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ABSTRACT

CNNs are widely successful in recognizing human actions in videos, albeit with
a great cost of computation. This cost is significantly higher in the case of long-
range actions, where a video can span up to a few minutes, on average. The
goal of this paper is to reduce the computational cost of these CNNs, without
sacrificing their performance. We propose VideoEpitoma, a neural network ar-
chitecture comprising two modules: a timestamp selector and a video classifier.
Given a long-range video of thousands of timesteps, the selector learns to choose
only a few but most representative timesteps for the video. This selector resides
on top of a lightweight CNN such as MobileNet and uses a novel gating mod-
ule to take a binary decision: consider or discard a video timestep. This decision
is conditioned on both the timestep-level feature and the video-level consensus.
A heavyweight CNN model such as I3D takes the selected frames as input and
performs video classification. Using off-the-shelf video classifiers, VideoEpitoma
reduces the computation by up to 50% without compromising the accuracy. In
addition, we show that if trained end-to-end, the selector learns to make better
choices to the benefit of the classifier, despite the selector and the classifier re-
siding on two different CNNs. Finally, we report state-of-the-art results on two
datasets for long-range action recognition: Charades and Breakfast Actions, with
much-reduced computation. In particular, we match the accuracy of I3D by using
less than half of the computation.

1 INTRODUCTION

A human can skim through a minute-long video in just a few seconds, and still grasp its underlying
story (Szelag et al., 2004). This extreme efficiency of the human visual and temporal informa-
tion processing beggars belief. The unmatched trade-off between efficiency and accuracy can be
attributed to visual attention (Szelag et al., 2004) – one of the hallmarks of the human cognitive
abilities. This raises the question: can we build an efficient, yet effective, neural model to recognize
minutes-long actions in videos?

A possible solution is building efficient neural networks, which have a demonstrated record of suc-
cess in the efficient recognition of images (Howard et al., 2017). Such models have been suc-
cessful for recognizing short-range actions in datasets such as HMDB (Kuehne et al., 2011) and
UCF-101 (Soomro et al., 2012), where analysis of only a few frames would suffice (Schindler &
Van Gool, 2008). In contrast, a long-range action can take up to a few minutes to unfold (Hussein
et al., 2019a). Current methods fully process the long-range action video to successfully recognize
it. Thus, for long-range actions, the major computational bottleneck is the sheer number of video
frames to be processed.

Another potential solution is attention. Not only it is biologically plausible, but also it is used in a
wide spectrum of computer vision tasks, such as image classification (Wang et al., 2017), semantic
segmentation (Oktay et al., 2018), action recognition (Wang et al., 2018) and temporal localiza-
tion (Nguyen et al., 2018). Attention has also been applied to language understanding (Lin et al.,
2017) and graph modeling (Veličković et al., 2017). Most of these methods use soft-attention, where
the insignificant visual signals are least attended to. However, such signals are still fully processed
by the neural network and hence no reduction on the computation cost is obtained.
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Neural gating is a more conceivable choice to realize the efficiency, by completely dropping the
insignificant visual signals. Recently, there has been a notable success in making neural gating dif-
ferentiable (Maddison et al., 2016). Neural gating is applied to conditional learning, and is used
to gate network layers (Veit & Belongie, 2018), convolutional channels (Bejnordi et al., 2019), and
more (Shetty et al., 2017). That begs the question: can neural gating help in reducing the computa-
tional cost of recognizing minutes-long actions? That is to say, can we learn a gating mechanism to
consider or discard video frames, conditioned on their video?

Motivated by the aforementioned questions, we propose VideoEpitoma, a two-stage neural network
for efficient classification of long-range actions without compromising the performance. The first
stage is the timestep selector, in which, many timesteps of a long-range action are efficiently repre-
sented by lightweight CNN, such as MobileNet (Howard et al., 2017; Sandler et al., 2018; Howard
et al., 2019). Then, a novel gating module learns to select only the most significant timesteps – prac-
tically achieving the epitoma (Latin for summary) of this video. In the second stage, a heavyweight
CNN, such as I3D (Carreira & Zisserman, 2017), is used to effectively represent only the selected
timesteps, followed by temporal modeling for the video-level recognition.

