
Reproducibility Challenge – Generative Modeling by
Estimating Gradients of the Data Distribution

Antonio Matosevic
matose@kth.se

Eliisabet Hein
elihei@kth.se

Francesco Nuzzo
fnuzzo@kth.se

1 Introduction

Recent popular deep generative models can roughly be categorised as either adversarial (GANs) or
likelihood-based (VAEs, autoregressive, flow-based). While the former often suffer from unstable
training, the latter require a particular architecture or a surrogate loss. Song and Ermon [1] introduce
a novel method based on estimating the gradients of data log-density with respect to the input data (i.e.
score). Subsequently, during sampling, an initial random point is moved to a high-density region by
using the estimated gradient. In this report, we investigate the reproducibility of [1]. For this purpose,
we briefly introduce the method (Section 2), present the implementation details and comment on the
reproducibility (Section 3), provide the results of toy (Section 4) and main (Section 5) experiments,
as well as propose and test extensions to the original paper (Section 6).

2 Method

Score estimation One major component of the proposed approach is direct estimation of the
score ∇x log p(x) using a neural network sθ(x), thus circumventing estimation of the data density
p(x). To this end, the theoretical objective 1

2Ep
[
||sθ(x)−∇x log p(x)||22

]
can be reformulated in

different ways to get two different loss functions, sliced score matching (SSM) [2] and denoising
score matching (DSM) [3]. SSM uses projections on random vectors v ∼ p(v) = N (0, I) and is
given as

EpvEp(x)
[
vT∇xsθ(x)v +

1

2
||sθ(x))||22

]
. (1)

While the SSM loss is exact, it is slow to compute, so often in practice DSM loss is used instead.
DSM loss estimates the score of density for perturbed data x̃ and is given as

1

2
Eqσ(x̃|x)p(x)

[
||sθ(x̃)−∇x̃ log qσ(x̃|x)||22

]
, (2)

where qσ(x̃|x) = N (x, σ2I) in [1]. Intuitively, a perturbed x̃ should move us towards the original x.
In fact, it holds that s∗θ(x) = ∇x log qσ(x) ≈ ∇x log p(x) for σ small enough so that qσ(x) ≈ p(x).

Sampling Using scores for generative modelling relies on sampling with Langevin dynamics.
Namely, given a step size ε > 0 and an initial value x̃0 we can, using only the score, compute
x̃t = x̃t−1 +

ε
2∇xs

∗
θ(x̃t−1) +

√
ε zt, where zt ∼ N (0, I), for T steps. It has been shown that under

some regularity conditions x̃T is an exact sample from p(x) as T →∞ and ε→ 0 [4].

Unfortunately, direct implementation of the proposed framework usually suffers from two major
issues, which the authors attribute to the manifold hypothesis and low-density regions of p(x).

Manifold hypothesis For most natural images, the manifold hypothesis states that the intrinsic
dimensionality of x has a support in RM ⊂ RD, where M � D. As a consequence, a score
(gradient) taken in RD is not going to be defined in RM . We will demonstrate the effects of this on
training the score network by replicating a toy example from [1] (Section 4).

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Low-density regions A negative effect of low-density regions concerns both score estimation
and sampling. Firstly, the number of samples from low-density regions of p(x) is not sufficient
to accurately estimate the loss (i.e. scores) during training. Following [1], we visualise this by
comparing analytic and estimated scores of a mixture of two Gaussians with near-zero density regions
between the modes (Section 4). Regarding sampling, Langevin dynamics require an infeasible
number of iterations in traversing these regions to obtain good mixing. We successfully reproduce an
experiment showing this on the same GMM (Section 4).

Proposed solutions Firstly, to remedy the negative implications of the manifold hypothesis, Song
and Ermon [1] suggest adding Gaussian noise to data. Since the noise is defined in RD, this
results in gradients being defined everywhere. Secondly, the authors observe that adding large noise
also helps to fill in the low-density regions, hence improving the score estimation. Thirdly, while
large noise helps during the training, it is not favourable for sampling. To address this issue, they
propose obtaining a sample by iteratively generating from distributions of perturbed data {qσi}Li=1

parameterised by a decreasing geometric sequence {σi}Li=1 of noise levels. This way one utilises
the benefits of large noise to avoid low-density regions, but also gradually transitions to small noise
where the perturbed data distribution is indistinguishable from p(x). In practice, this requires only
a small modification to Langevin dynamics described in Section 2 by embedding it into iterations
over noise levels1 and multiplying ε by a factor of σi2/σL2. To employ this procedure, a single score
network is trained with the total loss L(θ; {σl}Ll=1) =

1
L

∑L
l=1 λ(σl)`(θ;σi), where `(·) is a DSM

loss2, and λ(·) a parameter regulating that none of the individual loss terms dominates (σ2
i in [1]).

