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Abstract

The alternating direction method of multipliers (ADMM) has recently received
tremendous interests for distributed large scale optimization in machine learning,
statistics, multi-agent networks and related applications. In this paper, we propose a
new parallel multi-block stochastic ADMM for distributed stochastic optimization,
where each node is only required to perform simple stochastic gradient descent
updates. The proposed ADMM is fully parallel, can solve problems with arbitrary
block structures, and has a convergence rate comparable to or better than existing
state-of-the-art ADMM methods for stochastic optimization. Existing stochastic
(or deterministic) ADMMs require each node to exchange its updated primal
variables across nodes at each iteration and hence cause significant amount of
communication overhead. Existing ADMMs require roughly the same number of
inter-node communication rounds as the number of in-node computation rounds.
In contrast, the number of communication rounds required by our new ADMM is
only the square root of the number of computation rounds.

1 Introduction
Fix integer N ≥ 2. Consider multi-block linearly constrained stochastic convex programs given by:

min
xi∈Xi,∀i

f(x) =

N∑
i=1

fi(xi) s.t.
N∑
i=1

Aixi = b, (1)

where xi ∈ Rdi ,Ai ∈ Rm×di ,b ∈ Rm, Xi ⊆ Rdi are closed convex sets, and fi(xi) =
Eξ[fi(xi; ξ)] are convex functions. To have a compact representation of (1), we define x =

[x1;x2; . . . ;xN ] ∈ R
∑N
i=1 di , X =

∏N
i=1 Xi, f(x) =

∑N
i=1 fi(xi) and A = [A1,A2, . . . ,AN ] ∈

Rm×
∑N
i=1 di . Note that constraint

∑N
i=1 Aixi = b now can be written as Ax = b.

The problem (1) captures many important applications in machine learning, network scheduling,
statistics and finance. For example, (stochastic) linear programs that are too huge to be solved over a
single node can be written as (1). To solve such large scale linear programs in a distributed manner,
we can save each Ai and fi(·) at a separate node and let each node iteratively solves smaller sub-
problems (with necessary inter-node communication). Another important application of formulation
(1) is the distributed consensus training of a machine learning model over N nodes [15, 17, 23]
described as follows:

• In an online training setup, i.i.d. realizations of fi(·; ξ) are sampled at each node. In an offline
training setup, fi(xi) = Eξ[fi(xi; ξ)] are approximated by 1

Ni

∑Ni
j=1 fij(xi) where Ni is the

number of training samples at node i and each fij(·) represents one training sample.
• To enforce all N nodes are training the same model, our constraint Ax = b is given by xi = xj

for all i 6= j ∈ {1, 2, . . . , N}. (In fact, we only need such constraints for pairs (i, j) that construct
a connected graph for all nodes.)