This paper contributes the followings: i. VideoEpitoma, a neural network model for efficient recog-
nition of long-range actions. The proposed model uses a novel gating module for timestep selection,
conditioned on both the input frame and its context. ii. Off the shelf, our timestamp selector ben-
efits video classification models and yields signification reduction in computation costs. We also
show that if trained end-to-end, the timestep selector learns better gating mechanism to the benefit
of the video classifier. iii. We present state-of-the-art results on two long-range action recognition
benchmarks: Charades (Sigurdsson et al., 2016) and Breakfast Actions (Kuehne et al., 2014) with
significant reductions in the computational costs.

2 RELATED WORK

Efficient Architectures. CNNs are the go-to solution when it comes to video classification. Thus,
one prospective of reducing the computation of video recognition is to build efficient CNNs. Meth-
ods for pruning least important weights (Hassibi et al., 1993; Han et al., 2015) or filters (Li et al.,
2016) were previously proposed. Careful design choices result in very efficient 2D CNNs such as
MobileNet (Howard et al., 2019) and ShuffleNet (Zhang et al., 2018). These 2D CNNs are extended
to their 3D counterparts (ShuffleNet-3D and MobileNet-3D byKöpüklü et al. (2019)) to learn spatio-
temporal concepts for video classification. Neural architecture search (Zoph & Le, 2016) is used to
find the lightweight NasNet-Mobile (Zoph et al., 2018).

Long-range Actions Short-range actions in datasets such as Kinetics (Kay et al., 2017) and UCF-
101 (Soomro et al., 2012) have average length of 10 seconds. They can be practically classified
with CNNs using as little as 10 frames per video (Wang et al., 2016), and in some cases, even 1
frame would suffice (Schindler & Van Gool, 2008). Therefore, building efficient CNNs is a plau-
sible choice to reduce computational cost of recognizing them. However, long-range videos (e.g.
Charades (Sigurdsson et al., 2016) and Breakfast Actions (Kuehne et al., 2014)) can take up to 5
minutes to unfold. Thus, requiring as many as a thousand frames (Hussein et al., 2019a;b) to be
correctly classified. As such, analyzing all the frames using efficient CNNs can still be computa-
tionally expensive. In contrast, having a mechanism to select the most relevant frames can boost the
efficiency Bhardwaj et al. (2019). Therefore, this paper focuses on reducing the number of video
frames needed for action recognition. Nevertheless, our work is orthogonal to prior works that focus
on development of efficient CNN for action recognition.

Conditional Computing. Another solution to reduce the computation is to dynamically route the
compute graph of a neural network. The assumption is that not all input signals require the same
amount of computation – some are complicated while others are seemingly easy. Thanks to categori-
cal reparametarization (Jang et al., 2016), it becomes possible to discretize a continuous distribution,
and effectively learn binary gating. In (Veit & Belongie, 2018), a dynamical graph is build by gat-
ing the layers of a typical CNN. While in (Chen et al., 2019; Bejnordi et al., 2019), the gating is
achieved on the level of convolutional channels. In the same vien, GaterNet (Chen et al., 2019)
proposes a separate gater network to learn binary gates for the backbone network. Differently, this
paper focuses on gating the video frames themselves, to realize efficiency.
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Sampling of Video Frames. Several works discuss frame sampling for short-range videos. SC-
Sampler (Korbar et al., 2019) learns a ranking score using trimmed v.s. untrimmed video segments.
Bhardwaj et al. (2019) proposes a student-teacher model for trimmed video classification. In (Ye-
ung et al., 2016), an agent is trained with reinforcement to learn where to look next. However, frame
sampling for long-range actions is fundamentally different from that of short-range. Unlike short-
range actions, in long-range actions, usually a much smaller proportion of timesteps are crucial for
classification. As a result, this paper focuses on frame selection for solely long-range actions, and it
does not require any video-level annotation other than the video category itself.

3 METHOD
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Figure 1: Overview of the proposed model, VideoEpitoma, with two stages. The first stage is the
Timestep Selector, left. Based on a lightweight CNN, LightNet, it learns to select the most relevant
timesteps for classifying the video. This selection is conditioned on both the features of timestep
and its context. The second stage is the video classifier, right. It depends on heavyweight CNN,
HeavyNet, to effectively represent only timesteps selected in the previous stage. Then it temporally
models these selected timesteps to arrive at the video-level feature, which is then classified.
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Figure 2: Bottom, the Timestep Selec-
tor learns concept kernels to represent
the dominant visual concepts across the
videos. Top, the gating module learns to
select only a few timesteps according to
their importance to the current video.