3 Implementation

All implementation was done in Python using TensorFlow 2.0, and the models were trained using
P100 and V100 GPUs on the Google Cloud Platform. The original code by the authors was provided
in PyTorch. To our knowledge, this is the first time this method has been ported to a new framework.
Our code is available on GitHub at https://www.github.com/Xemnas0/NCSN-TF2.0.

3.1 Data pipeline

Since the datasets used (MNIST, CIFAR-10 and CelebA) are standard, we obtained them through
the TensorFlow datasets API. We used the standard training split for each dataset (60,000 samples
for MNIST and CIFAR-10, and 162,770 samples for CelebA). We applied preprocessing to the data
following [1]. For CelebA, we extracted a 140× 140 centre crop from the image and then resized to
32× 32. Since the original paper does not specify which interpolation method to use for resizing, we
used the default in TensorFlow (bilinear). For all the datasets, we scaled the values from [0, 255]
to [0, 1] by dividing each pixel value by 255. Finally, for CIFAR-10 and CelebA, we also flipped
each image along the vertical axis with 50% probability each time a batch was loaded. The data was
shuffled at the beginning of every epoch with a buffer size of 10,000 and then split into batches. After
consulting with the published code, we noted that instead of using the default, the authors create a
randomly sampled training split for MNIST and CelebA, and shuffle the whole dataset each epoch,
but since our buffer is reasonably large, we do not consider these differences significant.

3.2 Network architecture

An important aspect of the method is choice of the score network. The authors used three architectures
(MLP and ResNet for toy experiments and RefineNet for the main experiment). All models were
trained with Adam optimizer with learning rate 0.001. For all experiments, batch size was 128. For
ResNet and RefineNet, we used 64 filters for MNIST and 128 for CIFAR-10 and CelebA.

MLP For the results in Figure 2c, following [1], we use a three-layer MLP with 128 units per layer
with softplus activation. While this was not specified by the authors, we do not apply activations to
the outputs in any architecture, to keep the scores unnormalized and unbounded.

1Note that xσi ∼ qσi is used to initialise sampling from qσi+1 . The intuition is that xσi comes from a
high-density region of qσi and since qσi and qσi+1 are similar, xσi is also in a high-density region of qσi+1 .

2Well-motivated since we are now estimating the score of perturbed data.

2

https://www.github.com/Xemnas0/NCSN-TF2.0


ResNet For the results in Figure 1, we use a ResNet encoder-decoder network as in [1]. The
encoder consists of 5 pre-activation residual blocks with 32, 64, 64, 128, 128 filters in each layer
respectively, mirrored in the decoder. Downsampling/upsampling is performed at the end of the 2nd
and 4th residual blocks in the encoder and decoder respectively. Activation function is ELU. For the
details that were not specified in the paper, we made the following assumptions:

• Convolutions (encoder) or transposed convolutions (decoder) are of size 3× 3.
• Resizing is performed with (transposed) convolutions of stride 2.
• Normalisation is done over batches and only within the residual blocks.
• For changing the number of filters within a skip connection, we use 1×1 convolutions.

RefineNet The architecture in [1] follows a 4-cascades RefineNet [5] adjusted to account for
different noise levels. In short, the RefineNet is a variant of U-Net with residual blocks, where
the upwards cascade consists of RefineBlocks, each of which in turn consists of three components:
residual convolutional units (RCU), multi-resolution fusion (MRF) and chained residual pooling
(CRP). Since the architecture is complex, for brevity we refer to [5] for the exact details and to [1]
for the modifications made to it. From a reproducibility standpoint, we found the wording in the
architecture description ambiguous; here we contacted the authors, who referred us to the official
code3, according to which we clarify choices in architecture.

• In [5], the downward cascade (inputs to the RefineBlocks) are obtained from a ResNet
pre-trained on ImageNet. In the code, [1] instead train 2 ResNet blocks per cascade from
scratch. In correspondence the authors said there was no specific reason for this number and
it should be robust to different choices, so we used 1 due to computational limitations.

