree. Always use bid to refer to elements in your actions.
Note: You can only interact with visible elements. If the "visible" tag is not
present, the element is not visible on the page.

RootWebArea ’Catalog | ServiceNow’
...

[a] Iframe ’Main Content’, visible
RootWebArea ’Catalog’, focused

...
[a251] heading ’Hardware’, clickable, visible

[a252] link ’Hardware’, clickable, visible
...

[a261] link ’’, clickable, visible
[a262] table ’’, visible

[a263] rowgroup ’’, visible
[a264] row ’’, visible

[a265] gridcell ’’, visible
[a268] gridcell ’Hardware. Order from a variety of hardware to meet your business
needs, including phones, tablets and laptops. Order from a variety of hardware to meet
your business needs, including phones, tablets and laptops.’, clickable, visible

[a269] link ’Hardware. Order from a variety of hardware to meet your business
needs, including phones, tablets and laptops.’, clickable, visible

[a270] heading ’Hardware’, visible
...

## Focused element:
bid=’a85’

# History of interaction with the task:
...

# Action space:

Note: This action set allows you to interact with your environment. Most of them
are python functions executing playwright code. The primary way of referring to
elements in the page is through bid which are specified in your observations.
13 different types of actions are available.
...
fill(bid: str, value: str)

Description: Fill out a form field. It focuses the element and triggers an input event with the
entered text. It works for <input>, <textarea> and [contenteditable] elements.
Examples:

fill(’237’, ’example value’)
fill(’45’, ’multi-line\nexample’)
fill(’a12’, ’example with "quotes"’)

...
send_msg_to_user(text: str)

Description: Sends a message to the user.
Examples:

send_msg_to_user(’Based on the results of my search, the city was built in 1751.’)

Only a single action can be provided at once. Example:
fill(’a12’, ’example with "quotes"’)
...
# Concrete Example

Here is a concrete example of how to format your answer.
Make sure to follow the template with proper tags:

<think>
From previous action I tried to set the value of year to "2022",
using select_option, but it doesn’t appear to be in the form. It may be a
dynamic dropdown, I will try using click with the bid "a324" and look at the
response from the page.
</think>

<action>
click(’a324’)
</action>

Figure 6: Example prompt of our LLM-based agent. Some parts are truncated (...) for clarity.
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Parse and retry: Once the LLM provides an answer, we have a parsing loop that can re-prompt
the agent up to 4 times to make it aware of a parsing mistake. This can save the agent from making
basic mistakes and is mainly useful for less capable LLMs. Once parsed, the action is executed via
BrowserGym, which moves to the next step.

Prompt truncation: When the prompt is too large for the context window of our agent, we
progressively truncate the HTML and AXTree from the end until it fits the maximum allowed number
of tokens.

B.1 More results

B.2 Basic Agents’ results

Figure 7: Learning rate ablation on WorkArena in the cross-task generalization setup. Training longer or
using smaller learning rates does not improve downstream performance, indicating that these strategies may not
enhance the agent’s generalization to unseen tasks.

B.3 Basic Agents’ results
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Figure 8: Learning rate ablation for the Basic agent in WorkArena
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