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Abstract

Hierarchical clustering is a common approach to analysing the multi-scale
structure of graphs observed in practice. We propose a novel metric for
assessing the quality of a hierarchical clustering. This metric reflects the
ability to reconstruct the graph from the dendrogram encoding the hier-
archy. The best representation of the graph for this metric in turn yields
a novel hierarchical clustering algorithm. Experiments on both real and
synthetic data illustrate the efficiency of the approach.

1 Introduction

Many datasets have a graph structure. Examples include infrastructure networks, commu-
nication networks, social networks, databases and co-occurence networks, to quote a few.
These graphs often exhibit a complex, multi-scale structure where each node belong to many
groups of nodes, so-called clusters, of different sizes (Caldarelli and Vespignani (2007)).

Hierarchical graph clustering is a common technique for the analysis of the multi-scale
structure of large graphs. Instead of looking for a single partition of the set of nodes, as in
usual clustering techniques, the graph is represented by a hierarchical structure known as a
dendrogram, which can then be used to find relevant clusterings at different resolutions, by
suitable cuts of this dendrogram.

While many hierarchical graph clustering algorithms have recently been proposed (see for
instance Newman (2004); Pons and Latapy (2005); Sales-Pardo et al. (2007); Clauset et al.
(2008); Lancichinetti et al. (2009); Ronhovde and Nussinov (2009); Huang et al. (2010);
Chang et al. (2011); Tremblay and Borgnat (2014); Bonald et al. (2018)), it proves very
difficult to evaluate their performance due to the absence of public datasets of graphs with
ground-truth hierarchy. A natural approach is then to define some quality metric based on
the graph itself, just like modularity is a popular metric for assessing the quality of graph
clustering (Newman and Girvan (2004)).

A cost function has been proposed by Dasgupta (2016) for hierachical graph clustering and
has been further analysed and extended by Cohen-Addad et al. (2018); it can be viewed as
the expected size of the smallest cluster induced by the hierarchy and containing two nodes
sampled at random from the edges of the graph. In this paper, we propose a quality metric
based on the ability to reconstruct the graph from the hierarchy. It is equal to the relative
entropy of the probability distribution on node sets induced by the hierarchy compared to
that induced by independent node sampling. Finding the best graph representation for this
metric yields a novel hierarchical clustering algorithm, which can in turn be interpreted in
terms of modularity.

In the next section, we introduce sampling distributions of nodes and node sets induced by
the graph, which play a key role in our approach. We then formalize the problem of graph
representation by a dendrogram. Our quality metric follows from the characterization of
the optimal solution in terms of graph reconstruction. The corresponding hierarchical graph
clustering algorithm is then presented and interpreted in terms of modularity. The results
are illustrated by some experiments on both real and synthetic data.

1



Under review as a conference paper at ICLR 2019

2 Sampling distribution

Consider a weighted, undirected, connected graph G = (V,E) of n nodes, without self-loops.
Let w(u, v) be equal to the weight of edge {u, v}, if any, and to 0 otherwise. We refer to the
weight of node u as:

w(u) =
∑
v∈V

w(u, v).

We denote by w the total weight of nodes:

w =
∑
u∈V

w(u) =
∑
u,v∈V

w(u, v).

Observe that the weight of each edge is counted twice in this sum.

Similarly, for any sets A,B ⊂ V , let

w(A,B) =
∑

u∈A,v∈B
w(u, v),

and
w(A) =

∑
u∈A

w(u).

Node sampling. The weights induce a probability distribution on node pairs:

∀u, v ∈ V, p(u, v) =
w(u, v)

w
,

with marginal distribution:

∀u ∈ V, p(u) =
∑
v∈V

p(u, v) =
w(u)

w
.

This joint probability distribution is symmetric in the sense that p(u, v) = p(v, u) for all
u, v ∈ V . This is the relative frequency of moves from node u to node v by a random walk
in the graph, with transition probability:

∀u, v ∈ V, p(v|u) =
p(u, v)

p(u)
=
w(u, v)

w(u)
.

Observe that p(u, u) = 0 for all u ∈ V due to the absence of self-loops in the graph.

Node set sampling. For any partition P of V , the weights induce a probability distri-
bution on P:

∀A,B ∈ P, p(A,B) =
w(A,B)

w
,

with marginal distribution:

∀A ∈ P, p(A) =
∑
B∈P

p(A,B) =
w(A)

w
.

Again, this joint probability distribution is symmetric in the sense that p(A,B) = p(B,A)
for all A,B ∈ P. This is the relative frequency of moves from A to B by the random walk.

