Under review as a conference paper at ICLR 2020

DISTILLING NEURAL NETWORKS FOR FASTER AND
GREENER DEPENDENCY PARSING

Anonymous authors
Paper under double-blind review

ABSTRACT

The carbon footprint of natural language processing (NLP) research has been in-
creasing in recent years due to its reliance on large and inefficient neural network
implementations. Distillation is a network compression technique which attempts
to impart knowledge from a large model to a smaller one. We use feacher-student
distillation to improve the efficiency of the Biaffine dependency parser which
obtains state-of-the-art performance with respect to accuracy and parsing speed
(Dozat & Manning| 2016). When distilling to 20% of the original model’s train-
able parameters, we only observe an average decrease of ~1 point for both UAS
and LAS across a number of diverse Universal Dependency treebanks while being
2.26x (1.21x) faster than the baseline model on CPU (GPU) at inference time. We
also observe a small increase in performance when compressing to 80% for some
treebanks. Finally, through distillation we attain a parser which is not only faster
but also more accurate than the fastest modern parser on the Penn Treebank.

1 INTRODUCTION

Ethical NLP research has recently gained attention (Kurita et al., 2019; [Sun et al.| [2019). For ex-
ample, the environmental cost of Al research has become a focus of the community, especially with
regards to the development of deep neural networks (Schwartz et al., 2019} [Strubell et al.| 2019).
Beyond developing systems to be greener, increasing the efficiency of models makes them more
cost-effective, which is a compelling argument even for people who might downplay the extent of
anthropogenic climate change.

In conjunction with this push for greener AI, NLP practitioners have turned to the problem of de-
veloping models that are not only accurate but also efficient, so as to make them more readily
deployable across different machines with varying computational capabilities (Strzyz et al., 2019
Clark et al.,|2019; |Vilares et al., 2019; Junczys-Dowmunt et al., 2018). This is in contrast with the
recently popular principle of make it bigger, make it better (Devlin et al.L|2019;|Radford et al., 2019).

Here we explore teacher-student distillation as a means of increasing the efficiency of neural network
systems used to undertake a core task in NLP, dependency parsing. To do so, we take a state-of-the-
art (SoTA) Biaffine parser from Dozat & Manning (2016). The Biaffine parser is not only one of
the most accurate parsers, it is the fastest implementation by almost an order of magnitude among
state-of-the-art performing parsers.

Contribution We utilise teacher-student distillation to compress Biaffine parsers trained on a di-
verse subset of Universal Dependency (UD) treebanks. We find that distillation maintains accuracy
performance close to that of the full model and obtains far better accuracy than simply implementing
equivalent model size reductions by changing the parser’s network size and training regularly. Fur-
thermore, we can compress a parser to 20% of its trainable parameters with minimal loss in accuracy
and with a speed 2.26x (1.21x) faster than that of the original model on CPU (GPU).

2 DEPENDENCY PARSING

Dependency parsing is a core NLP task where the syntactic relations of words in a sentence are
encoded as a well-formed tree with each word attached to a head via a labelled arc. Figure [I|shows

Under review as a conference paper at ICLR 2020

an example of such a tree. The syntactic information attained from parsers has been shown to benefit
a number of other NLP tasks such as relation extraction (Zhang et al., 2018), machine translation
(Chen et al.} 2018), and sentiment analysis (Poria et al., 2014; |Vilares et al.,2017).

The son of the cat hunts the rat

Figure 1: Dependency tree example.

2.1 CURRENT PARSER PERFORMANCE

Table |1| shows performance details of current SOTA dependency parsers on the English Penn Tree-
bank (PTB) with predicted POS tags from the Stanford POS tagger (Marcus & Marcinkiewicz, |1993;
Toutanova et al.l [2003). The Biaffine parser of [Dozat & Manning| (2016) offers the best trade-off
between accuracy and parsing speed with the HPSG parser of[Zhou & Zhao|(2019) achieving the ab-
solute best reported accuracy but with a reported parsing speed of roughly one third of the Biaffine’s
parsing speed. It is important to note that direct comparisons between systems with respect to pars-
ing speed are wrought with compounding variables, e.g. different GPUs or CPUs used, different
number of CPU cores, different batch sizes, and often hardware is not even reported.

speed (sent/s)

GPU CPU UAS LAS
Pointer-TD (Ma et al.| 2018) - 102" | 95.877 94.191
Pointer-LR (Fernindez-Gonzilez & Gémez-Rodriguez, [2019) - 2317 | 96.04" 94.431
HPSG (Zhou & Zhao, [2019) 158.7° - 96.09" 94.681
BIST - Transition (Kiperwasser & Goldberg, [2016) - 76+1% | 9397 91.9f
BIST - Graph (Kiperwasser & Goldberg},2016) - 804+0% | 93.17 91.0f
Biaffine (Dozat & Manning, [2016) 411t - 95.74" 94,081
CM (Chen & Manning| [2014) - 654" | 91.80" 89.601
SeqLab (Strzyz et al.|[2019) 648-£20F 10142% | 93.67F 91.72¢
UUParser (Smith et al.,2018) - 42+1 94.63 92.77
Biaffine (PyTorch) 95742 570 | 95.74 94.07
SeqLab 106146 9740 | 93.46 91.49
Biaffine-D20 116149 41442 | 92.84 90.73
Biaffine-D40 11234+6 10140 | 94.59 92.64
Biaffine-D60 1088+3 80+0 | 9478 92.86
Biaffine-D80 98743 66+0 | 94.84 92.95

Table 1: Speed and accuracy performance for SOTA parsers and parsers from our distillation method,
Biaffine-D7 compressing to % of the original model, for the English PTB with POS tags predicted
from the Stanford POS tagger. In the first table block, 1 denotes values taken from the original paper,
1 from |Strzyz et al.|(2019). Values with no superscript (second and third blocks) are from running
the models on our system locally with a single CPU core for both CPU and GPU speeds (averaged
over 5 runs) and with a batch size of 4096 with GloVe 100 dimension embeddings.