The Alternating Direction Method of Multipliers (ADMM) is an effective and popular method to
solve linearly constrained convex programs, especially distributed consensus optimiation [28, 5],
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since it often yields distributed implementations with low complexity [4]. Conventional ADMMs are
developed for the special case of problem (1) with N = 2 and/or deterministic fi(xi). To solve a
two-block problem (1) where f1 is a stochastic function and f2 is a deterministic function, previous
works [21, 25, 31, 1] have developed stochastic (two-block) ADMMs to solve problem (1) with
N = 2. It is unclear whether these methods can be extended to solve the caseN ≥ 3. In fact, even for
problem (1) where all fi(xi) are deterministic, [6] proves that the classical (two-block) ADMM, on
which the stochastic versions in [21, 25] are built, converges for N = 2 but diverges for N ≥ 3. To
solve stochastic convex program (1) withN ≥ 3, randomized block coordinate updated ADMMs with
O(1/ε2) convergence are developed in [27, 11]. Due to the challenging stochastic objective functions,
the convergence rate of stochastic ADMMs is fundamentally slower than deterministic ADMMs, i.e.,
O(1/ε2) v.s. O(1/ε) [13, 7, 11]. The O(1/ε2) convergence is optimal since it is optimal even for
unconstrained stochastic convex optimization without strong convexity [20]. However, in distributive
implementations of ADMMs, each node has to pass its most recent xi value to its neighbors or a
fusion center and then updates the dual variable λ. Existing stochastic ADMM methods [21, 25, 11]
require a communication step immediately after each xi computation step. In practice, the inter-node
communication over TCP/IP is much slower than in-node memory computations and often requires
additional set-up time such that communication overhead is the performance bottleneck of most
distributed optimization methods.
As a consequence, communication efficient optimization recently attracted a lot of research interests
[29, 14, 24, 15, 17, 18, 23]. Work [17] proposes a primal-dual method that can solve problem (1)
with stochastic objective functions using O(1/ε2) computation iterations and O(1/ε) communication
iterations. However, the method in [17] requires each objective function fi(·) to satisfy the stringent
condition that there exists M such that fi(u) ≤ fi(v) + 〈d,u− v〉+M‖u− v‖ for any u,v and
d ∈ ∂fi(v) . Such a condition is more stringent than the smoothness when u and v are far apart from
each other. For example, the simple scalar smooth function f(x) = x2 does not satisfy this condition
over X = R. Work [18] proposes a communication efficient method to solve deterministic convex
programs based on the quadratic penalty method and can obtain an ε-optimal solution withO(1/ε2+δ)
computation rounds (δ is a positive constant) and O(1/ε) communication rounds. For distributed
consensus optimization over a network, which can be formulated as a special case of problem (1)
where Ai and b are chosen to ensure all xi are identical, mixing or local averaging based methods
with fast convergence (and low communication overhead) are recently developed in [26, 22, 23, 19].

Our Contributions: This paper proposes a new communication efficient stochastic multi-block
ADMM which has communication rounds less frequently than computation rounds. For stochastic
convex programs with general convex objective functions, our algorithm can achieve an ε-solution
with O(1/ε2) computation1 rounds and O(1/ε) communication rounds. That is, our communication
efficient ADMM has the same computation convergence rate as the ADMM in [11] but only requires
the square root of communication rounds required by the method in [11]. For stochastic convex
programs with strongly convex objective functions, our algorithm can achieve an ε-accuracy solution
with Õ(1/ε) computation rounds and Õ(1/

√
ε) communication rounds2. The fast computation

convergence (and even faster communication convergence) for strongly convex stochastic programs is
not possessed by the ADMM in [11]. When applying our new multi-block ADMM to the special case
of two-block problems, our algorithm has the same computation convergence as existing two-block
stochastic ADMM methods in [21, 25, 31, 1]. However, the number of communication rounds used
by our ADMM is only the squared root of these previous methods.

Notations: This paper uses ‖A‖ to denote the spectral norm of matrix A; ‖z‖ to denote the Euclidean
norm of vector z; and 〈y, z〉 = yTz to denote the inner product of vectors y and z. If symmetric
matrix Q � 0 is positive semi-definite, then we define ‖z‖2Q = zTQz for any vector z.

2 Formulation and New Algorithm
Following the convention in [8], a function h(x) is said to be convex with modulus µ, or equivalently,
µ-convex, if h(x)− µ

2 ‖x‖
2 is convex. The µ-convex definition unifies the conventional definitions of

convexity and strong convexity. That is, a general convex function, which is not necessarily strongly
convex, is convex with modulus µ = 0; and a strongly convex function is convex with modulus µ > 0.
Throughout this paper, convex program (1) is assumed to satisfy the following standard assumption:

1A computation round of our algorithm is a just a single iteration of the SGD update.
2A logarithm factor log( 1

ε
) is hidden in the notation Õ(·).
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Assumption 1. Convex program (1) has a saddle point (x∗,λ∗). That is, x∗ is an optimal solution

and λ∗ ∈ Rm is a Lagrange multiplier attaining strong duality q(λ∗) = f(x∗), where q(λ∗) ∆
=

inf{xi∈Xi,∀i}{f(x) + 〈λ∗,Ax− b〉} is the Lagrangian dual function.