Model Overview. VideoEpitoma consists of two stages:
Timestep Selector and Video Classifier, see figure 1. The
first stage is the Timestep Selector and consists of a
lightweight CNN, LightNet, followed by a novel gating
module, see figure 2. The purpose of this module is
timestep gating, i.e. to take binary decision of consider-
ing or discarding each video timestep, based on how rele-
vant it is to the video itself. The second stage is the video
classifier. Its main purpose is to learn deep and discrimi-
natory video-level representations for maximum classifi-
cation accuracy. Thus, it resides on top of a heavyweight
CNN, HeavyNet, followed by an off-the-shelf temporal
layer for video-level representation, and a Multi-Layer
Perceptron (MLP) for classification. Only the timesteps
chosen by the first stage, i.e. the Timestep Selector, are
considered by the second stage, i.e. the video classifier.

The Timestep Selector. Conceptually speaking, a long-
range action consists of few yet dominant and discrimi-
native visual concepts, based on which, the video can be
recognized (Hussein et al., 2019b;a). Take for example
“Making Pancake”. One can easily discriminate it by ob-
serving its dominant evidences “Pancake”, “Eggs”, “Pan”, and “Stove”. These evidences can be
thought of latent concepts. To represent these concepts, we opt for learning a set of N concept
kernels K = {k1, k2, ...kN}. K are randomly initialized and are part of the network parameters and
learned during the training of the selector. Our concept kernels K are reminiscent of the nodes in
VideoGraph (Hussein et al., 2019b) or the centroids in ActionVLAD (Girdhar et al., 2017).

Once these concepts are learned, it becomes easier to efficiently summarize a long-range action.
We transverse through a video of thousands timesteps and decide which of them to consider and
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which to discard, based on the similarity between the features of these timesteps and that of the
latent concepts. Our assumption is that a lightweight representation of each timestep is sufficient
for taking this decision. Thus, the selector depends on an efficient LightNet to represent these
timesteps. Given a long-range video v of T timestep, each is represented as a feature xi ∈ RC×H×W

using the LightNet, where C is the convolutional channels, H,W are the channel height and width,
respectively.

The Gating Module. The purpose of the gating module is to select the video timsteps, see figure 2
top. We start by comparing how relevant each timstep feature xi is to all of the concept kernels K ∈
RN×C using a dot product. The result is the similarity scores si = K · xi, s ∈ RN×1, representing
how relevant a timestep is to each of these concept kernels. Then we model the correlation between
these similarity scores si with a two-layer MLP with a single neuron in the output layer, denoted as
α. Next, we need to convert the continuous variable α to a binary variable, such that it represents the
decision of the gating module. For this, we make use of (Jang et al., 2016) to discretize a continuous
variable. Following the gating mechanism of (Bejnordi et al., 2019), we add gumbel noise to α
and follow with sigmoid activation and binary thresholding, arriving at the activated gating value α̂.
Then, each timestep feature xi is multiplied by α̂, to either select or discard it.

A problem with the aforementioned gating mechanism is that during the feedforward, the classifier
does not know which of the selected timesteps is more relevant than the other. As a remedy, we
propose a different gating mechanism, see figure 2, top. First, a sigmoid non-linearity is applied
to the gating value α to limit its lower- and upper-bound, α̂ = sigmoid(α). Then, to achieve
gating, we clip α̂ below threshold 0.5. This modified activation function clipped sigmoid fits
perfectly to the purpose of timestep gating due to 3 desirable properties, see figure 3. i. Being a
relaxation for the step-function makes it differentiable. ii. Retaining the sigmoid value above
the threshold means that the classifier gets the chance to know, out of the selected timesteps, which
is relatively more important than the other. iii. Unlike ReLU, the sigmoid activation is upper-
bounded by 1, thus preventing a single timestep from dominating the others by being multiplied by
unbounded gating value α̂.