We therefore run a subset of parsers locally to achieve speed measurements in a controlled envi-
ronment, also shown in Table I} we compare a PyTorch implentation of the Biaffine parser (which
runs more than twice as fast as the reported speed of the original implementation); the UUParser
from [Smith et al.| (2018) which is one of the leading parsers for Universal Dependency (UD) pars-
ing; a sequence-labelling dependency parser from |Strzyz et al.|(2019) which has the fastest reported
parsing speed amongst modern parsers; and also distilled Biaffine parsers from our implementation

Under review as a conference paper at ICLR 2020

described below. All speeds measured here are with the system run with a single CPU core for both
GPU and CPU runs[]]

Biaffine parser is a graph-based parser extended from the graph-based BIST parser (Kiperwasser
& Goldberg| 2016) to use a deep self-attention mechanism. This results in a fast and accurate parser,
as described above, and is used as the parser architecture for our experiments. More details of the
system can be found in Dozat & Manning|(2016).

3 NETWORK COMPRESSION

Model compression has been under consideration for almost as long as neural networks have been
utilised, e.g. [LeCun et al. (1990) introduced a pruning technique which removed weights based
on a locally predicted contribution from each weight so as to minimise the perturbation to the er-
ror function. More recently, [Han et al.| (2015)) introduced a means of pruning a network up to 40
times smaller with minimal affect on performance. |Hagiwara (1994) and [Wan et al.| (2009) utilised
magnitude-based pruning to increase network generalisation. More specific to NLP, See et al.|(2016)
used absolute-magnitude pruning to compress neural machine translation systems by 40% with mini-
mal loss in performance. However, pruning networks leaves them in an irregularly sparse state which
cannot be trivially re-cast into less sparse architectures. Sparse tensors could be used for network
layers to obtain real-life decreases in computational complexity, however, current deep learning li-
braries lack this feature. |[Anwar et al.| (2017)) introduced structured pruning to account for this, but
this kernel-based technique is restricted to convolutional networks. More recently |Voita et al.[(2019)
pruned the heads of the attention mechanism in their neural machine translation system and found
that the remaining heads were linguistically salient with respect to syntax, suggesting that pruning
could also be used to undertake more interesting analyses beyond merely compressing models and
helping generalisation.

Ba & Caruanal(2014) and Hinton et al.|(2015) developed distillation as a means of network compres-
sion from the work of Bucilu et al.| (2006)), who compressed a large ensemble of networks into one
smaller network. Teacher-student distillation is the process of taking a large network, the teacher,
and transferring its knowledge to a smaller network, the student. Teacher-student distillation has
successfully been exploited in NLP for machine translation, language modelling, and speech recog-
nition (Kim & Rush} 2016} |Yu et al., 2018 [Lu et al.,[2017). Latterly, it has also been used to distill
task-specific knowledge from BERT (Tang et al., [2019).

Other compression techniques have been used such as low-rank approximation decomposition (Yu
et al.l [2017), vector quantisation (Wu et al.| [2016)), and Huffman coding (Han et al.| 2016). For a
more thorough survey of current neural network compression methods see |(Cheng et al.|(2018)).

4 TEACHER-STUDENT DISTILLATION

The essence of model distillation is to train a model and subsequently use the patterns it learnt
to influence the training of a smaller model. For feacher-student distillation, the smaller model, the
student, explicitly uses the information learnt by the larger original model, the teacher, by comparing
the distribution of each model’s output layer. We use the Kullback-Leibler divergence to calculate
the loss between the teacher and the student:

LKL:_ZZP(x)IOg

teT zeX

z)

P(
Q(x)

where P is the probability distribution from the teacher’s softmax layer, () is the probability distri-
bution from the student’s, and z is the input to the target layer for token w,, in a given tree, ¢.

(D

For our implementation, there are two probability distributions for each model, one for the arc
prediction and one for the label prediction. By using the distributions of the teacher rather than just
using the predicted arc and label, the student can learn more comprehensively about which arcs and

I'This is for ease of comparability. Parsing can trivially be parallelised by allocating sentences to different
cores, so speed per core is an informative metric to compare parsers (Hall et al.,2014).

Under review as a conference paper at ICLR 2020

labels are very unlikely in a given context, i.e. if the teacher makes a mistake in its prediction, the
distribution might still carry useful information such as having a similar probability for y, and y,
which can help guide the student better rather than just learning to copy the teacher’s predictions.