Note that strong duality in Assumption 1 is often stated as its equivalent “KKT conditions”, e.g., in
[7]. A mild sufficient condition for Assumption 1 to hold is (1) has at least one feasible point and the
domain of each fi(xi) includes Xi as an interior [3].

Assume unbiased subgradients Gi(xi; ξ) satisfying Eξ[Gi(xi; ξ)] = ∂fi(xi),∀xi ∈ Xi
for each function fi(xi) can be sampled. Denote the stacked column vector G(x; ξ)

∆
=

[G1(x1; ξ)T, . . . , GN (xN ; ξ)T]T ∈ R
∑N
i=1 di . We have Eξ[G(x; ξ)] = ∂f(x).

Consider the communication efficient stochastic multi-block ADMM described in Algorithm 1.
Since fi(xi) are stochastic, φi(xi) defined in (2) is fundamentally unknown. However, each φi(xi)
is ν(t)-convex and its unbiased stochastic subgradient is available as long as we have unbiased
stochastic subgradients of fi(xi). The sub-procedure STO-LOCAL involved in Algorithm 1 is a
simple stochastic subgradient decent (SGD) procedure (with particular choices of parameters, starting
points and averaging schemes) to minimize φ(t)

i (·) over set Xi and is described in Algorithm 2.

Algorithm 1 Two-Layer Communication Efficient ADMM
1: Input: Algorithm parameters T , {ρ(t)}t≥1, {ν(t)}t≥1 and {K(t)}t≥1.
2: Initialize arbitrary y

(0)
i ∈ Xi,∀i, r(0) =

∑N
i=1 Aiy

(0)
i − b, λ(0) = 0, and t = 1.

3: while t ≤ T do
4: Each node i defines

φ
(t)
i (xi)

∆
=fi(xi) + ρ(t)〈r(t−1) +

1

ρ(t)
λ(t−1),Aixi −

b

N

〉
+
ν(t)

2
‖xi − y

(t−1)
i ‖2 (2)

and in parallel updates x(t)
i ,y

(t)
i using local sub-procedure Algorithm 2 via

(x
(t)
i ,y

(t)
i ) = STO-LOCAL(φ

(t)
i (·),Xi,y(t−1)

i ,K(t)) (3)

5: Each node i passes x(t)
i and y

(t)
i between nodes or to a parameter server. Update λ(t) and

r(t) via

λ(t) =λ(t−1) + ρ(t)
( N∑
i=1

Aix
(t)
i − b

)
(4)

r(t) =

N∑
i=1

Aiy
(t)
i − b. (5)

6: Update t← t+ 1.
7: end while
8: Output: x(T ) = 1∑T

t=1 ρ
(t)

∑T
t=1 ρ

(t)x(t)

Algorithm 2 STO-LOCAL(φ(z),Z, zinit,K)

1: Input: µ: strong convexity modulus of φ(z); Algorithm parameters: k0 > 0; γ(k) =
2

µ(k+k0) ,∀k ∈ {1, 2, . . . ,K}.
2: Initialize z(0) = zinit and k = 1.
3: while k ≤ K do
4: Observe an unbiased gradient ζ(k) such that E[ζ(k)] = ∂φ(z(k−1)) and update z(k) via

z(k) = PZ
[
z(k−1) − γ(k)ζ(k)

]
(6)

where PZ [·] is the projection onto Z .
5: end while
6: Output: (ẑ, z(K)) where ẑ is the time average of {z(0), . . . , z(K)} defined in Lemmas 1 or 2.
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We now justify why Algorithm 1 is a two-layer ADMM method. (See Supplement 6.1 for a more
detailed discussion.)

• The Lagrange multiplier update (4) is identical to that used in existing ADMM methods or other
Lagrangian based methods. It is helpful to enforce the linear constraint.