• Downsampling was performed using 2 × 2 average pooling with stride 2 and double the
number of filters with non-dilated 1×1 convolutions only once, after the first cascade.

• The authors replace convolutions in these residual units with dilated convolutions. While
the paper claims to increase the dilation by a factor of two in each cascade, this would result
in extremely large dilations relative to the size of the image in the lowest cascade. We use
the dilation rates used in the authors’ code, 1, 2, 2, 4 in the four cascades respectively.

• Additional 3×3 convolutions at the beginning and the end of the architecture are used to
move between input channels and number of filters.

• For conditional instance normalisation, the parameters α and γ are initialised to ones (instead
onN (1, 0.02) as in the code), and β to zeros, as is common practice for batch normalisation.

3.3 Evaluation

Due to limited computational resources we save checkpoints during training every 10,000 iterations
instead of every 5,000 as in [1]. We choose the best model for CIFAR-10 and CelebA by computing
the FID on 1000 samples generated from each checkpoint. For MNIST we used the final model as in
[1]. The reported Inception score and FID were computed on 50,000 samples from the best model.

4 Reproduction of toy experiments

The first experiment tests whether perturbing the data with small Gaussian noise N (0, 0.0001)
addresses the problem with the manifold hypothesis and facilitates learning. As in [1], we trained a
ResNet encoder-decoder (Section 3.2) on CIFAR-10 with SSM loss for 50,000 iterations (Figure 1).
While we do not get exactly the same magnitude or behaviour of the loss curves as in [1], we can
confirm that the model only converges with perturbed data.

In the second experiment we compared analytically computed scores (Figure 2b) with those estimated
by an MLP (Section 3.2) trained with SSM loss for 10,000 iterations (Figure 2c) for a GMM with
p(x) = 0.2N ((−5,−5), I)+0.8N ((5, 5), I) with near-zero density between the components. The
plots look similar to those from the original paper. We can see that scores estimation is accurate in
high-density regions around the modes, but fails in low-density ones, as expected.

3https://github.com/ermongroup/ncsn

3

https://github.com/ermongroup/ncsn


0 10000 20000 30000 40000 50000
Training iterations

2.0

1.5

1.0

0.5

0.0

SS
M

 lo
ss

1e10

Unperturbed data
Perturbed data

Figure 1: Loss curves for score networks trained on CIFAR-10 before and after perturbing the data.

8 6 4 2 0 2 4 6 8
x

8

6

4

2

0

2

4

6

8

y

(a) Density of the data

8 6 4 2 0 2 4 6 8
x

8

6

4

2

0

2

4

6

8

y

(b) True score

8 6 4 2 0 2 4 6 8
x

8

6

4

2

0

2

4

6

8

y

(c) Estimated score

Figure 2: Effect of low-density regions on score estimation.

Finally, we attempted to reproduce Figure 3 from the original paper to show the effect of low-density
regions on sampling using Langevin dynamics with and without annealing from the GMM from
the previous experiment. Here we used the true scores computed analytically. Song and Ermon [1]
claim that they used a geometric sequence of 10 noise levels σ between 10 to 0.1, T = 100 and
ε = 0.1. However, with this setup, we failed to reproduce the plot (no samples were obtained because
of numerical overflow).4 When consulting with the authors’ code, we found that unlike what was
reported in [1], a geometric sequence between 20 and e0.1 was used. With these values, we indeed
obtained a very similar plot (Figure 3c) to what was reported in the paper.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y

(a) Exact samples

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y

(b) Samples without annealing

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y

(c) Samples with annealing

Figure 3: Effect of low-density regions on sampling with Langevin dynamics.

We reason that the reported hyperparameters fail due to step size ε(σ1/σL)2, which becomes relatively
large when ε and σ1 are large or σL is small. The authors avoid the issue by increasing σL.5 However,
this goes against the idea of annealed Langevin dynamics, which is to converge to a distribution which
is almost indistinguishable from the true one (i.e. having small σL is desirable). Therefore we decided
to experiment with decreasing ε instead. We include the results in Figure 11 in the Appendix. Even
with extensive fine-tuning of ε we did not manage to get visually satisfying results, so it is clear that
the algorithm is very sensitive to the choice of this hyperparameter. We suggest a goodness-of-fit or a
comparison of likelihoods as the future work to quantitatively assess the similarity of distributions.

4We also confirmed that running the authors’ code with these parameters gave the same results.
5This could be by mistake as the logarithm is applied to σ1 but not to σL when constructing the sequence.