In addition to the loss with respect to the teacher’s distributions, the student model is also trained
using the loss on the gold labels in the training data. We use cross entropy to calculate the loss on
the student’s predicted head classifications:

Lop=-Y_Y p(h)logp(h) @)

teT heH
where ¢ is a tree in the treebank 7', h is a head position for the set of heads H for a given tree, and
h is the head position predicted by the student model. Similarly, cross entropy is used to calculate

the loss on the predicted arc labels for the student model. The total loss for the student model is
therefore:

L =Lxr(Th,Sh) + Lxr(Tiap; Siap) + Lce(h) + Lop(lab) 3)

where Lo g (h) is the loss for the student’s predicted head positions, L g (lab) is the loss for the stu-
dent’s predicted arc label, Lk 1, (T}, Sy) is the loss between the teacher’s probability distribution for
arc predictions and that of the student, and L 1, (Tjap, Siap) is the loss between label distributions.

5 METHODOLOGY

We train a Biaffine parser for a number of Universal Treebanks v2.4 (UD) (Nivre et al., 2019) and
apply the feacher-student distillation method to compress these models into a number of different
sizes. We use the hyperparameters from [Dozat & Manning| (2016)), but use a PyTorch implemen-
tation for our experiments which obtains the same parsing results and runs faster than the reported
speed of the original (see Table The hyperparameter values can be seen in Table 4} During
distillation dropout is not used. Beyond lexical features, the model only utilises universal part-of-
speech (UPOS) tags. Gold UPOS tags were used for training and at runtime. Also, we used gold
sentence segmentation and tokenisation. We opted to use these settings to compare models under
homogeneous settings, so as to make reproducibility of and comparability with our results easier.

Data We use the subset of UD treebanks suggested by|de Lhoneux et al.|(2017) from v2.4, so as to
cover a wide range of linguistic features, linguistic typologies, and different dataset sizes. We make
some changes as this set of treebanks was chosen from a previous UD version. We exchange Kazakh
with Uyghur because the Kazakh data does not include a development set and Uyghur is a closely
related language. We also exchange Ancient-Greek-Proiel for Ancient-Greek-Perseus because it
contains more non-projective arcs (the number of arcs which cross another arc in a given tree) as
this was the original justification for including Ancient Greek. We also included Wolof as African
languages were wholly unrepresented in the original collection of suggested treebanks. Details of
the treebanks pertinent to parsing can be seen in Table[2} We use pretrained word embeddings from
FastText (Grave et al.| 2018)) for all but Ancient Greek, for which we used embeddings from |Ginter
et al. (2017), and Wolof, for which we used embeddings from |Heinzerling & Strube|(2018). When
necessary, we used the algorithm of |[Raunak] (2017)) to reduce the embeddings to 100 dimensions.

For each treebank we then acquired the following models:

i Baseline 1: Full-sized model is trained as normal and undergoes no compression technique.

ii Baseline 2: Model is trained as normal but with equivalent sizes of the distilled models (20%,
40%, 60%, and 80% of the original size) and undergoes no compression technique. These
models have the same overall structure of baseline 1, with just the number of dimensions of
each layer changed to result in a specific percentage of trainable parameters of the full model.

iii Distilled: Model is distilled using the teacher-student method. We have four models were the
first is distilled into a smaller network with 20% of the parameters of the original, the second
40%, the third 60%, and the last 80%. The network structure and parameters of the distilled
models are the exact same as those of the baseline 2 models.

The implementation can be found at github.com/zysite/biaffine-parser. Beyond adding
our distillation method, we also included the Chu-Liu/Edmonds’ algorithm, as used in the original, to enforce
well-formed trees.

Under review as a conference paper at ICLR 2020

number of trees average tree length average arc length non-proj. arc pct
train dev test train dev test train dev test train dev test

Ancient-Greek-Perseus | 11476 1137 1306| 14.9 205 17.0 | 41 45 41 |239 232 235
Chinese-GSD 3997 500 500 | 25.7 263 250 | 47 49 47 0.1 00 03
English-EWT 12543 2002 2077|173 13.6 13.1 37 35 36 1.0 06 0.6
Finnish-TDT 12217 1364 1555|143 144 145 | 34 34 34 16 19 18
Hebrew-HTB 5241 484 491 | 273 246 260 | 39 38 37 0.8 08 09
Russian-GSD 3850 579 601 | 205 212 199 | 35 3.7 37 .1 1.0 12
Tamil-TTB 400 80 120 |16.8 168 176 | 35 37 3.7 03 00 02
Uyghur-UDT 1656 900 900 | 12.6 12.8 125 | 35 35 35 .1 13 14
Wolof-WTB 1188 449 470 | 20.8 239 23.1 35 38 36 04 04 05

Table 2: Statistics for salient features with respect to parsing difficulty for each UD treebank used:
number of trees, the number of data instances; average tree length, the length of each data instance
on average; average arc length, the mean distance between heads and dependents; non.proj. arc pct,
the percentage of non-projective arcs in a treebank.

--k- Baseg -@- Distill Base k- Baseg -@- Distill Base
__________ Y 80.5 R
85.0 PR S ad 80.0 PSR L
84.5 T 79.5 =T
sa0| ¥ 79.01 ¥
Y 0
D835 e a |37 A
PRSP A T8O| e A
83.0(et A
7750 e
82.5 77.0 ’
A LA
20 30 40 50 60 70 80 20 30 40 50 60 70 80
Percentage of base model Percentage of base model
(@ (b)

Figure 2: UAS (a) and LAS (a) against the model size relative to the original full-sized model:
Baseg, the baseline models of equivalent size to the distilled models; Distill, the distilled models;
Base, the performance of the original full-sized model.