• At the first sight, the primal update in Algorithm (4) is quite different from existing deterministic
ADMMs in [10, 4, 7], which require to solve an “argmin" problem, or stochastic ADMMs in
[21, 25, 11], which perform a single gradient descent step . However, with a simple manipulation,
it is not difficult to show that that function φ(t)

i (xi) in (2) is similar to the “argmin" target in the
proximal Jacobi ADMM method [7] with the distinction that the proximal term ‖xi − y

(t−1)
i ‖2 is

regarding a newly introduced variable y
(t−1)
i rather than x

(t−1)
i .

Recall that the fastest stochastic ADMMs in [21, 25, 11] can solve general convex problem (1) (with
N = 2) with O(1/

√
T ) convergence. That is, to obtain a solution with ε errors for both the objective

value and the constraint violation, the ADMMs in [21, 25, 11] require O(1/ε2) computation steps,
each of which uses a single gradient evaluation and variable update. The ADMMs in [21, 25, 11] has a
single layer structure and hence are communication inefficient in the sense that each computation step
involves a communication steps. Thus, the communication complexity of these stochastic ADMMs
is also O(1/ε2). Compared with existing ADMMs in [21, 25, 11], Algorithm 1 has a two layer
structure where each outer layer step involves a single inter-node communication step given by (4)-(5)
and calls the sub-procedure, i.e. Algorithm 2, STO-LOCAL(φ

(t)
i (·),Xi,y(t)

i ,K(t)), which is run by
each node locally and in parallel and hence does not incur any inter-node communication overhead.
Since each call of Algorithm 2 incurs K(t) SGD update, T iterations of Algorithm 1 use

∑T
t=1K

(t)

computation steps. We shall show that to achieve an ε solution for general convex problem (1),
Algorithm 1 uses T = O(1/ε) communication rounds and

∑T
t=1K

(t) = O(1/ε2) computation steps.
That is, Algorithm 1 is as fast as existing fastest stochastic ADMMs but uses only a square root of the
number of communications rounds in [21, 25, 11].

Note that inter-node communication in Algoirthm 1 can be either centralized or decentralized. To use
centralized communication, we can let all nodes pass their x(t)

i to a parameter server, where (4)-(5) are
executed, and then pull the updated λ(t) and r(t) from the server. It is possible to implement (4)-(5)
using decentralized communication by exploring the structure of matrix A = [A1,A2, . . . ,AN ]. For
example, consider distributed machine learning in a line network where Ax = b is given by N − 1

equality constraints xi − xi+1 = 0, i ∈ {1, 2, . . . , N − 1}. In this case, λ(t)
i and r

(t)
i only depend on

x
(t)
i and x

(t)
i+1 and are only used to updates x(t+1)

i and x
(t+1)
i+1 . Thus, to implement Algorithm 1, each

node only needs to send its local x(t)
i to and pull λ(t)

j and r
(t)
j from its neighbors in the line network.

2.1 Basic Facts of Algorithm 2
Since each iteration of Algorithm 1 calles Algorithm 2, which essentially applies SGD with carefully
designed step size rules to newly introduced objective functions φ(t)

i (·). This subsection provides
some useful insight of SGD for strongly convex stochastic minimization.

It is known that SGD can have O(1/ε) convergence for strongly convex minimization. The next two
lemmas summarize the convergence of SGD Algorithm 2. When characterizing O(1/ε) rate, our
lemmas also include a push-back term involving the last iteration solution. This term ensures when
the SGD solution from Algorithm 2 is used in the outer-level ADMM dynamics, the accumulated
error of our final solution does not explode. It also explains why we use y

(t−1)
i , which is the last

iteration solution from the SGD sub-procedure, rather than conventional x(t−1)
i to define φ(t)

i (xi).