4



5 Reproduction of main experiment

In this section, we present our reproduction of the main experiments from [1], which consist of
training RefineNet models (Section 3.2) on MNIST, CIFAR-10 and CelebA datasets and performing
sampling and inpainting with the best models. Following [1], the baseline was trained without
annealing, conditioned on only one noise level (σ = 0.01), while the final model was conditioned on
a geometric sequence {σi}10i=1 from 1 to 0.01. All models were trained for 200,000 iterations.

5.1 Image generation

Figure 4: Samples from the baseline.

One noise level The samples generated from the baseline
model trained on MNIST are given in Figure 4. Follow-
ing [1], we used T = 1000 and ε = 2 · 10−5 for sam-
pling. As we can see, the model fails to generate correct
samples, which is in agreement with the original results,
even for a simple dataset such as MNIST. Due to limited
computational resources, we omit training the baseline for
CIFAR-10 and CelebA, and focus instead on additional
experiments. Overall, we consider this choice of baseline
redundant, as the importance of multiple noise levels has
already been showcased on the toy example (Section 4). In
our opinion, a more informative baseline would be a sim-
plified network architecture or simpler annealing schedule;
we will investigate this in Section 6.

Multiple noise levels We now present our results from replicating the main experiments with
models trained with a geometric sequence {σi}10i=1, to showcase that this approach yields reasonable
samples of real data. The loss curves are given in Figure 12 in the Appendix. We chose the best model
from checkpoints as explained in Section 3.3. The samples obtained from this model with T = 100
and ε = 2 · 10−5 and intermediate samples from each qσi are shown in Figure 3a. Additional samples
are provided in the Appendix. The best model for CIFAR-10 was found at 120k iterations and for
CelebA at 30k. The Inception score and FID computed from 50k samples from the final model for
CIFAR-10 were 6.5± 0.118 and 33.0, and for CelebA 3.4± 0.0395 and 81.5.

(a) MNIST samples (b) CIFAR-10 samples (c) CelebA samples

(d) MNIST intermediate (e) CIFAR-10 intermediate (f) CelebA intermediate

Figure 5: Uncurated samples generated from trained models for MNIST, CIFAR-10 and CelebA
datasets with annealed Langevin dynamics (a-c) and intermediate steps during sampling process (d-f).

5



As we can see, while the samples are qualitatively good, our Inception and FID scores for CIFAR-10
are noticeably worse than those reported in the paper (8.87±.12 and 25.32, respectively). A possible
reason could be the high variability in the FID score when choosing the best model as described in
Section 3.3; we show that the FID score fluctuates for checkpoints for both CIFAR-10 and CelebA in
Figure 13 in the Appendix. We believe using more samples at each checkpoint (the standard for FID
is a minimum of 2048, while here we only used 1000 as per [1]) would yield a more reliable metric,
but this comes at the cost of more expensive computations. There could also be some differences in
the architecture that were missed in the implementation.6 As an extension to the original paper, we
also computed FID and IS for CelebA. While cropping and resizing means that results are not directly
comparable to results from literature, we can see that our achieved results are significantly worse –
the current reported state of the art FID score for 64× 64 CelebA is 4.00 [6], while we obtained 81.5.
Perhaps an interesting observation is that there are more female than male faces generated, which
also reflects the ratio of these in the training data. In the interest of reproducability, we also report the
time cost of training and sampling for each dataset in Table 1 in the Appendix.

Following [1], we find k nearest neighbours for a set of generated samples from the training data with
respect to l2 distance. Results are shown in Figure 6, and more extensive examples in Figure 17 in the
Appendix. As we can see, the network has not memorised exact training images, but still preserves
some high-level features from the training set such as colour, shape, style, orientation etc.7

(a) MNIST (b) CIFAR-10 (c) CelebA

Figure 6: k = 5 nearest neighbours from the training data for 5 samples based on l2-distance.

5.2 Inpainting

We also performed inpainting as in [1], occluding the right half of the image and completing the
image with annealed Langevin dynamics. The results are shown in Figure 7. As we can see, the
models perform extremely well, especially in recovering the background for CIFAR-10 and the right
half of the face for CelebA. Moreover, inpaintings for the same image are diverse, which showcases
the generalisation capacity of the approach. Furthermore, one advantage of this method is that it is
able to handle arbitrary occlusion shapes well (Figure 18 in the Appendix). A nice addition would be
to quantify the quality of results by measuring signal-to-noise ratio, but we leave this as future work.