Hardware For evaluating the speed of each model when parsing the test sets of each treebank we
set the number of CPU cores to be one and either ran the parser using that solitary core or using a
GPU (using a single CPU core too). The CPU used was an Intel Core i7-7700 and the GPU was an
Nvidia GeForce GTX 1080F]

Experiment We compare the performance of each model on the aforementioned UD treebanks
with respect to the unlabelled attachment score (UAS) which evaluates the accuracy of the arcs,
and the labelled attachment score (LAS) which also includes the accuracy of the arc labels. We also
evaluate the differences in inference time for each model on CPU and GPU with respect to sentences
per second and tokens per second. We report sentences per second as this has been the measurement
traditionally used in most of the literature, but we also use tokens per second as this more readily
captures the difference in speed across parsers for different treebanks where the sentence length
varies considerably. We also report the number of trainable parameters of each distilled model and
how they compare to the baseline, as this is considered a good measure of how green a model is in
lieu of the number of floating point operations (FPO) (Schwartz et al., 2019)E]

6 RESULTS AND DISCUSSION

Figure 22 shows the average attachment scores across all treebanks for the distilled models and the
equivalent-sized base models against the size of the model relative to the original full model. There
is a clear gap in performance between these two sets of models with roughly 2 points of UAS and
LAS more for the distilled models. This shows that the distilled models do actually manage to

3Using Python 3.70, PyTorch 1.0.0, and CUDA 8.0.

“There exist a number of packages for computing the FPO of a model but, to our knowledge, as of yet they
do not include the capability of dealing with LSTMs.

Under review as a conference paper at ICLR 2020

m UAS, bma LAS, UASeq; N0 LASeq m UAS, bma LAS, UASeq B0 LASq
N
4 N 4 N
N N N N
2 :] : 2 N B N :
| | N
EERNREI N TEERER N
2 \ur\q\ N >E.> Ml N 2, \ﬂ\c_\nsj\a_éqt gt
bS]) ﬂ a ﬂ S 1
-2 -2
-4 -4
fi wo ru he zh ug ar ta en fi wo ru he zh ug ar ta en
Treebank Treebank
(a) (b)

Figure 3: Delta UAS and LAS for when comparing both the original base model and equivalent-
sized base models for each treebank for two of our distilled models: (a) D-20, 20% of original model
and (b) D-80, 80% of original model.

gr zh en fi he ru ta ug wo

F 12.28 11.98 12.23 12.77 12.04 11.92 11.22 11.45 11.39

20(2.47 (19.7)[2.42 (20.2)[2.44 (19.7)| 2.56 (19.7)|2.39 (19.2)|2.36 (19.3)|2.25 (19.6)|2.30 (20.2)|2.27 (19.5)
40|4.88 (39.3)|4.79 (39.5)|4.86 (39.3)| 5.12 (40.2)|4.80 (40.0)|4.73 (39.5)|4.49 (39.3)|4.60 (40.4)|4.57 (39.8)
60(7.35 (59.8)|7.24 (60.5)|7.33 (59.8)| 7.66 (59.8)|7.19 (59.2)|7.18 (59.7)|6.71 (59.8)|6.90 (60.5)|6.84 (60.2)
80(9.80 (80.3)(9.57 (79.8)(9.75 (79.5)[10.23 (80.3)|9.59 (79.2)(9.52 (79.8)|8.94 (79.5)|9.19 (79.8)|9.12 (80.5)

Table 3: Trainable model parameters (x 10°) with percentage of full model in parentheses.

leverage the information from the original full model. The full model’s scores are also shown and
it is clear that on average the model can be distilled to 60% with no loss in performance. When
compressing to 20% of the full model, the performance only decreases by about 1 point for both
UAS and LAS.

Figures [3a) and [3b] show the differences in UAS and LAS for the models distilled to 20% and 80%
respectively for each treebank when compared to the equivalent sized baseline model and the full
baseline model. The distilled models far outperform the equivalent-sized baselines for all treebanks.
It is clear that for the smaller model that some treebanks suffer more when compressed to 20% than
others when compared to the full baseline model, e.g. Finnish-TDT and Ancient-Greek-Perseus.
These two treebanks have the largest percentage of non-projective arcs (as can be seen in Table
[2) which could account for the decrease in performance, with a more powerful model required to
account for this added syntactic complexity.

-e- Full --#- D-80 D-60 -#- D-40 -->- D-20 -e- Full - D-80 D-60 -®- D-40 - D-20
1400 160 - % v
2
& 1200 3140
2 2120 3 B
§ 1000 5 ;o T -
A 2100 m
o 800 el
e :
g9 [/ G —— M
2 600 o 60, et
2 2 !
o 400 & 40 ?
S
200 20| ¢
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Batch size Batch size
(a) (b)

Figure 4: GPU (a) and single core CPU (b) speeds in sentence per second with varying batch sizes
for distilled models (D-X) and full-sized base model (Full). Shaded areas show the standard error.