Lemma 1 ([16]). Assume φ(z) is a µ-convex function (µ > 0) over set Z and there exists a constant
B such that the unbiased subgradient ζ(k) used in Algorithm 2 satisfies E[‖ζ(k)‖2] ≤ B2,∀k ∈
{1, 2, . . . ,K}. If we take k0 = 1 in Algorithm 2, then for all z ∈ Z , we have

E[φ(ẑ)] ≤ φ(z)− µ

2
E[‖z(K) − z‖2]︸ ︷︷ ︸

(7)-term (I)

+
2B2

µ(K + 1)
, (7)

where ẑ = 1∑K−1
k=0 (k+k0)

∑K−1
k=0 (k + k0)z(k).
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Remark 1. It is firstly shown in [16] that Algorithm 2 with k0 = 1 (vanilla SGD with a particular
averaging scheme) has O(1/ε) convergence for non-smooth strongly convex problems. Note that (7)
holds for all z ∈ Z (not necessarily the minimizer of φ(·)). The push-back term (7)-term (I) is often
ignored in convergence rate analysis for SGD but is important for our analysis of Algorithm 1.

Recall that a function h(x) is said to be L-smooth if its gradient ∇h(x) is Lipschitz with modulus
L. The next lemma is new and extends Lemma 1 to smooth minimization such that the error term
depends only on the variance of stochastic gradients (using a different averaging scheme).
Lemma 2. Assume φ(z) is a L-smooth and µ-convex function (µ > 0) with conditional number
κ = L

µ and there exists σ > 0 such that unbiased gradient ζ(k) (at point z(k−1)) in Algorithm 2

satisfies E[‖ζ(k) −∇φ(z(k−1))‖2] ≤ σ2,∀k ∈ {1, 2, . . . ,K}. If we take integer k0 > 2κ, then for
any z ∈ Z , we have

E[φ(ẑ)] ≤φ(z) +
µ(k20 − k0)

2K(K + 2k0 − 1)

(
E[‖z− z

(0)‖2]− E[‖z− z
(K)‖2]

)
−
µ

2
E[‖z− z

(K)‖2] +
2k0σ

2

(K + 2k0 − 1)µ
(8)

where ẑ = 1∑K
k=1(k+k0−1)

∑K
k=1(k + k0 − 1)z(k).

Proof. See Supplement 6.6.

3 Performance Analysis of Algorithm 1
This section shows that Algorithm 1 can achieve an ε-accuracy solution using O(1/ε2) computation
rounds and O(1/ε) communication rounds for general convex stochastic programs; or using Õ(1/ε)

computation rounds and Õ(1/
√
ε) communication rounds for strongly convex stochastic programs.

3.1 General objective functions (possibly non-smooth non-strongly convex)
Theorem 1. Consider convex program (1) under Assumption 1. Let (x∗,λ∗) be any saddle point
defined in Assumption 1. Assume that
• The constraint set X is bounded, i.e., there exists constant R > 0 such that ‖x‖ ≤ R,∀x ∈ X .

• The function f(x) has unbiased stochastic subgradients with a bounded second order moment, i.e.,
there exists constant D > 0 such that Eξ[‖G(x; ξ)‖2] ≤ D2,∀x ∈ X .

For all T ≥ 1, if we choose any fixed ρ(t) = ρ > 0, ν(t) = ν ≥ 8ρ‖A‖2, K(t) = K ≥ T in
Algorithm 1 and the sub-procedure STO-LOCAL (Algorithm 2) uses ẑ defined in Lemma 1 as the
output, then

E[f(x(T ))] ≤ f(x∗) +
ν

2T
‖x∗ − y(0)‖2 +

C

2νT
(9)

E[‖Ax(T ) − b‖] ≤ 1

T

√
Q

ρ
(10)

where x(T ) = 1
t

∑T
t=1 x

(t); Q = (2‖λ∗‖ +

√
ρν‖x∗ − y(0)‖2 + 24ρD2

ν
+

24(ρ)3‖A‖2(‖A‖R+‖b‖)2
ν

+ 96νρR2/
(
1−√

8ρ‖A‖2
ν

))2 is an absolute constant (irrelevant to T ); andC ∆
= 4‖A‖2Q+12D2+12ρ2‖A‖2(‖A‖R+

‖b‖)2 + 48ν2R2 is also an absolute constant.