Context Conditional Gating. Up till now, the selector learns to gate each timestep regardless of its
context, i.e. the video itself. To achieve conditional gating, where both the timestep and its context
affect the gating mechanism, we opt for a temporal modeling layer, self-attention (Wang et al.,
2018), before the gating module, See figure 2, bottom. This temporal layer learns to correlate each
timestep with all the others in the video before gating.
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Figure 3: For selecting timesteps during training, the gating module uses gated-sigmoid as the
activation for the gating value α. It has some desirable properties. i. Unlike ReLU, having upper
bound does not allow a timestep feature to dominate others. ii. Unlike sigmoid, being clipped
allows the network to discard insignificant timesteps, i.e. those with gating values α < 0.5. In test
time, we replace the gated-sigmoid with step-function for binary gating of timesteps.

Sparse Selection. The last component of the selector is to enforce sparsity on timestep selection,
i.e. choose as few timesteps as possible, yet retain the classification accuracy. Loosely speaking, the
selector can simply cheat by predicting gating values α just higher than the threshold 0.5, resulting in
all gates opened and all timesteps selected. The selector has a natural tendency to such a behaviour,
as the only loss used so far is that of classification. And the more timesteps used by the classifier, the
better the classification accuracy. To prevent such a behaviour, we apply L0 (Louizos et al., 2017)
regularization to the gating values α̂ to enforce sparsity on the selected timesteps. We note that the
Sparsity regularization is necessary for a properly functioning gating mechanism.

The Video Classifier The assumption of VideoEpitoma is that having efficiently selected the most
crucial timesteps from the video using the LightNet and the selector, one can opt for a much more
powerful HeavyNet to effectively classify the video. Thus, the second stage of VideoEpitoma is the
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video classifier, see figure 1. It takes as input only the subset T ′ of timesteps chosen by the selector,
T ′ � T . Each timestep is represented as a feature yi using HeavyNet. Following feature extraction,
we use one layer of self-attention for temporal modeling to obtain a video-level representation,
followed by a two-layer MLP for the final classification.

3.1 MODEL IMPLEMENTATION

Before training VideoEpitoma, all the CNN used, as LightNet and HeavyNet, are fine-tuned first on
the videos of the dataset in hand. VideoEpitoma is trained with batch size 32 and for 100 epochs.
We use Adam with learning rate 1e-3 and epsilon 1e-4. We use PyTorch and TensorFlow for our
implementation. Our choice for the LightNet is MobileNetv3. As for the HeavyNet, we experiment
with I3D (Carreira & Zisserman, 2017), ShuffleNet3D and ResNet2D (He et al., 2016) (the 50-layer
version). Worth mentioning that in the gating module, and during the training phase, we use gumbel
noise and clipped sigmoid to get the activated gating value α̂, see figure 2. In the test phase,
we don’t use gumbel noise, and we use step-function, to get a binary gating value.

4 EXPERIMENTS

4.1 DATASETS

Breakfast Actions Breakfast Actions is a dataset for long-range actions, depicting cooking activi-
ties. All in all, it contains 1712 videos, divided into 1357 and 335 for training and testing, respec-
tively. The task is video recognition into 10 classes of making different breakfasts. Added to the
video-level annotation, we are given temporal annotations of 48 one-actions. In our experiments, we
only use the video-level annotation, and we do not use the temporal annotation of the one-actions.
The videos are long-range, with the average length of 2.3 minutes per video. Which makes it ideal
for testing the efficiency of recognizing long-range actions. The evaluation method is the accuracy.

Charades Charades is a widely used benchmark for human action recognition. It is a diverse dataset
with 157 action classes in total. The task is mult-label recognition, where each video is assigned
to one or more action class. It is divided into 8k, 1.2k and 2k videos for training, validation and
test splits, respectively, covering 67 hours. On average, each video spans 30 seconds, and is labeled
with 6 and 9 actions for training and test splits, respectively. Thus, Charades meets the criteria of
long-range actions. We use Mean Average Precision (mAP) for evaluation.