Under review as a conference paper at ICLR 2020

-e- Full --e- D-80 D-60 -®- D-40 - D-20 —-e- Full --e- D-80 D-60 -@- D-40 - D-20
2500 e [T FE T — X
20k{
Q @ 2000 X
> = ; e Be—mmmmmmmm L T T T -
] <] P
£ 15k4 £ i3 d
8 8 1500 1
2 rd IS e
» 10k j 2 !
o / 210001 H
o ‘ [=9
5 5 o ¥
5K1 ; 5001 &
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Batch size Batch size
(a) (b)

Figure 5: GPU (a) and single core CPU (b) speeds in tokens per second with varying batch sizes for
distilled models (D-X) and full-sized base model (Full). Shaded areas show the standard error.

-e- UAS -4 LAS —a— GPU speed -o- UAS - LAS CPU speed
90 23000 20 2600
sl 88
N
D - 2400
o N, —_ 1) —
§86 ~x L) g §86 L B 22008
- o
3 84 \.\ = ﬂ 84 2000§
< '\, 210008 < -
£ 8 N o E82 1800 §
5 N, & 5 &
&80 PR e QR * f200005 g0 et NG we R 4 16005
=] _— < z £ PR 2
< "~ © <« 1400%
78 L 78
~
'~._ 119000
76 8 76 1200
20% 40% 60% 80% Full 20% 40% 60% 80% Full
Percentage of base model Percentage of base model
(a) (b)

Figure 6: Comparison of attachment scores and percentage increase of speed (tok/s) for different
distilled models with batch size 4096: speed on GPU (a) and speed on CPU (b). Shaded areas show
the standard error.

However, the two smallest treebanks, Tamil-TTB and Wolof-WTB, actually increase in accuracy
when using distillation, especially Tamil-TTB, which is by far the smallest treebank, with an increase
in UAS and LAS of about 4 points over the full base model. This is likely the result of over-fitting
when using the larger, more powerful model, so that reducing the model size actually helps with
generalisation.

These observations are echoed in the results for the model distilled to 80%, where most treebanks
lose less than a point for UAS and LAS against the full baseline, but have a smaller increase in
performance over the equivalent-sized baseline. This makes sense as the model is still close in size
to the full baseline and still similarly powerful. The increase in performance for Tamil-TTB and
Wolof-WTB are greater for this distilled model, which suggests the full model doesn’t need to be
compressed to such a small model to help with generalisation. The full set of attachment scores
from our experiments can be seen in Table [3]in the Appendix.

With respect to how green our distilled models are, Table[3|shows the number of trainable parameters
for each distilled model for each treebank alongside its corresponding full-scale baseline. We report
these in lieu of FPO as, to our knowledge, no packages exist to calculate the FPO for neural network
layers like LSTMs which are used in our network. These numbers do not depend on the hardware
used and strongly correlate with the amount of memory a model consumes. Different algorithms do
utilise parameters differently, however, the models compared here are of the same structure and use
the same algorithm, so comparisons of the number of trainable model parameters do relate to how
much work each respective model does compared to another.

Figures [and [5| show the parsing speeds on CPU and GPU for the distilled models and for the full
baseline model for sentence per second and token per second, respectively. The speeds are reported
for different batch sizes as this obviously affects the speed at which a neural network can make

Under review as a conference paper at ICLR 2020

predictions, but the maximum batch size that can be used on different systems varies significantly.
As can be seen in Figures fa]and [5a] the limiting factor in parsing speed is the bottleneck of loading
the data onto the GPU when using a batch size less than ~1000 sentences. However, with a batch
size of 4096 sentences, we achieve an increase in parsing speed of 21% over the full baseline model
when considering tokens per second.

As expected, a much smaller batch size is required to achieve increases in parsing speed when using
a CPU. Even with a batch size of 32 sentences, the smallest model more than doubles the speed of
the baseline. For a batch size of 4096, the distilled model compressed to 20% increases the speed of
the baseline by 126% when considering tokens per second. A full breakdown of the parsing speeds
for each treebank and each model when using a batch size of 4096 sentences is given in Table [6]in
the Appendix.

Figure [6] shows the attachment scores and the corresponding parsing speed against model size for
the distilled model and the full baseline model. These plots clearly show that the cost in accuracy is
neglible when compared to the large increase in parsing speed. So not only does this teacher-student
distillation technique maintain the accuracy of the baseline model, but it achieves real compression
and with it practical increases in parsing speed and with a greener implementation. In absolute
terms, our distilled models are faster than the previously fastest parser using sequence labelling, as
can be seen explicitly in Table[I] for PTB, and outperforms it by over 1 point with respect to UAS
and LAS when compressing to 40%. Distilling to 20% results in a speed 4x that of the sequence
labelling model on CPU but comes at a cost of 0.62 points for UAS and 0.76 for LAS compared to
the sequence labelling accuracies.

Furthermore, the increase in parsing accuracy for the smaller treebanks suggests that distillation
could be used as a more efficient way of finding optimal hyperparameters depending on the available
data, rather than training numerous models with varying hyperparameter settings.