3 Representation by a dendrogram

Assume the graph G is represented by a dendrogram, that is a rooted binary tree T whose
leaves are the nodes of the graph, V . We denote by int(T ) the set of internal nodes of the tree
T (all nodes except leaves). For each i ∈ int(T ), a positive number d(i) is assigned to node
i, corresponding to its height in the dendrogram. We assume that the dendrogram is regular
in the sense that d(i) ≥ d(j) if i is an ancestor of j in the tree. For each i ∈ int(T ), there are
two subtrees attached to node i, with sets of leaves A and B; these sets uniquely identify
the internal node i so that we can write i = (A,B) = (B,A) and d(i) = d(A,B) = d(B,A).
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Ultrametric. The dendrogram defines a metric on V : for each u, v ∈ V , we define
d(u, v) = 0 if u = v and d(u, v) = d(i) otherwise, where i ∈ int(T ) is the closest com-
mon ancestor of u and v in the corresponding tree. This is an ultrametric in the sense
that:

∀u, v, x ∈ V, d(u, v) ≤ max(d(u, x), d(v, x)).

Conversely, any ultrametric defines a dendrogram, which can be built from bottom to top
by successive merges of the closest nodes, where the distance of the node resulting from the
merge of two nodes u and v, which we denote by u ∪ v, to any other node x is defined by:

d(u ∪ v, x) = max(d(u, x), d(v, x)).

Nested clustering. The tree T induces a clustering C of the set of nodes, with A ∈ C if
and only if A is the set of leaves of a subtree of T . This is a nested clustering in the sense
that:

∀A,B ∈ C, A ⊂ B or A ∩B = ∅.
Although C is not a partition of V , we get a probability distribution on cluster pairs by
restricting the sampling to cluster pairs A,B such that (A,B) ∈ int(T ):∑

A,B:(A,B)∈int(T )

p(A,B) =
∑

i∈int(T )

∑
u,v:i=u∧v

p(u, v) =
∑
u,v∈V

p(u, v) = 1,

where u ∧ v denotes the closest common ancestor of u and v in the tree T .

Graph representation. To assess the quality of the dendrogram, we address the issue of
the reconstruction of the graph from the dendrogram. In general, some information about
the relative node weights may be known in addition to the dendrogram. Thus we introduce
some probability distribution π on V representing this prior information: the distribution π
is uniform in the absence of such information and is equal to the sampling distribution p for
a perfect knowledge of the relative node weights. Now we look for the best representation
of G by a dendrogram d in the sense of the reconstruction of G from d, π, which can be
viewed as the autoencoding scheme:

G 7−→ d, π 7−→ Ĝ,

where Ĝ is the reconstruction of G.

Since d(u, v) can be interpreted as a distance between u and v, its inverse corresponds to a
similarity. Accounting for the prior information about the relative weights of u and v, we
define the weight ŵ(u, v) between nodes u, v ∈ V in the graph Ĝ as:

ŵ(u, v) =
π(u)π(v)

d(u, v)
1{u6=v}. (1)

Denoting by ŵ the total weight,

ŵ =
∑
u,v∈V

ŵ(u, v), (2)

we get the following node pair sampling distribution associated with Ĝ:

p̂(u, v) =
ŵ(u, v)

ŵ
. (3)

The distance between graphs G and Ĝ can then be assessed through the Kullback-Leibler
divergence between the respective sampling distributions,

D(p||p̂) =
∑
u,v∈V

p(u, v) log
p(u, v)

p̂(u, v)
,

which can be written as the relative entropy D(p||p̂) = H(p, p̂)−H(p), where

H(p, p̂) = −
∑
u,v∈V

p(u, v) log p̂(u, v) and H(p) = −
∑
u,v∈V

p(u, v) log p(u, v)

are the cross-entropy between the probability distributions p and p̂ and the entropy of the
probability distribution p, respectively. Observe that H(p, p̂) ≥ H(p), with equality if and
only if p̂ = p.
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Optimization problem. Minimizing the Kullback-Leibler divergence D(p||p̂) in p̂ is
equivalent to minimizing the cross-entropy H(p, p̂) in p̂. In view of (1) and (3), we have

H(p, p̂) = H(p, π) +
∑
u,v∈V

p(u, v) log d(u, v) + log(ŵ),

where π here denotes the bivariate probability distribution π(u, v) = π(u)π(v). Thus the
problem reduces to minimizing the cost function:

J(d) =
∑
u,v∈V

p(u, v) log d(u, v) + log

 ∑
u,v∈V

π(u)π(v)

d(u, v)