4.2 STAND-ALONE TIMESTEP SELECTOR

One might raise an important question – will a Timestep Selector based on LightNet features benefit
a classifier based on HeavyNet features, given the differences between the feature spaces of LightNet
and HeavyNet? To answer this question, we construct an experiment of two steps on Breakfast. The
first step is training a stand-alone selector. For this, we train VideoEpitoma to classify the videos
of Breakfast, where we choose MobileNet for both LightNet and HeavyNet. During training, we
randomly sample T = 32 timesteps from each video. Since MobileNet is a 2D CNN, a timestep
here is practically a video frame. With the help of the L0 regularization, the selector achieves sparse
selection of timesteps, by as little as T = 16 without degrading the classification performance. The
second step is testing how will the selector benefit off-the-shelf CNN classifiers. For this, we use
different CNN classifiers, previously fine-tuned on Breakfast: I3D, ShuffleNet3D and ResNet2D.
Then, we measure their performance using sampled T ∈ {1, 2, 4, 8, 16} timesteps from each video.
We use different sampling methods: i. random, ii. uniform and iii. timestep selector. As discussed,
the output of the timestep selector is a per-timestep binary value α̂ ∈ {0, 1} of whether to consider
or discard this timestep. So, if T timesteps are processed by the selector, it is able to choose a subset
T ′ timesteps and discard the others, where T ′ � T . And to to evaluate the benefit of the selector,
the off-the-self classifier then uses only T ′.

As shown in figure 4, we observe that the stand-alone selector helps the off-the-shelf classifiers to
retain their performance with a reduction of up to 50% of the timesteps. The same improvement is
observed for three different CNN classifiers: I3D, ResNet2D and ShuffleNet3D. The main conclu-
sion of this experiment is the following. To realize the efficient recognition of long-range actions,
reducing the number of processed timesteps is far more rewarding than reducing the processing
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Figure 4: Our stand-alone Timestep Selector helps improving the performance and reduces the
computation of off-the-shelf CNN classifiers – be it 2D/3D heavyweight CNNs or even lightweigh
3D CNNs. More over, if the selector is trained end-to-end with the CNN classifier, the computation
is reduced even further.

of each timestep. In other words, our Timestep Selector is able to reduce, by more than half, the
computation of the already efficient ShuffleNet3D. See the appendix for full results.

4.3 END-TO-END TIMESTEP SELECTOR AND VIDEO CLASSIFIER

Having demonstrated that a stand-alone selector can benefit off-shelf classifiers, we pose another
question – is it possible to train VideoEpitoma end-to-end, given that the selector and the classifier
operate on features from two different CNNs, LightNet and HeavyNet, with two different feature
spaces. To answer this question, we do the following experiment. We train VideoEpitoma in an end-
to-end fashion, where we choose the efficient MobileNet as the LightNet of the selector. As for the
HeavyNet of the classifer, we explore multiple choices: I3D, ShuffleNet3D and ResNet2D. Based
on our experiments, a careful consideration is to align the timestep features of the 2D LightNet
with that of the 3D HeavyNet. In a typical 3D HeavyNet, each timestep is a video snippet of m
successive frames {fj , ...., fj+m}, represented as one timestep feature yi ∈ RC×H×W . Thus, the
corresponding feature xi from the 2D LightNet has to be based on the middle frame of the snippet,
i.e. frame fj+(m/2).
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Figure 5: The ratio of selected timesteps for the action categories of Breakfast. When VideoEpitoma
is trained end-to-end, the Timestep Selector learns a better selection to the benefit of the classifer.
Notice that the selection ratio changes from stand-alone selector (red) to end-to-end training with
the HeavyNets: ResNet2D (green) I3D (yellow) and ShuffleNet3D (blue).

The findings of this experiment are as follows. Figure 5 shows the ratio of the selected timesteps by
the selector for the videos of each action category of Breakfast. The ratios of the stand-alone (red)
is changed when it is trained end-to-end with different HeavyNet: ResNet2D, (blue), I3D (yellow),
and ShuffleNet3D (blue). Also, we observe that the choices for the selector when the HeavyNet is
3D CNN tends to agree, relgardless of which 3D CNN is used. Between yellow and blue, we see
agreement for 8 of 10 actions. However, the choices tend to vary between 2D and 3D as HeavyNet.
Between green and yellow, there is agreement for 3 our of 10 actions. From this experiment, we
conclude that, the gating module, depending on LightNet features, learns to select better timesteps
to the benefit of the HeavyNet classifier.
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4.4 CONTEXT CONDITIONAL GATING

Gating irrelevant visual evidences is of a great importance in recognizing long-range actions. For
example, when discriminating two action categories “Making Pancake” and “Preparing Coffee”,
we want to make a gating decision for the visual evidences of ”Knife” and ”Pan”. It is better to
discard “Knife” as it is irrelevant to both of actions – this is called frame gating. However, the visual
evidence of “Pan” is relevant to only “Making Pancake”. Thus, it’s optimal to consider it only if the
action is “Making Pancake” and discarding it otherwise – this is called context gating.