6.1 FUTURE WORK

There are numerous ways in which this distillation technique could be augmented to potentially
retain more performance and even outperform the large baseline models, such as using teacher an-
nealing introduced by|Clark et al.|(2019) where the distillation process gradually secedes to standard
training. Beyond this, the structure of the distilled models can be altered, e.g. student models which
are more shallow than the teacher models (Ba & Caruana, 2014). This technique could further im-
prove the efficiency of models and make them more environmentally friendly by reducing the depth
of the models and therefore the total number of trainable parameters.

Distillation techniques can also be easily expanded to other NLP tasks. Already attempts have been
made to make BERT more wieldy by compressing the information it contains into task-specific
models (Tang et al.,|2019). But this can be extended to other tasks more specifically and potentially
reduce the environmental impact of NLP research and deployable NLP systems.

7 CONCLUSION

We have shown the efficacy of using the teacher-student distillation technique for dependency pars-
ing by distilling a state-of-the-art parser implementation. The parser used for our experiments was
not only accurate but already fast, meaning it was a strong baseline from which to see improve-
ments. We obtained parsing speeds up to 2.26x (1.21x) faster on CPU (GPU) while only losing ~1
point for both UAS and LAS when compared to the original sized model. Furthermore, the smallest
model which obtains these results only has 20% of the original model’s trainable parameters, vastly
reducing its environmental impact.

Under review as a conference paper at ICLR 2020

REFERENCES

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3):32,
2017.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in Neural Informa-
tion Processing Systems, pp. 2654-2662, 2014.

Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp- 535-541. ACM, 2006.

Dangi Chen and Christopher Manning. A fast and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 740-750, 2014.

Kehai Chen, Rui Wang, Masao Utiyama, Eiichiro Sumita, and Tiejun Zhao. Syntax-directed atten-
tion for neural machine translation. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep
neural networks: The principles, progress, and challenges. /IEEE Signal Processing Magazine, 35
(1):126-136, 2018.

Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal, Christopher D Manning, and Quoc Le.
BAM! Born-again multi-task networks for natural language understanding. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 5931-5937, 2019.

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre. Old school vs. new school: Comparing
transition-based parsers with and without neural network enhancement. In 7LT, pp. 99-110,
2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171—
4186, 2019.

Timothy Dozat and Christopher D Manning. Deep biaffine attention for neural dependency parsing.
Proceedings of the 5th International Conference on Learning Representations, 2016.

Daniel Ferndndez-Gonzdlez and Carlos Gémez-Rodriguez. Left-to-right dependency parsing with
pointer networks. In Proceedings of NAACL-HLT, pp. 710-716, 2019.

Filip Ginter, Jan Hajic, Juhani Luotolahti, Milan Straka, and Daniel Zeman. CoNLL 2017 shared
task-automatically annotated raw texts and word embeddings., 2017. LINDAT/CLARIN digital
library at the Institute of Formal and Applied Linguistics, Charles University.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov. Learning
word vectors for 157 languages. In Proceedings of the International Conference on Language
Resources and Evaluation (LREC 2018), 2018.

Masafumi Hagiwara. A simple and effective method for removal of hidden units and weights.
Neurocomputing, 6(2):207-218, 1994.

David Hall, Taylor Berg-Kirkpatrick, and Dan Klein. Sparser, better, faster GPU parsing. In Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 208-217, 2014.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, pp. 1135-1143,
2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. ICLR, 2016.

Under review as a conference paper at ICLR 2020

Benjamin Heinzerling and Michael Strube. BPEmb: Tokenization-free Pre-trained Subword Embed-
dings in 275 Languages. In Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), May 7-12, 2018 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay Bogoycheyv, et al.
Marian: Fast neural machine translation in C++. In Proceedings of ACL 2018, System Demon-
strations, pp. 116121, 2018.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In Proceedings of
EMNLP, pp. 1317-1327, 2016.

Eliyahu Kiperwasser and Yoav Goldberg. Simple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions of the Association for Computational Linguis-
tics, 4:313-327, 2016.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black, and Yulia Tsvetkov. Measuring bias in
contextualized word representations. Proceedings of the 1st Workshop on Gender Bias in Natural
Language Processing, pp. 166172, 2019.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598—605, 1990.

Liang Lu, Michelle Guo, and Steve Renals. Knowledge distillation for small-footprint highway
networks. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4820-4824. IEEE, 2017.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, and Eduard Hovy. Stack-
pointer networks for dependency parsing. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1403-1414, 2018.

Mitchell P Marcus and Mary Ann Marcinkiewicz. Building a large annotated corpus of English:
The Penn Treebank. Computational Linguistics, 19(2), 1993.

Joakim Nivre, Mitchell Abrams, Zeljko Agi¢, et al. Universal Dependencies 2.4, 2019. LIN-
DAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (UFAL), Faculty
of Mathematics and Physics, Charles University.

Soujanya Poria, Erik Cambria, Grégoire Winterstein, and Guang-Bin Huang. Sentic patterns:
Dependency-based rules for concept-level sentiment analysis. Knowledge-Based Systems, 69:
45-63, 2014.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl Blog, 1(8), 2019.

Vikas Raunak. Simple and effective dimensionality reduction for word embeddings. Proceedings of
NIPS LLD Workshop, 2017.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green Al. arXiv preprint
arXiv:1907.10597, 2019.