 ,

over all ultrametrics d defined on V . Observe that J(αd) = J(d) for any α > 0, so that the
best ultrametric is defined up to a multiplicative constant. Using the fact that d(u, v) = d(i),
where i = u ∧ v is the closest common ancestor of u and v in the tree, we get:

J(d) =
∑

A,B:(A,B)∈int(T )

p(A,B) log d(A,B) + log

 ∑
A,B:(A,B)∈int(T )

π(A)π(B)

d(A,B)

 , (4)

with π(A) =
∑
u∈A π(u). The problem of the best representation of G by a dendrogram d

now reduces to the optimization problem:

arg min
d
J(d), (5)

over all ultrametrics d on V .

4 Optimal representation

We seek to solve the optimization problem (5), for some given graph G.

Optimal distances. We first assume that the binary tree T of the ultrametric is given
and look for the best corresponding distance d : int(T ) → R+. For each (A,B) ∈ int(T ),
we get by the differentiation of (4) in d(A,B),

p(A,B)

d(A,B)
= λ

π(A)π(B)

d(A,B)2
,

where

λ =

 ∑
A,B:(A,B)∈int(T )

π(A)π(B)

d(A,B)

−1 ,
that is

d(A,B) = λ
π(A)π(B)

p(A,B)
. (6)

Optimal tree. Replacing d(A,B) by its optimal value (6) in (4), we deduce that the
optimization problem (5) reduces to:

arg max
T

∑
A,B:(A,B)∈int(T )

p(A,B) log
p(A,B)

π(A)π(B)
. (7)

The dendrogram is then fully determined by (6), for each internal node (A,B) of the tree
T . Thus the objective is now to maximize the Kullback-Leibler divergence between two
probability distributions on the nested clustering induced by the tree T : p (edge sampling)
and π (independent node sampling). It provides a meaningful quality metric for hierarchical
clustering, given by: ∑

A,B:(A,B)∈int(T )

p(A,B) log
p(A,B)

π(A)π(B)
. (8)
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A key difference between our metric (8), we refer to as the relative entropy of the hierarchy,
and the cost functions proposed in the literature (Dasgupta (2016); Cohen-Addad et al.
(2018)) lies in the entropy term:

−
∑

A,B:(A,B)∈int(T )

p(A,B) log p(A,B).

Removing this term from (8) and inversing the sign yields the cost function:∑
A,B:(A,B)∈int(T )

p(A,B)(log π(A) + log π(B)),

to be compared with usual cost functions, of the form:∑
A,B:(A,B)∈int(T )

p(A,B)(π(A) + π(B)). (9)

When π is the uniform distribution (no prior information on the node weights), these cost
functions become respectively, up to some normalization constant:∑

A,B:(A,B)∈int(T )

p(A,B)(log |A|+ log |B|) and
∑

A,B:(A,B)∈int(T )

p(A,B)(|A|+ |B|).

The latter is Dasgupta’s cost function, equal to the expected size of the smallest cluster
containing two random nodes sampled from p.

Consistency. Like Dasgupta’s cost function and its extensions considered in Cohen-
Addad et al. (2018), the objective function (8) is consistent in the sense that, if the original
graph has a hierarchical structure, then any solution to the optimization problem (7) is a
tree generating the graph:

Proposition 1 Assume that the original graph G is generated by some ultrametric dG, in
the sense that

∀u, v ∈ V, w(u, v) =
π(u)π(v)

dG(u, v)
1{u6=v}.

Then any tree T maximizing (8) is a tree induced by the ultrametric dG.

Proof. We have:

H(p) ≤ min
p̂
H(p, p̂) ≤ H(p, π) + min

d
J(d)

= H(p, π)−max
T

∑
A,B:(A,B)∈int(T )

p(A,B) log
p(A,B)

π(A)π(B)
.

Since J(dG) = H(p)−H(p, π), any tree T maximizing the objective function (8) admits an
ultrametric d such that J(d) = H(p) − H(p, π). The corresponding sampling distribution
p̂, defined by (3), is such that H(p, p̂) = H(p). We deduce that p̂ = p, so that d = αdG for
some constant α > 0 and T is a tree associated with the ultrametric dG. �

Absence of bias. Another property of the objective function (8) is the absence of bias:
if the graph G is a clique, then all trees T have the same relative entropy. This property is
also satisfied by Dasgupta’s cost function and its extensions (Cohen-Addad et al. (2018)).

Proposition 2 If the graph G is a clique with unit weights, then all trees T have the same
relative entropy (8).