In the Timestep Selector, see figure 2 bottom, we use a temporal modeling layer before the gating
module. It enables the correlation between a timestep feature, and the video context, i.e. the other
timestep features. As a result, the gating mechanism becomes conditioned on both the timestep
and the video context. To verify this assumption, we conduct an ablation study. We train a variant
of the Timestep Selector without the temporal modeling layer, which makes the gating mechanism
conditioned on only the timestep feature.
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Figure 6: In the Timestep Selector, the gat-
ing meachnism is conditioned on both the
timestep-level feature and the video-level con-
text, which results is a better conditional gat-
ing. If the gating is only frame-conditioned,
the ratios of the selected timesteps for action
categories have small variance. Which means
the gating is less dependent on the context,
i.e. the action category. On contrary, the no-
tice a big variance for the frame and context-
conditioned. The gating becomes more de-
pendent on the action category when selecting
the timesteps.

We observe a drop in performance when using this variant of the Timestep Selector. The reason is
that when the gating is conditioned only on the timestep feature, it acts as a saliency selector. That is
to say, the gating discards only the frames not related to any of the action categories of the dataset.
Figure 6, left, shows the ratio of selected timesteps for each action categories of Breakfast. The
frame-conditioned gating (blue) tends to select similar ratios regardless of the category. In contrast,
we see more diverse ratios for the timestep and context-conditioned gating. Figure 6, right, shows
the ratio variances for the two gating mechanisms. The much higher variance for context gating
means that it is more dependent on the action category than the frame gating. We conclude that the
cost of selecting timestep using LightNet is marginal to that of the HeavyNet and classifier.

4.5 COMPUTATION-PERFORMANCE TRADEOFF
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Figure 7: VideoEpitoma, with end-to-
end selector, reduces the computation of
CNNs by selecting less timesteps.

When it comes to the recognition of long-range actions,
the golden rule is the more timesteps the better the accu-
racy, and the heavier the computation. But given the huge
redundancies of the visual evidences in these timesteps,
there is a tradeoff between accuracy and computation. In
this experiment, we explore what is effect of this tradeoff
on VideoEpitoma, and we compare against off-the-shelf
CNNs. Figure 7 shows this tradeoff for three different
CNNs: I3D, ResNet2D and ShuffleNet3D. While table 1
details the exact computational budget of VideoEpitoma
v.s. the competing CNN.

The conclusion of this experiment is twofold. First, when it comes to classifying the minutes-
long actions, classifying a handful of carefully selected timesteps, using VideoEpitoma, is far more
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rewarding solution than efficiently all of them, using for example ShuffleNet3D. Second, the cost of
selecting these timesteps can be significantly reduced by using a lightweight 2D CNN, as MobileNet.

Timesteps FLOPS (G) ↓ Accuracy ↑
LightNet HeavyNet LightNet+Gating HeavyNet Classifier Total

RNet2D — 16 — 61.7 0.13 61.8 67.27
RNet2D + Ours 16 8 0.94 30.8 0.13 31.9 68.02
SNet3D — 16 — 17.2 0.13 17.3 63.37
SNet3D + Ours 16 8 0.94 8.6 0.13 9.6 65.11
I3D — 16 — 207.7 0.13 207.7 76.91
I3D + Ours 16 8 0.94 103.8 0.13 104.8 78.11

Table 1: Breakdown of computation of VideoEpitoma v.s. baseline CNNs. We report 3 different
types of HeavyNet: i. ResNet2D (RNet2D), ii. ShuffleNet3D (SNet3D) and iii. I3D. The compu-
tational cost of LightNet and the gating module is marginal compared to that of the HeavyNet. In
addition, our selector retains the performance of the HeavyNet but with using half of the timesteps
and almost half of the computational cost.

4.6 EXPERIMENTS ON CHARADES
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Figure 8: VideoEpitoma improves
the performance of the off-the-shelf
ResNet2D for recognizing the actions of
Charades at different time scales.