Abigail See, Minh-Thang Luong, and Christopher D Manning. Compression of neural machine
translation models via pruning. In Proceedings of The 20th SIGNLL Conference on Computa-
tional Natural Language Learning, pp. 291-301, 2016.

Aaron Smith, Bernd Bohnet, Miryam de Lhoneux, Joakim Nivre, Yan Shao, and Sara Stymne. 82
treebanks, 34 models: Universal dependency parsing with multi-treebank models. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies,
pp. 113-123, 2018.

10

Under review as a conference paper at ICLR 2020

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics, 2019.

Michalina Strzyz, David Vilares, and Carlos Gémez-Rodriguez. Viable dependency parsing as se-
quence labeling. In Proceedings of NAACL-HLT, pp. 717-723, 2019.

Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang, Mai ElSherief, Jieyu Zhao, Diba Mirza, Eliz-
abeth Belding, Kai-Wei Chang, and William Yang Wang. Mitigating gender bias in natural lan-
guage processing: Literature review. Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 1630-1640, 2019.

Raphael Tang, Yao Lu, Linging Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling task-
specific knowledge from BERT into simple neural networks. arXiv preprint arXiv:1903.12136,
2019.

Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-rich part-of-
speech tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on Human Language
Technology-Volume 1, pp. 173—180. Association for computational Linguistics, 2003.

David Vilares, Carlos Gémez-Rodriguez, and Miguel A Alonso. Universal, unsupervised (rule-
based), uncovered sentiment analysis. Knowledge-Based Systems, 118:45-55, 2017.

David Vilares, Mostafa Abdou, and Anders Sggaard. Better, faster, stronger sequence tagging con-
stituent parsers. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 3372-3383, 2019.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5797-5808, 2019.

Weishui Wan, Shingo Mabu, Kaoru Shimada, Kotaro Hirasawa, and Jinglu Hu. Enhancing the
generalization ability of neural networks through controlling the hidden layers. Applied Soft
Computing, 9(1):404-414, 2009.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolutional
neural networks for mobile devices. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4820-4828, 2016.

Seunghak Yu, Nilesh Kulkarni, Haejun Lee, and Jihie Kim. On-device neural language model
based word prediction. In Proceedings of the 27th International Conference on Computational
Linguistics: System Demonstrations, pp. 128—131, 2018.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7370-7379, 2017.

Yuhao Zhang, Peng Qi, and Christopher D Manning. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 2205-2215, 2018.

Junru Zhou and Hai Zhao. Head-driven phrase structure grammar parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
2396-2408, 2019.

11

Under review as a conference paper at ICLR 2020

A APPENDIX

gr

hyperparameter value
word embedding dimensions 100
pos embedding dimensions 100
embedding dropout 0.33
BiLSTM dimensions 400
BiLSTM layers 3
arc MLP dimensions 500
label MLP dimensions 100
MLP layers 1
learning rate 0.2
dropout 0.33
momentum 0.9
L2 norm A 0.9
annealing 0.75" (*/5000)
€ 1x107"2
optimiser Adam
loss function cross entropy
epochs 100
batch size 1024

Table 4: Hyperparameters for full-sized baseline models.