Proof. Let δ = 1/π(u), for some u ∈ V . Observe that this quantity is independent of u.
Now for any tree T , we have:∑
A,B:(A,B)∈int(T )

p(A,B) log
p(A,B)

π(A)π(B)
=

∑
A,B:(A,B)∈int(T )

p(A,B) log
δ2

n(n− 1)
= log

δ2

n(n− 1)
.

�
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5 Hierarchical clustering

The optimization problem (8) is combinatorial. We believe that it is NP-hard, like the
optimization problem associated with Dasgupta’s cost function (Dasgupta (2016)). The
optimal distances (6) suggest the following greedy algorithm: start from n clusters (one per
node) and successively merge the two closest clusters in terms of inter-cluster distance (6).
This is a usual agglomerative algorithm with inter-cluster similarity (so-called linkage):

σ(A,B) =
p(A,B)

π(A)π(B)
. (10)

The dendrogram is built from bottom to top, with distance σ(A,B)−1 attached to the
internal node (A,B) resulting from the merge of clusters A,B. The linkage is reducible, in
the sense that:

σ(A ∪B,C) ≤ max(σ(A,C), σ(B,C)).

This inequality guarantees that the resulting dendrogram is regular (the sequence of dis-
tances attached to successive internal nodes is non-decreasing) and that the corresponding
distance on V is an ultrametric.

Linkage. For π the uniform distribution (no prior information on the node weights), the
linkage (10) is proportional to the usual average linkage:

σ(A,B) ∝ w(A,B)

|A||B|
,

corresponding to the density of the cut separating clusters A and B. For π equal to p
(perfect knowledge of the node weights), this is the linkage proposed in Bonald et al. (2018):

σ(A,B) =
p(A,B)

p(A)p(B)
.

Modularity. The linkage (10) can be interpreted in terms of modularity. The modularity
of any partition P of the set of nodes V is defined by (Newman and Girvan (2004)):

Q =
∑
C∈P

∑
u,v∈C

(p(u, v)− p(u)p(v)).

This is the difference between the probabilities that two nodes belong to the same cluster
when sampled from the edges and independently from the nodes, in proportion to their
weights. The former sampling distribution depends on the graph while the latter depends
on the graph through the node weights only. A more general definition of modularity is:

Q =
∑
C∈P

∑
u,v∈C

(p(u, v)− π(u)π(v)), (11)

where π is a probability distribution representing the prior knowledge on the node weights.
For instance, it may be uniform (no prior information) or equal to p (the usual definition of
modularity, where the information on the relative node weights is known)1.

The problem of modularity maximization generally provides a single clustering. To get
clusterings with different granularities, reflecting the multi-scale structure of real graphs,
it is common to introduce some positive parameter γ, called the resolution, that controls
the respective weights of both terms in the definition of modularity (Reichardt and Born-
holdt (2006); Lambiotte et al. (2014); Newman (2016)). The modularity of partition P at
resolution γ is defined by:

Qγ =
∑
C∈P

∑
u,v∈C

(p(u, v)− γπ(u)π(v)).

1Another common interpretation of modularity is the difference between the proportions of edge
weights within clusters in the original graph and in some null model where nodes u and v are
linked with probability π(u)π(v); for π the uniform distribution (no prior information on the node
weights), the null model is an Erdős-Rényie graph while for π = p (perfect knowledge of the node
weights), the null model is the configuration model (Van Der Hofstad (2017)).
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When γ → 0, the second term becomes negligible and the best partition P is trivial, with
a single cluster equal to the set of nodes V . When γ → +∞, the second term becomes
preponderant and the best partition P has n clusters, one per node. Now the maximum
resolution beyond which the best partition P has n clusters is given by:

max
u6=v

p(u, v)

π(u)π(v)
.

The first node pair to be merged (at maximum resolution) is that achieving this maximum,
which is the closest pair in terms of linkage (10). The agglomerative algorithm based on
linkage (10) can thus be interpreted as the greedy maximization of modularity at maximum
resolution.

6 Experiments

In this section, we show how our metric (8) and Dasgupta’s cost function (9) behave on
both real and synthetic data. We do not claim that one metric is better than the other and
thus the experimental results are presented for illustrative purposes only. We have coded
the metrics in Python and grouped the experiments into a Jupyter notebook for the sake of
reproducibility 1.