Our final experiment is to experiment how VideoEpitoma
would fair against off-the-shelf CNN for recognizing the
multi-label action videos of Charades. Charades differs
from Breakfast in two ways. i Videos of Charades are
mid-range, with 0.5 minutes as average length, compared
to 2 minutes of Breakfast. ii Charades is multi-label clas-
sifications, with 7 labels per video, and 157 labels in to-
tal. Breakfast is single-label classification, with 10 labels
in total. Due to these two differences, it is harder to se-
lect unrelated timesteps from the videos of Charades than
Breakfast – most of the timesteps are already relevant
to recognizing the mid-range videos of Charades. Still,
VideoEpitoma outperforms the off-the-shelf ResNet2D,
at different time scales, see figure 8.

5 CONCLUSION

In this paper, we proposed VideoEpitoma, a neural model for efficient recognition of long-range
actions in videos. We stated the fundamental differences between long-range actions and their short-
range counterparts (Hussein et al., 2019a;b). And we highlighted how these differences influenced
our way of find a solution for an efficient recognition of such videos. The outcome of this paper is
VideoEpitoma, a neural model with the ability to retain the performance of off-the-shelf CNN clas-
sifiers at a fraction of the computational budget. This paper concludes the following. Rather than
building an efficient CNN video classifier, we opted for an efficient selection of the most salient parts
of the video, followed by an effective classification of only these salient parts. For a successful se-
lection, we proposed a novel gating module, able to select timesteps conditioned on their importance
to their video. We experimented how this selection benefits off-the-shelf CNN classifiers. Futher
more, we showed how VideoEpitoma, i.e. both the selector and the classifier, improves even further
when trained end-to-end. Finally, we experimented VideoEpitoma on two benchmarks for long-
range actions. We compared against realted methods to hightight the efficiency of videoEpitoma for
saving the computation, and its effectiveness of recognizing the long-range actions.

REFERENCES

Babak Ehteshami Bejnordi, Tijmen Blankevoort, and Max Welling. Batch-shaped channel gated
networks. In arXiv, 2019.

8



Under review as a conference paper at ICLR 2020

Shweta Bhardwaj, Mukundhan Srinivasan, and Mitesh M Khapra. Efficient video classification
using fewer frames. In CVPR, 2019.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In CVPR, 2017.

Zhourong Chen, Yang Li, Samy Bengio, and Si Si. You look twice: Gaternet for dynamic filter
selection in cnns. In CVPR, 2019.

Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic, and Bryan Russell. Actionvlad: Learn-
ing spatio-temporal aggregation for action classification. In CVPR, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In NeurIPS, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In ICNN, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In arXiv,
2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. In arXiv, 2017.

Noureldien Hussein, Efstratios Gavves, and Arnold WM Smeulders. Timeception for complex ac-
tion recognition. In CVPR, 2019a.

Noureldien Hussein, Efstratios Gavves, and Arnold WM Smeulders. Videograph: Recognizing
minutes-long human activities in videos. In arXiv, 2019b.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
arXiv, 2016.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
video dataset. In arXiv, 2017.
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A APPENDIX

Results on Breakfast

HeavyNet Sampling Timesteps

1 2 4 8 16 32 64 128

I3D Uniform 20.83 58.94 67.01 74.05 76.91 84.38 84.11 84.90
Random 42.75 53.13 60.96 69.22 75.60 81.45 83.52 83.81
Selector 48.34 60.74 68.74 79.69 82.81 85.68 86.46 87.50

ShuffleNet3D Uniform 18.75 38.54 46.27 60.76 63.37 69.62 67.27 66.23
Random 36.34 45.81 50.50 58.00 60.90 67.17 66.57 65.82
Selector 39.93 50.23 54.09 63.11 64.41 69.36 68.32 66.49

ResNet2D Uniform 27.00 50.69 61.02 67.01 67.27 72.22 74.57 76.13
Random 41.37 51.80 57.43 62.97 63.74 70.97 72.95 74.28
Selector 46.63 56.28 63.89 68.02 69.62 73.15 74.38 74.98

Table 2: Our stand-alone timestep selector helps improving the performance of off-the-shelf CNN
video classifiers, regardless of the CNN used – be it 2D CNN as ResNet, heavyweight 3D CNN as
I3D or even lightweight 2D CNN as ShuffleNet3D.
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