zh

en

fi

he

ru

ta

ug

wo

avg

UASLAS UASLAS UASLAS UASLAS UASLAS UASLAS UASLAS UASLAS UASLASUASLAS

Full

B-20
B-40
B-60
B-80

75.5 88.2
70.5 85.1
72.2 86.1
72.0 86.7
71.8 86.7

90.8 90.5
88.6 86.7
88.9 87.7
89.5 88.1
89.1 88.5

90.8 88.9
87.9 86.3
88.5 87.1
88.7 87.1
89.3 87.1

76.9 75.2
76.2 72.2
78.4 73.0
77.5 727
78.2 73.0

88.5 85.0
86.1 82.2
86.5 83.2
87.583.3
87.8 83.5

70.4 85.9
64.4 82.1
66.4 83.5
66.4 84.0
66.2 84.3

89.0 88.6
86.4 83.6
86.8 84.8
87.585.5
87.1 85.9

88.6 85.2
85.1 82.0
85.6 83.1
86.3 83.1
86.6 82.9

71.0 58.9
69.9 55.6
71.8 55.7
70.9 55.9
71.5 56.2

84.5 80.2
81.8 76.8
822778
83.1 78.1
83.6 78.3

D-20
D-40
D-60
D-80

72.3 86.7
74.0 87.9
74.2 88.3
75.0 88.4

89.5 87.6
89.9 89.5
90.1 89.4
90.1 89.2

89.4 88.2
89.4 88.4
90.0 88.6
90.3 88.8

80.6 74.1
80.9 74.5
80.4 74.5
81.2 74.6

89.0 84.1
89.4 84.9
89.5 85.0
89.6 85.3

66.4 84.2
68.3 85.6
68.7 85.9
69.6 86.2

87.7 84.9
88.0 86.9
88.3 87.1
88.3 86.9

Table 5: Attachment Scores

12

86.7 84.2
87.0 84.6
87.5 84.7
88.0 85.0

74.7 579
74.7 58.3
74.5 58.6
75.4 58.6

85.0 79.1
85.579.9
85.8 80.1
85.7 80.4

Under review as a conference paper at ICLR 2020

Full D-20 D-40 D-60 D-80
CPU(tok/s) 1282 £3 2936 £ 7 2157+ 9 1755+ 1 1425 £ 17
. (sent/s)| 79.9+0.2 | 1829404 | 1344+0.6 | 1094+0.1 888+ 1.0
GPU(tok/s) 19784 £38 | 21658 £89 | 21851 £97 | 20785+ 66 | 19495 £+ 101
(sent/s) | 1232.8 2.4 |1349.6 5.5 |1361.6 =6.1 [12952+4.1 12148 +6.3
CPU(tOk/S) 1184+ 9 2581 £33 1999 £2 1582 + 1 1359 £ 4
h (sent/s)| 493+04 | 1074+14 83.2+0.1 65.9+£0.0 56.6 £0.2
GPU(tOk/S) 19965 £ 88 | 24189 £76 | 23393 £92 | 22052 £ 179 | 20585 £ 249
(sent/s) | 831.0+3.7 |1006.9+3.2 | 973.7+38 | 917975 | 8569+ 104
CPU(tok/s) 965 + 1 2370 £ 6 1672 £2 1323 +1 1107 £ 1
(sent/s)| 79.9+0.1 196.1 £ 0.5 1384 +0.2 | 109.5+0.1 91.6 £0.1
GPU(tok/s) 17436 £85 | 22232 £68 | 2103767 | 19952+ 73 18230 £ 35
(sent/s) | 1443.1 £7.0 |1840.0+5.6 |1741.1+5.6 [1651.3+6.1 |1508.8 +2.9
CPU(t()k/S) 1058 £2 2691 £5 1876 £2 1459 £2 1231+ 1
(sent/s) | 78.1 0.2 198.6 £0.3 138.4 £ 0.1 107.7+£0.2 90.9 £ 0.1
GPU(t(’k/s) 19117 £45 | 23513 £97 | 22581 £74 | 21193 £86 | 19804 £ 64
(sent/s) | 1410.8 =3.4 | 17353 +£7.2 |1666.5+5.5 |[1564.1 +£6.4 |1461.6+4.7
CPU(tok/s) 1316 £ 1 2833 £5 2150 £3 1759 £3 1487 £2
he (sent/s)| 52.6+0.1 113.24+0.2 859+0.1 703 £0.1 59.4£0.1
GPU(tok/s) 21170 £ 136 | 25277 £ 81 24504 £ 115 | 23424 £104 | 21602 £ 123
(sent/s) | 846.2+54 |1010.34+3.2 | 9794+46 | 9363+42 | 863.5+49
CPU(tok/s) 764 £ 1 1756 1 1289 + 1 1021 £ 2 867 £ 1
(sent/s) | 40.3+0.0 92.7£0.1 68.1 £0.0 539+0.1 458 £0.1
GPU(tok/s) 16701 £54 | 20782 £ 119 | 19102 £ 77 | 18318 £ 85 17353 £78
(sent/s) | 881.6+2.9 |1097.0+6.3 | 10083 +4.1 | 967.0+4.5 | 916.0+4.1
CPU(tok/s) 1199 £ 2 2460 £ 4 1910 £2 1575+ 2 1342 £2
ta (sent/s) | 72.4+0.1 1484 £02 | 1152£0.1 95.0£0.1 81.0£0.1
GPU(tok/s) 16507 £353 | 19658 £74 | 19519 £67 | 18402+ 73 17835 £ 173
(sent/s) | 995.9 £21.3|1186.0+4.5 |1177.6+4.1 |[1110.2+4.4 |1076.0+ 10.5
CPU(tok/s) 1111 £1 2394 £ 4 1892 £ 1 1480 £2 1275 £ 1
(sent/s)| 96.8 £0.1 | 208.6 0.3 164.9 0.1 1289+£0.2 | 111.1+0.1
GPU(tok/s) 18912 £ 120 | 22735 £62 | 22075 £61 | 20496 + 41 19859 £ 126
(sent/s) | 1647.7 & 10.5|1980.8 = 5.4 |1923.3+5.3 [1785.8+3.6 [1730.2+11.0
CPU(tOk/S) 1337+ 1 2671 +4 2147+ 4 1714 £2 1498 £2
(sent/s)| 60.4+0.1 120.7+£0.2 97.0£0.2 774 +£0.1 67.7£0.1
GPU(tOk/S) 19809 £85 | 24189 £97 | 21385 £41 20635 £78 | 20363 £ 238
(sent/s) | 895.0+3.8 |1092.8 4.4 | 9662+ 19 | 9323 +3.5 | 920.0+10.8
CPU(tok/s) 1146 +23 2550 £ 41 1920 + 34 1531 £29 1302 £ 25
ave (sent/s)| 68.0+2.2 | 1534+57 | 114639 91.2+3.0 774 +£25
GPU(tok/s) 18939 £ 139 | 22903 £ 156 | 21765 £ 145 | 20644 £ 136 | 19572 £ 125
(sent/s) | 1135.4 £27.4 | 1375.2 £34.0 | 1311.9 £ 34.0 | 1241.5 £ 31.1 | 1175.4 + 28.8

Table 6: Speeds with batch-size 4096.

13

	Introduction
	Dependency parsing
	Current parser performance

	Network compression
	Teacher-student distillation
	Methodology
	Results and Discussion
	Future work

	Conclusion
	Appendix