Proof. See Supplement 6.7.
Remark 2. After T outer-level rounds, Algorithm 1 yields a solution with error O(1/T ). Note that
the number of communication rounds is equal to the number of outer-level rounds and the number
of computation rounds is

∑T
t=1K

(t) = O(T 2) when K(t) = T, ∀t. Thus, to obtain an ε-solution,
Algorithm 1 uses O(1/ε) communication rounds and O(1/ε2) computation rounds.
Remark 3. If we choose ν(t) = ν = 8ρ‖A‖2 in Theorem 1 and further analyze the dependence on
‖A‖ in (9)-(10), we have E[f(x(T ))] ≤ f(x∗) + O( 1

T ρ‖A‖
2) and E[‖Ax(T ) − b‖] ≤ O( 1

T ( 1
ρ +

‖A‖)). If ‖A‖ is large, to balance the dependence on ‖A‖ in (9)-(10), we shall choose ρ = 1
‖A‖ such

that the error terms in both (9) and (10) are order O( 1
T ‖A‖). In general, ρ can be controlled to trade

off between objective error and constraint error. For distributed consensus optimization considered in
[26, 22, 23, 19] (assuming di = 1 without loss of generality), we can choose any A,b that suffices to
ensure the consistence of local solutions, e.g., Null{A} =Span{1} and b = 0. Our method does not
necessarily require A = I−W with a stochastic matrix W encoding the network topology as some
methods in [26, 22, 23, 19]. Nevertheless, even when ung A = I−W, our communication overhead
can possibly have a better dependence on W. Note that a stochastic matrix W ensures ‖A‖ ≤ 2.
The convergence in [26, 22, 23, 19] (using a doubly stochastic or symmetric PSD W for mixing)
further depends on 1/(1−max{|λ2(W)|, |λN (W)|}) or the eigen-gap λ1(W)/λN−1(W), which
can be much larger than constant 2 when some eigenvalues are extreme.

5



3.2 Smooth objective functions

For unconstrained stochastic smooth minimization, the constant factor in the SGD convergence
rate is determined by the variance that can be significantly less than the second order moment for
non-smooth stochastic minimization[20]. Such a property enable us to speed up SGD by averaging
multiple i.i.d. stochastic gradients, e.g., mini-batch SGD. In this subsection, we show that Algorithm
1 has a similar property when f(·) in problem (1) is smooth.
Theorem 2. Consider convex program (1) with µ-convex (possibly µ = 0) objective function under
Assumption 1. Let (x∗,λ∗) be any saddle point defined in Assumption 1. Assume that
• The function f(x) is L-smooth.
• The function f(x) has unbiased stochastic gradients with a bounded variance, i.e., there exists

constant σ > 0 such that Eξ[‖G(x; ξ)−∇f(x)‖2] ≤ σ2,∀x ∈ X .
If the sub-procedure STO-LOCAL (Algorithm 2) uses ẑ defined in Lemma 2 as the output, then
Algorithm 1 ensures:

• General Convex (µ = 0): For all T ≥ 1, if we choose any fixed ρ(t) = ρ > 0, ν(t) = ν ≥ ρ‖A‖2,
K(t) = K = T and positive integer k0 ≥ 2L+ν

ν , then we have

E[f(x
(T )

)] ≤ f(x
∗
) +

1

T

ν(k0 + 1)

4
‖x∗ − y

(0)‖2 +
1

T

2k0σ
2

ν
(11)

E[‖Ax
(T ) − b‖] ≤

1

T

( 2

ρ
‖λ∗‖+

√
ν(k0 + 1)

2ρ
‖x∗ − y

(0)‖+ 2

√
k0σ2

ρν

)
(12)

where x(T ) = 1
t

∑T
t=1 x

(t) .