Real data. We consider two real datasets (other real datasets, with more than 1M edges,
are available on the Jupyter notebook1):

• Openflights2, a weighted graph of 3,097 nodes and 18,193 edges representing flights
between the main airports of the world, the weight between two nodes corresponding
to the number of daily round-trip flights between these airports;

• Wikipedia for Schools3, a graph of 4,589 nodes and 106,644 edges representing the
links between articles of Wikipedia selected for schools (see West et al. (2009)). The
graph is considered as undirected (that is, there is an edge between two nodes if
there is a link between the corresponding articles, in either direction). Weights are
unitary.

Table 1 shows the results for the hierarchical clustering of these two graphs by Paris, the ag-
glomerative algorithm based on linkage (10), and Newman’s agglomerative algorithm based
on the greedy maximization of modularity (Newman (2004)). The results are compared to
a baseline obtained with a random agglomerative algorithm where node pairs are merged
at random (among neighbor pairs). Since this algorithm returns a random hierarchy, we
run it 100 times and give the average cost and quality of the hierarchy. Each metric is in-
dicated for π equal to p (weighted metric, left columns) and π uniform (unweighted metric,
right columns). The best hierarchy according to each metric (highest value for the relative
entropy, lowest value for Dasgupa’s cost) is indicated in bold.

Algorithm RE DC
Paris 2.77 2.91 0.167 0.130
Newman 2.03 3.51 0.246 0.138
Random 1.10 1.52 0.570 0.460

(a) Openflights

RE DC
1.33 1.30 0.427 0.415
0.951 1.33 0.461 0.410
0.762 0.811 0.645 0.630

(b) Wikipedia for Schools

Figure 1: Relative entropy (RE) and Dasgupta’s cost (DC), both weighted (left columns)
and unweighted (right columns), of the hierarchies of Openflights and Wikipedia for Schools
returned by three algorithms: Paris, Newman, and random.

1https://github.com/tbonald/hierarchy_metric
2https://openflights.org
3https://schools-wikipedia.org
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Not surprisingly, both Paris and Newman provide much better hierarchies than the random
algorithm. Paris is the best algorithm for the weighted metrics, while Newman is the best
algorithm for the unweighted metrics (except on Openflights, where Paris is better than
Newman in terms of unweighted Dasgupta’s cost). Considering the weighted metrics as
more informative (just like the standard definition of modularity, given by (11) with π = p),
both metrics tend to show that Paris provides a better hierarchy than Newman for both
graphs.

Synthetic data. To differentiate both metrics, we proceed with the following experi-
ments. We generate two noisy versions of the same graph, say G1 and G2, and return
the corresponding hierarchies, say H1 and H2, by some hierarchical clustering algorithm.
We then assess the ability of each metric to identify the best hierarchy associated to each
graph (e.g., H1 should be better than H2 for graph G1). The classification score (fraction
of correct answers) is indicated for each metric and for two algorithms, Paris (in black) and
Newman (in grey). Each classification score is based on 1000 samples of the graphs G1 and
G2; the original graph G, generated at random, has 100 nodes and the two graphs G1 and
G2 are derived from G by replacing some fraction of the edges at random (i.e., one of both
ends is chosen uniformly at random among the set of other nodes). The higher the distance
between G1 and G2, the easier the classification task (since the corresponding hierarchies
H1 and H2 differ more and more) and the higher the classification score.
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(a) Weighted metrics
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(b) Unweighted metrics

Figure 2: Classification score of relative entropy (RE) and Dasgupta’s cost (DC) with
respect to the distance between the graphs (in fraction of randomly replaced edges), for
Paris algorithm (black lines) and Newman algorithm (grey lines).

Both metrics tend to show that the Paris algorithm (in black) provides a better hierarchy
than Newman’s algorithm (in grey), the difference being more significant with the RE metric.
For both the weighted and unweighted metrics, the best classification score is obtained by
RE with the Paris algorithm. For a graph distance of 10%, the corresponding classification
score is equal to 94.8% for the weighted metric and 92.5% for the unweighted metric, while
it does not exceed 86.8% in all other cases.

7 Conclusion

We have proposed a novel metric for assessing the quality of hierarchical graph clustering,
motivated by the problem of reconstruction of the graph from the dendrogram. This metric
is the relative entropy between two probability distributions on the corresponding nested
clustering, induced by edge sampling and independent node sampling, respectively. We have
proved that, like Dasgupta’s cost function, our quality metric is consistent in the sense that,
if the original graph has a hierarchical structure, then the best hierarchy according to this
metric is the underlying hierarchy of the graph. Experiments on both real and synthetic
data tend to show that the relative entropy is both meaningful and significantly different
from Dasgupa’s cost. In future work, we would like to better characterize these differences,
i.e., to identify the types of hierarchical structures that are best detected by each metric.
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