(a) MNIST (b) CIFAR-10 (c) CelebA

Figure 7: Inpainting for occluded images from the training set. The occluded image is given in the
leftmost column, and the true image in the rightmost column.

6We initially considered the number of residual blocks, but with 2 blocks the results did not improve.
7Disclaimer: We implemented this before the authors added nearest-neighbour calculations to their work on

29th Oct 2019, which additionally measures distance based on activations from the Inception network.

6



6 Additional experiments

After successfully reproducing most of the experiments, we thought of some interesting extensions.
Specifically, we investigated the choice of sampling hyperparameters ε and T , annealing schedule
and network architecture, which we identified as important but unexplored in the original work.

6.1 Sensitivity on sampling parameters

The authors report the interval ε ∈ (5 · 10−6, 5 · 10−5) and T = 100 as robust hyperparameters for
sampling. Motivated by sensitivity to ε in the toy examples, we investigate these hyperparameters
in more detail on real data from the CIFAR-10 dataset. We sampled with a smaller ε (Figure 8a)
and a larger ε (Figure 8b), where the former yielded only noise since the step was not large enough
to move away from the noisy initial point, and the latter resulted in samples being one-coloured
because too large step size escaped allowed pixel values and was artificially clipped to the endpoints
of pixel intervals. Similarly, a large T results in smoother images (Figure 8d), but with much fewer
details, probably due to convergence to a local mode representing some kind of generic class image,
and a small T (Figure 8c) being mostly noise with only slightly distinguishable shapes. While the
reasoning here is speculative, we here would like to emphasise the sensitivity to choice of ε and T ,
as already seen in the toy GMM experiment in Section 4. A suggested future work might concern
different annealing strategies where ε or T could be adjusted for different noise levels.

(a) ε = 10−6, T = 100 (b) ε = 10−1, T = 100 (c) ε = 2 · 10−5, T = 10 (d) ε = 2 · 10−5, T = 103

Figure 8: Samples from the best CIFAR-10 model with different values of ε and T .

6.2 Linear annealing schedule

We also train a model with linear annealing schedule instead of geometric on CIFAR-10 dataset. We
hypothesise that geometric annealing might be too aggressive in the sense that most of noise values
are low, which results in fine-tuning edges without capturing global features first. This is manifested
in some samples being smooth, but not having a distinct shape of any reasonable object. From visual
inspection of the results (Figure 9) we can see that intuition was correct, as these samples capture
much more detail and complexity than with geometric annealing (Figure 5b). However, the images
are visibly more noisy. We can explain this tendency using the inverse of the previous logic, namely
that there are not enough noise levels in the low spectrum of values, thus precluding the sampling of
sharper images. We believe some combination of these annealing schedules could solve this issue
and result in very good samples, but also add to the complexity of the model.

(a) 50k iterations (b) 100k iterations (c) 150k iterations (d) 200k iterations

Figure 9: Samples from model trained on CIFAR-10 with linear annealing schedule.

7



6.3 Different architecture of the score network

The authors emphasise the choice of network architecture as important role and leave experimenting
with different designs as future work. We address this by replacing the U-Net structure with the
ResNet from the toy example in Section 4 on CIFAR-10, but to avoid changing the architecture too
much, we add conditional instance normalisation and dilated convolutions, as well as multiplying the
number of filters by factor of 4 in each block to match the number of parameters in the RefineNet.
Here we can only conclude that this simple architecture did not result in meaningful samples and
that the choice of structure seems to be important. We believe the main reason for these sub-par
results is lack of skip connections as in U-Net type architectures. We also acknowledge that training
hyperparameters would have to be tuned for this network to meaningfully compare the results.

(a) 100k iterations (b) 150k iterations (c) 200k iterations

Figure 10: Samples from a ResNet model trained on CIFAR-10.

7 Conclusions

We can conclude that the main results from [1] concerning image generation and inpainting are
qualitatively reproducible and that the method indeed does yield visually good samples and inpainting
results. However, we did not manage to obtain state-of-the-art Inception score on CIFAR-10 (nor
comparable FID) as in [1], perhaps due to some undocumented differences in the score network or
highly variable evaluation metric. When it comes to toy experiments used to investigate challenges and
motivate assumptions of the proposed method, we report partial irreproducibility due to incorrectly
reported noise levels for the annealed sampling from the given GMM. This observation led us
to investigate the effect of different hyperparameters on sampling for CIFAR-10, which showed
relatively high sensitivity to ε and T . We also experimented with a different architecture, and linear
annealing schedule. While with the former we did not manage to generate reasonable samples
(perhaps due to simplicity of the architecture), the latter yielded more detailed (but slightly more
noisy) samples than the default geometric annealing, thus paving the path for future improvements.