• Strongly Convex (µ > 0): For all T ≥ 1, if we choose ρ ≤ µ
3‖A‖2 , ρ

(t) = tρ, ν(t) = tρ‖A‖2,

positive integer k0 ≥ 2(1 + L
µ ) and K(t) = (2k0 − 1)t, then we have

E[f(x
(T )

)] ≤ f(x
∗
) +

1

T (T + 1)

(
c1‖x∗ − y

(0)‖2 +
c2

ρ
log(T + 1)

)
(13)

E[‖Ax
(T ) − b‖] ≤

2

T (T + 1)

( 4‖λ∗‖
ρ

+

√
c1
√
ρ
‖x∗ − y

(0)‖+

√
c2 log(T + 1)

ρ

)
(14)

where x(T ) = 1∑T
t=1 ρ

(t)

∑T
t=1 ρ

(t)x(t); and c1
∆
= ρ‖A‖2 +

(ρ‖A‖2+µ)(k20−k0)
2(2k0−1)2 and c2

∆
=

4k0σ
2

(2k0−1)‖A‖2 are two constants.
Proof. See Supplement 6.8.
Remark 4. If f(x) in convex program (1) is strongly convex, Algorithm 1 can obtain a solution
with error O( log(T )

T 2 ) after T outer-level rounds. Recall the number of communication rounds
is equal to the number of outer-level rounds and the number of computation rounds is equal to∑T
t=1K

(t) = 2k0−1
2 T (T + 1) = O(T 2), Algorithm 1 requires Õ( 1

ε ) communication rounds and
Õ( 1

ε2 ) computation rounds to obtain an ε-solution.

3.3 Non-smooth strongly convex objective functions

There is a fourth case, where the stochastic objective function f(x) is strongly convex but possibly
non-smooth, uncovered in the previous subsections. In this case, we assume the following condition
(originally introduced in [17]): There exists constant M > 0 such that

f(x) ≤ f(y) + 〈d,x− y〉+M‖x− y‖, (15)

for all x,y ∈ X and d ∈ ∂f(y). This condition is assumed throughout [17] to develop a different
communication efficient primal-dual method. Supplement 6.9 shows this condition is almost as
useful as smoothness and under this condition, our communication efficient ADMM can achieve
an ε-accuracy solution with Õ(1/ε) computation rounds and Õ(1/

√
ε) communication rounds for

non-smooth strongly convex stochastic optimization.

4 Experiments
4.1 Distributed Stochastic Optimization with Noisy Stochastic Gradient Information

Consider simple stochastic optimization given by
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min

3∑
i=1

Eci [‖xi − ci‖22] (16)

s.t. x1 = x2,x2 = x3 (17)

xi ∈ [−1, 1]3,∀i ∈ {1, 2, . . . , 3} (18)

where ci ∼ N (c̄i, σ
2
i I) satisfy normal distributions with c̄1 = [−2.0871,−0.3702, 0.2302]T, σ1 =

0.1, c̄2 = [−0.5556,−0.4413, 0.2869]T, σ2 = 0.2, c̄3 = [−1.4991,−1.8286,−2.0477]T and σ3 =
0.1. Solving this problem with Algorithm 1 only requires each node to access samples of local ci and
does not use the true value c̄i and σi,which are fundamentally unavailable. However, by assuming the
knowledge of c̄i and σi, we can convert this stochastic optimization to a deterministic problem and
use CVXPY [9] to obtain the unique solution x∗1 = x∗2 = x∗3 = [−1,−0.88003599,−0.51020207]T

such that we can evaluate the performance of Algorithm 1. Since the objective function is smooth and
strongly convex, by Theorem 2, using time-varying parameters in Algorithm 1 has faster convergence.
We run Algorithm 1 with constant ρ, ν according to3 Theorem 1 and with time-varying ρ(t), ν(t)

according to Theorem 2, respectively. Note that if an algorithm has O(1/εβ) convergence, then its
error should decay like O(1/t1/β) where t is the iteration index.

Figures 1 plots the distance to x∗ versus the computation round index or the communication round
index in a log-log scale. It also plots baseline curves 1/t

1
β corresponding to O(1/εβ) convergence

proven in the theorems. Note that in a log-log scale, curves 1/t
1
β become straight lines with

slopes − 1
β . That is, if our algorithm has the proven convergence rate, the error curves should be

eventually parallel to corresponding baseline for large t. In Figures 1, we observe the numerical
result is consistent with our theoretical rate proven in our theorems. This simple experiment verifies
the correctness of our theorems. Our multi-core implementation of Algorithm 1 uses Python 3.7
and MPI4PY. In an experiment over a machine with a multi-core Intel Xeon Processor E5-2682
2.5GHz. Each computation round takes 0.3ms and each communication round takes 43.7ms. Note
communication becomes more relatively expensive as more parallel nodes/cores are involved.

(a) (b)

(c) (d)

Figure 1: Performance of Algorithm 1 to solve stochastic optimization (16)-(18): (a)& (b) conver-
gence w.r.t. # of computation rounds; (c)&(d) convergence w.r.t. # of communication rounds.

3Since f(x) is also smooth, using constant ρ, ν according to Theorem 2 can give a similar (slightly better)
performance. Theoretically, by using K(t) = t rather than K(t) = T for a fixed T , the rate is slightly worse, i.e.
O(log(T )/T ) v.s. O(1/T ). However, we find the performance degradation for large T regions is negligible
when using K(t) = t. In contrast, using K(t) = t enable the algorithm converge faster for small t. We use
K(t) = t when performing the numerical experiments in this paper.
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4.2 Distributed l1 Regularized Logistic Regression

Consider a distributed l1 regularized logistic regression problem (over 10 nodes) given by:

min
1

10

10∑
i=1

1

Ni

Ni∑
j=1

log(1 + exp(bij(a
T
ijxi)) + µ‖xi‖1 (19)

with each optimization variable xi ∈ Rd. Each node contains Ni training pairs (aij , bij), where
aij ∈ Rd is a feature vector and bij ∈ {−1, 1} is the corresponding label. To ensure all nodes yield a
consistent model, consensus constraints are needed to enforce all xi are equal. Note that conventional
two-block ADMMs must introduce a dummy block (server node) z and add constraints xi = z. (See
e.g., [4, 21, 25].) However, such an ADMM method requires all nodes to pass the updated xi value
to the (server) node corresponding to the z block and hence can turn z node into a communication
bottleneck in large networks. In contrast, using a multi-block ADMM method allows arbitrary
linear constraints, e.g., constraints xi = xi+1,∀i that ensure all xi are equal, and the corresponding
multi-block ADMM only uses communication between adjacent blocks. Alternatively, consider a line
network where only one-hop transmission is allowed, then our ADMM naturally yields a protocol
that is faithful to the network communication restriction. In general, given an arbitrary network
communication topology, our multi-block ADMM can always yield an implementable distributed
protocol by adding constraints xi = xj for links (i, j) existing in the network.

We generate a problem instance in a way similarly to [4]. Our problem instance uses d = 100,
Ni = 105 for all i and µ = 0.002. Each feature vector aij is generated from a standard normal
distribution. We choose a true weight vector xtrue ∈ Rd with 10 non-zero entries from a standard
normal distribution and then generate the label bij = sign(aTijx

true + ni) where noise ni ∼ N (0, σ2
i )

with fixed constants σi randomly generated from a uniform distribution Unif[0, 1]. Figures 2 compares
Algorithm 1 with RPDBUS ADMM proposed in [11], where the number of communication rounds is
the same that of computation rounds, and DCS in [17], where the number of communication rounds
is the square root of that of computation rounds. We observe that Algorithm 1 has fastest convergence
with respect to both computation and communication.

(a) (b)

(c) (d)

Figure 2: Distributed l1 regularized logistic regression: (a)& (b) performance w.r.t. # of computation
rounds; (c)&(d) performance w.r.t. # of communication rounds

5 Conclusions
This paper proposes a new communication efficient multi-block ADMM for linearly constrained
stochastic optimization. This method is as fast as (or faster than) existing stochastic ADMMs but the
associated communication overhead is only the square root of that required by existing ADMMs.
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