References
[1] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. CoRR,

abs/1907.05600, 2019. URL http://arxiv.org/abs/1907.05600.

[2] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach to
density and score estimation. CoRR, abs/1905.07088, 2019. URL http://arxiv.org/abs/1905.07088.

[3] P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 23(7):
1661–1674, July 2011.

[4] Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
Proceedings of the 28th International Conference on International Conference on Machine Learning,
ICML’11, pages 681–688, USA, 2011. Omnipress. ISBN 978-1-4503-0619-5. URL http://dl.acm.org/
citation.cfm?id=3104482.3104568.

[5] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian D. Reid. RefineNet: Multi-path refinement networks
for high-resolution semantic segmentation. CoRR, abs/1611.06612, 2016. URL http://arxiv.org/abs/
1611.06612.

[6] Chieh Hubert Lin, Chia-Che Chang, Yu-Sheng Chen, Da-Cheng Juan, Wei Wei, and Hwann-Tzong Chen.
COCO-GAN: Generation by parts via conditional coordinating. CoRR, abs/1904.00284, 2019. URL
http://arxiv.org/abs/1904.00284.

8

http://arxiv.org/abs/1907.05600
http://arxiv.org/abs/1905.07088
http://dl.acm.org/citation.cfm?id=3104482.3104568
http://dl.acm.org/citation.cfm?id=3104482.3104568
http://arxiv.org/abs/1611.06612
http://arxiv.org/abs/1611.06612
http://arxiv.org/abs/1904.00284


Appendix

10 0 10
x

10

5

0

5

10

y

= 1e-01

10 0 10
x

= 1e-02

10 0 10
x

= 1e-03

10 0 10
x

= 1e-04

10 0 10
x

= 1e-05

10 0 10
x

= 1e-06

(a) ε ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}.

10 0 10
x

10

5

0

5

10

y

= 1e-04

10 0 10
x

= 8e-05

10 0 10
x

= 6e-05

10 0 10
x

= 4e-05

10 0 10
x

= 2e-05

10 0 10
x

= 1e-05

(b) ε ∈ {10−4, 8 · 10−5, 6 · 10−5, 4 · 10−5, 2 · 10−5, 10−5}.

Figure 11: Samples obtained with different values of ε for toy data with annealed Langevin dynamics.
Even after expanding the search in the promising interval ε ∈ {10−4, 10−5}, we did not find a value
of ε yielding satisfying results.

9



0 25k 50k 75k 100k 125k 150k 175k 200k
Training iterations

0

250

500

750

1000

1250

1500

DS
M

 lo
ss

MNIST
CIFAR-10
Celeb A

Figure 12: Loss curves for training real model

(a) CIFAR10 (b) CelebA

Figure 13: FID scores on 1000 samples for the model trained up to given iteration

Dataset

MNIST CIFAR-10 CelebA

Downloading data (required once) 28.7s 50.4s 715.4s
Training with RefineNet 2.35it/sec 1.73it/sec 1.73it/sec
Sampling (1 image) 19s 23s 23s
Sampling (100 images) 112s 158s 158s
Sampling (1000 images) 910s 1398s 1398s

Table 1: Time required for different components of the main experiment for each dataset. MNIST
was run on a P100 GPU, while the other two datasets were run on a V100 GPU.

10



Figure 14: Extended samples from MNIST

11



Figure 15: Extended samples from CIFAR10

12



Figure 16: Extended samples from CelebA

13



(a) MNIST

(b) CIFAR-10

(c) CelebA

Figure 17: Samples (leftmost column) and their nearest neighbours from training set w.r.t. l2 distance.

14



Figure 18: Recontruction with two more different patterns of occlusions on CelebA. Note that unlike
the left-right occlusions shown in the main results, utilising face symmetry is not possible with these
occlusions, once again proving the method has a good generative capacity.

15


	Introduction
	Method
	Implementation
	Data pipeline
	Network architecture
	Evaluation

	Reproduction of toy experiments
	Reproduction of main experiment
	Image generation
	Inpainting

	Additional experiments
	Sensitivity on sampling parameters
	Linear annealing schedule
	Different architecture of the score network

	Conclusions

